Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3698562 A
Publication typeGrant
Publication dateOct 17, 1972
Filing dateJun 15, 1970
Priority dateJun 17, 1969
Also published asCA948561A1
Publication numberUS 3698562 A, US 3698562A, US-A-3698562, US3698562 A, US3698562A
InventorsJohn Barrington Cole, Roger M Farrow, Graham Ernest Griffiths, Anthony B Kimber, John Walter Miles
Original AssigneeW & R Balston Ind Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Porous support core for disposable tube filter
US 3698562 A
Abstract
A porous support core is prepared from a synthetic polymeric material, which support core is adapted for use with disposable semirigid filter tubes, which core comprises a plurality of individual elements arranged in a stacked interlocking relationship, the elements so structured to form an axial passageway in the stacked elements and flow passages in the wall of the core so formed. The individual disc elements are characterized by a central aperture to form an axial passageway, projecting partitions on one surface to form the flow passage and hook elements on the opposite surface to interlock individual disc elements.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Farrow et al.

POROUS SUPPORT CORE FOR DISPOSABLE TUBE FILTER Inventors: Roger M. Farrow; Anthony B.

Kimber, both of Kent; John Barrington Cole, Sussex; John Walter Miles, Sussex; Graham Ernest Griffiths, Sussex, a1l of England W. & R. Balston (Industrial) Limited, Maidstone, Kent, England Filed: June 15, 1970 Appl. No.: 46,343

Assignee:

Foreign Application Priority Data June 17, 1969 Great Britain ..30,646/69 U.S. Cl ..210/488, 210/497 Int. Cl. ..B0ld 27/00 Field of Search ..210/488, 489, 497, 232, 509,

[56] References Cited UNITED STATES PATENTS 3,259,248 7/1966 Wiegand ..210/488 X 2,692,220 10/1954 Labino ..210/509 UX 2,654,440 10/1953 Robinson ..210/492 X Primary Examiner-Reuben Friedman- Assistant Examiner-Frederick F. Calvetti Attorney-Richard P. Crowley and Richard L. Stevens [57] ABSTRACT A porous support core is prepared from a synthetic polymeric material, which support core is adapted for use with disposable semirigid filter tubes, which core comprises a plurality of individual elements arranged in a stacked interlocking relationship, the elements so structured to form an axial passageway in the stacked elements and flow passages in the wall of the core so formed. The individual disc elements are characterized by a central aperture to form an axial passageway, projecting partitions on one surface to form the flow passage and hook elements on the opposite surface to interlock individual disc elements.

15 Claims, 15 Drawing Figures PATEmi-inucm m2 3.698.562

' SHEET 1 OF 2 INVENTOR I Clo v11 CAL 1 3 ATTORNEY SHEET 2 OF 2 FIG.

F lG.9

INVENTOR STEAM 4 STEAM l f ZJ-Uliu ATTORNEY POROUS SUPPORT CORE FOR DISPOSABLE TUBE FILTER BACKGROUND OF THE INVENTION In various processes requiring filtration of a fluid stream, filter tubes are generally employed either alone or disposed about a permanent support core which is an integral part of the filter assembly. Core supports are normally employed where the pressure drop across the filter tube when in service is expected to exceed the strength of the filter tube itself. Such filter tubes and their supports are normally placed within an external filter housing. in general, the filter tubes are made to rather standard sizes and then are disposed over an internal porous support core. Material to be filtered is generally introduced externally of the tube in the housing and clarified gas or liquid removed from the internal portion of the support core. Typically, the support core is an integral part of the cartridge and is disposed of when the replacement of the filter tube is required.

Support cores presently employed are generally fabricated from a rigid open mesh material to provide porosity, such as an expanded or perforated metal. For example, a sintered porous metal cylinder is often used as a support at very high pressure differentials, while the support core may also be comprised of screen material and the like. The support cores thus employed are unitary integral cores, the body of the core generally being formed in a single operation of generally inexpensive material with the core thrown away with the filter tube with which it is used. lnaddition, the porosity of the support core must be carefully selected so as to provide for the proper support, while minimizing flow resistance of the fluid stream through the supporting core. Accordingly, there exists a need and advantage for a support core which is easily fabricated from inexpensive materials and which offers porosity of desired characteristics, and yet which may be easily fabricated to a desired length to accommodate various filter tube lengths and wherein the filter tube only may be removed and discarded during service without the necessary removal from service or discarding of the support core.

SUMMARY OF THE INVENTION Our invention relates to a porous core and the component elements of such core, which core composed of such elements is particularly adapted for use in supporting disposable filter tubes, a cartridge filter assembly employing said core, a method of fabricating the core and a method of employing a semirigid filter tube with such core.

More particularly, our invention concerns a generally cylindrical porous support core which is used with disposable semirigid filter tubes to form a filter cartridge. Our support core provides a permanent core support easily fabricated into a desired filter tube length. In combination with our support core, a disposable semirigid filter tube may be employed in filtering processes of high pressure differentials. Our support core is composed of readily interchanging component parts, which parts in the core are easily fabricated, particularly from solid polymers and readily assembled.

Our support cores and said support cores with semirigid glass fiber filter tubes are characterized in particular by excellent resistance to attack by corrosive chemicals and further, may be safely autoclaved by steam sterilization techniques with or without the filter tube. Our invention permits the porous core to be inserted into an external housing to form a filter assembly and to interchange filter tubes without disposal of the support core. Our modular core design also permits a semirigid filter tube to be easily slid over the porous core and to be removed when a replacement is necessary. The cover of the filter housing may be removed without interrupting or requiring resterilization of the system in which our cartridge filter assembly is employed. Our support core not only supports and contains the filter tube, but also by virtue of the end cap design easily and effectively seals the assembly into a housing.

The porous or open area of the support core may be varied with each design; for example, a large open area of the support core may be used to offer very low resistance to flow so that in combination with semirigid filter cartridges composed, for example, of glass fibers, outstanding permeability characteristics and high flow rates may be achieved. Another distinct advantage of our support core comprises a support core design which permits a rapid and effective fluid-tight seal to be made between the support core and the ends of the semirigid filter tube employed with the support core. This unique sealing feature is accomplished by designing the support core so that the one or more ends of the support core are adjustable inwardly after the insertion of thefilter tube, so that the filter material adjacent the ends is compacted, densified or crushed in a manner sufficient to make a fluid-tight seal by the inward movement of the retaining core ends. This design of the core and technique avoids the absolute necessity of employing gaskets, sealants and-the like in such filter assemblies. Where flexible cloth filter bags or flutedtype filter cartridges are employed, such axial compression is typically not possible without the necessity of employing additional sealing techniques. Our porous support core in combination with a semirigid or rigid filter tube permits the technique of axial compressing of the filter to be effective on our core.

The present invention relates to filters for filtering gaseous and liquid fluids. The invention more particularly relates to filters of the type having a filter cartridge comprising a filtering material, i.e., a filter tube, arranged around a hollow porous core. As seen from one aspect, the invention provides a hollow porous core for a filter cartridge for a filter of the above mentioned type, the core comprising a plurality of disc elements secured together or adapted to be secured together in a stack, each disc element being fonned with a central aperture to define a channel through the core, and with means to leave a space between each adjacent pair of said disc elements for fluid to pass to said channel.

Preferably, each said disc element has a series of radial or substantially radial partitions to abut an adjacent disc element, leaving the said space divided up into radial or substantially radial passages. Preferably each said disc element is formed with means to secure itself directly to an adjacent disc element, such, for example, as'hooks, threads, adhesives, etc..

The invention also relates to a method of filtration using a filter of the above mentioned type having a filter cartridge comprising a filtering material arranged around a hollow porous core in accordance with the in vention.

BRIEF DESCRIPTION OF THE DRAWINGS The invention will be described by way of illustrative examples with reference to the accompanying drawings, wherein:

FIG. 1 is an exploded perspective view of elements of a filter core in accordance with the invention;

FIG. 2 is a perspective view from the other side of one disc element shown in FIG. 1;

FIGS. 3, 4 and 5 are front and rear elevations and a side section (along the line 5-5 of FIG. 4) respectively of a second disc element shown in FIG. 1;

FIGS. 6, 7 and 8 are front and rear elevations and a side section (along the line 8-8 of FIG. 7) respectively of a third disc element shown in FIG. 1;

FIGS. 9 and 10 are a front elevation and side section (along line 1010 of FIG. 9) respectively of the element shown in FIG. 2;

FIGS. 11 and 12 are a side section (along line 11-11 of FIG. 12) and a rear elevation respectively of a fourth element shown in FIG. 1;

FIG. 13 is a perspective view of a support core formed by a plurality of stacked disc elements;

FIG. 14 is a perspective illustrative view of a filter cartridge with the support core of FIG. 13 and a semirigid filter tube thereon; and

FIG. 15 is an illustrative sketch of the employment of the filter cartridge of FIG. 14 in a filter assembly used in a fermentation process.

DESCRIPTION OF THE INVENTION The filter core comprises a first disc element 12, (see FIGS. 1, 2, 8 and 10), a desired plurality, e.g., 31 second disc elements 14, only one of which is shown, (see FIGS. 1 and 3 to 5) a third disc element 16, (see FIGS. 1 and 6 to 8) and a fourth disc element 18, (see FIGS. 1, 11 and 12). All of these elements are of a hard synthetic polymeric material such as of moulded polypropylene.

The disc element 12 shown forms one end of the core and has no central aperture, thus preventing fluid from entering the core from that end (however, an aperture at this end may be employed as desired). An externally screw-threaded boss projects from an internal face 22 of element 12, for screwing into an internally screwthreaded aperture 24 of element 18, which is received by a 1.75 inch diameter recess 25 in element 12. An inner end face 26 of element 12 is annular, with an external diameter of 2.00 inch. The maximum diameter of disc element 12 is 2.31 inch, where there is a rim 27. The maximum diameter of elements 12 and 16 may be increased as desired, e.g., 2.50 inches.

Each disc element 14 has an external diameter of 2.00 inch, and a thickness between faces 28 and 30 of 0.25 inch. Four books 32 project three-eighths inch from face 28 and are equally spaced around the disc element 14. Each hook 32 has a head portion 34 with an abutment surface 36 spaced 0.25 inch from face 28. In between the four hooks 32, there are four similarly spaced apertures 38. A plurality of th e elements 14 are secured together in a stack by passing the hook head or engaging portions 34 of each element 14, (except the one element 14 adjacent element 18) through the receiving apertures 38 of the adjacent element 14, and twisting relatively each adjacent pair of elements 14 or otherwise receiving the elements so that the abutment surfaces 36 engage the faces 28, with a fairly tight fit. The face 30 is formed by 24 radial partitions 40 which are five thirty-seconds inch in depth and 0.05 inch in width. These leave a space through which filtered fluid can enter or leave the core when the faces 28 and 30 of adjacent elements 14 abut. Finally, each disc element 14 has a central aperture 42, 1.00 inch diameter, to form a channel through the core 100.

The third disc element 16 forms the opposite end of the core from element 12. Element 16 has four hooks 44 corresponding in shape, dimensions and spacing to the hooks 32 of the elements 14, to engage the adjacent element 14. An inner rim 46 of element 16 is of the same diameter, 2.00 inch, as the elements 14, while an outer rim 48 is 2.31 inch in diameter, (the same as the maximum diameter of element 12) forming an annular ledge 50 between rims 46 and 48. Finally, the disc element 16 has a central aperture 52 of the same diameter as the aperture 42 of each element 14, to provide an outlet for filtered fluid from the center of the core.

The fourth disc element 18 is 1.625 inch diameter to fit into the 1.75 inch diameter recess 25 in element 12. Four apertures 54 correspond to the apertures 38 of elements 14, and serve for securing element 18 to the adjacent element 14 by means of the hooks 32 thereof. Element 18'also has the three-fourths inch diameter central aperture 24 mentioned earlier, to receive the threaded boss 20 of element 12.

The elements 14, 16 and 18 of the core are all assembled by means of a jig, (not shown) which passes slidably through apertures 42, 52 and 56, whereby the individual disc elements are placed in a stacked interlocked tight relationship to form the support core of FIG. 13. Typically, the support core is supplied to the user assembled in a predetermined length and the user then fits the filter tube onto the core to form the cartridge. A preformed tube 112 (FIG. 14) of glass fiber, for example, filtering material, measuring 8.25 inch in length, 2.00 inch internal diameter and 2.31 inch external diameter, is fitted over elements 14 and I8 and rim 46 of element 16, to abut the ledge 50. Finally, the element 12 is screwed on to element 18, the end face 26 fitting into the tube and the rim 27 abuts the tube, holding it in place. The combination of the tube and core form a cartridge filter for use in a filter housing with an inlet for fluid to be filtered leading, for example, to the outside of the cartridge and an outlet leading from the aperture 42 of the core.

The core as assembled is illustrated in FIG. 13 and shown as comprising a plurality of assembled, stacked, generally fluid-tight abutting disc elements 14 making up the body of the core, the plurality of disc elements defining by the radial extending partitions 40, a plurality of aligned and defined flow passages 102 in the core, and a central flow passage in the core defined by an inlet 52 and a plurality of apertures 42. A sealing gasket 104 on the external face of element 16 provides a means by which the core is placed in a fluid-sealing material from the central aperture 42 after filtration and to seal the core to the filter housing. Typically, the core and the external disposable filter tube are surrounded by an external housing 106 (see FIG. and wherein material to be filtered, particularly under pressure, is introduced into the housing and the external of the filtering material, the material filtering through the filter tube material and removed from the central aperture 42 to the outlet for the clarified fluid material. However, it is recognized and where desirable, the flow path may be reversed and material to be filtered introduced into the interior of the core and filtered material removed from the exterior thereof; that is, from the external housing.

FIG. 14 shows a core 100 with a disposable semirigid filter tube 112 surrounding the core, the edges of each end of the tube disposed in a fluid-tight self-gasketing arrangement with the internal face surfaces 27 and 40 of elements 12 and 16 respectively of the core. Elements 27 and 40 contain about the outer edges thereof a plurality of raised projections 110 in order to permit the ends of the core 100 to be readily grasped and the element 12 to be readily turned for tightening the cartridge in the filter assembly or for removal of element 12 for replacement of the disposable tube 112. As illustrated, the tube 112 is a semirigid; that is, a self-supporting structure composed of a thin-walled porous cylinder, e.g., of many fine nonwoven glass microfibers, which fibers have been strengthened by the addition of 20 percent by weight of a resin. Typically, such tube is composed of a plurality of randomly disposed glass fibers which average 0.1 to 5.0 microns in size and wherein an epoxy resin is employed'to strengthen the fibers at their cross junctions, such tube having a particle-retention rating at a 98 percent retention of particles of about 8 microns or greater in size from a fluid stream to be filtered.

The microfiber filter tube may be of any suitable length, depending upon the filter requirements. Due to the semirigid or rigid construction of the disposable tube 112 and its porosity grade, the tube exhibits a selfgasketing or sealing property so that upon insertion on the support core 100 and the inward turning of the element 12, each end of the cartridge is forced against the internal face surfaces of the end caps so that axial compression of the fibers occur as illustrated by the high density shaded area 114 (for the purposes of illustration only) in FIG. 14. The axial compression and densification of the fibers at each end accordingly, then forms a fluid-tight seal with the support core obviating the absolute necessity of employing other gasketing or sealing techniques.

The degree of axial compression and densification of the fibers sufficient to provide a self-sealing technique will, or course, depend on the nature and extent of the particular filter tube employed. Such self-gasketing technique is particularly adapted to rigid or semirigidable porous microfiber crushable-type filter tubes, such as those filter cartridges containing organic or inorganic, natural or synthetic finely divided fibers of about 0.001 to 10 microns, e.g., 0.1 to 5.0 in average diameter, and which fibers are retained in place by the addition of, e.g., 3 to 45 percent by weight of a hardenable resin material, particularly at the cross junction of the fibers.

FIG. 15 shows a fermentation apparatus which employs our filter assembly comprising the support core 100, a glass fiber tube 1 12, the core and the tube sealed by gasket 104 to and disposed in an external housing 106. The fermentation apparatus illustrates a fermentation vessel which contains a fermentation broth of a culture media, for example, for the biological growth or culturing of a product, such as an enzyme and a discharge line 142 with a control valve 144. Air is introduced through line and control valve 122 into the fermentation vessel, line 120 including a filter assembly of the invention and disposed so that air is introduced externally of the core and cartridge with the cartridge adapted to serve as a filter for the oil particles, dust and other contaminating ingredients of the air. The filter tube is selected to remove airborne bacteria from the air stream so that sterilized air is introduced into the fermentation broth in the vessel. A steam line 124 and a control valve 126 are employed to permit in-line sterilization of the air line and cartridge filter, while steam line 128 and control valve 130 serve to introduce steam directly into the fermentation vessel as required through common line 136. In addition, steam line 134 and control valve is used in conjunction with vent line 138 and the vent control 140 to clean and to vent to common line 146 to the fennentation vessel with the vent line containing another filter cartridge of the invention.

In the fermentation process, steam is employed from line 124 to sterilize the glass fiber filter tube of the filter assembly in place prior to the introduction of air through the filter assembly through line 120. By employing the cartridge filter of the invention, the glass fiber filter tube and core after sterilization and being sealed in the line, the external housing 106 may be removed without breaking the seal of the core to the sterilized air line. In addition, in a fermentation or other process, during steam sterilization cycles, there is a possibility of back flow of ingredients from the vessel or by the steam and air through the cartridge filter. The support core and a semirigid filter tube combination permits flow in both directions through the filter without adverse effects in contrast to the use of a pleated paper-type cartridge filter which would tend to rupture. Further, the use of disc-type filters; that is, a flat sheet frame-press-type filter while suitable generally for use in one direction is difficult to support when flow may occur in both directions. Accordingly, our filter assembly permits advantages in that the filter tube can be removed without discarding the core support, flow is permitted in both directions and further, the cartridge filter may be readily sterilized by steam or other sterilizing agents, such as ethylene oxide in place.

In another use of our filter assembly, as shown in FIG. 15, the filter assembly is employed as a vent-type filter, since often during venting and fermentation or other processes, a flow may occur in both directions and which our filter assembly is able to withstand, while once again, providing access and removal of the cartridge filter without breaking the sterilized seal to the vent line.

The core and the disc elements making up the core may be composed of a variety of materials, but typically, are composed of a hard, rigid, synthetic, polymeric material which may be subject to sterilization by steam or other agents and which provides sufficient support under the conditions of use with the selected filter tube. Typical polymeric materials of which the core and its elements may be composed would include olefinic resins, such as polyethylene, polypropylene, ethylene propylene copolymers, acrylic resins, polycarbonates, and other such materials. Such polymeric materials may be further strengthened by the incorporation therein of fibrous materials, such as glass fibers.

The core element has been shown in the shape of a cylinder; however, it is recognized that diameter and length and shape may be altered as desired and that the fiow passages defined by the radial partitions of the disc elements may be modified as desired to any particular size and shape commensurate with the use of the core; for example, the flow passages may define circular, square, elliptical, or other shaped flow passages which may or may not be directly aligned or disposed as shown in FIG. 13.

As illustrated, the stacked disc elements have been shown to be pointed into locking relationship through the use of hooks; however, it is recognized that a variety of means may be used to form the stack of disc elements and that such elements be replaced in a permanent arrangement as desired. Typically, our disc elements are arranged and interlocked in a regular stacked arrangement by the use of a predetermined number of disc elements as required to fit the particular filter tube length to be used. Further, as illustrated, one end of the core (disc element 12) has been shown as sealed; however, it is recognized that such end may be open to permit in-line flow throughout the core. Where self-gasketing techniques are used, at least one of the end elements should be moveable axially to collapse the end of the filter tube employed.

A variety of filter materials and filter tubes of such material may be employed for use with our core and such tubes may vary in shape, depth, length, materials, porosity and strength, but in general, should be adapted to fit snugly about and in the core. The preferred rigid and semirigid filter tubes for use with our cores are those composed of a desired porosity formed from woven or nonwoven, for example, wound round with the disposed inorganic fibers containing a resin reenforced additive, such as an epoxy resin or phenol-formaldehyde resin or the like, particularly where the resin reenforces the fibers at the junctions of the fiber cross-overs. It is preferred that such cylindrically shaped filter tubes should exhibit a compressibility, i.e., be self-supporting when stood on one end so as to provide end sealing without the need of gaskets or sealing rings when employed in connection with our support cores.

Fibrous materials which may be employed in preparing filter cartridges would include, but not be limited to those natural and synthetic materials or fibers of cartheir 98 percent retention rate of from about 0.3

microns of up to 8.0 microns in either a liquid or gas filtration operation.

Our invention has been illustrated with the use of a single filter tube about the core; however, where desired, any number of tubes, one over the other, may be used with the same or different function, porosity, materials, structure or other variation. For example, in the removal of oil or liquid droplets from a fluid stream like air, the first tube met by the fluid stream, e.g., the outer tube, coagulates the droplets and changes the droplet size, while the second tube, e.g., the inner tube, separates and removes the coagulated droplets, i.e., coalesces the droplets so formed.

Representative applications for glass microfiber cartridges employed in connection with our cores would include, but not be limited to: liquid clarification for the clarification of corrosive solutions and high purity metal refining; prefiltration to protect and greatly extend life of membrane absolute filters; clarification of plating solutions; clarification of hot fruit juices prior to bottling (filter can be pasteurized in place); filtration of water and solvents used in clean rooms; filtration of sterile solutions (filter can be autoclaved); final filtration of wines and spirits; protection of fine spray nozzles or orifices; and backup of precoat filters. Other representative applications would include gas filtration for sterilization of air introduced into fermenters, filtration of suspended particles from steam used for cleaning nozzles or orifices, filtration of makeup air to clean rooms and sterile areas, filtration of hot reaction gases to remove suspended precious metal catalyst particles, protection of regulators and metering devices for corrosive gases, and removal of dust from hot gas stream leaving dryer. Further, other representative applications would include solids recovery for recovery of the less than 5 micron fraction of spent precious metal catalysts (about 10 percent of the catalyst charge in some cases) after preliminary filtration and recovery of less-than-S micron particles of precious metals in refinery operations. in addition, another representative application employed in connection with our support cores is an extremely efficient device for dispersion of gases into liquids or the collation of liquid droplets in gas streams such as oil in air streams in the filter cartridge.

The self-supporting semirigid or rigid filter tubes employed having crushable ends may be prepared by a variety of methods and materials to include preparation of paper-type cartridges by wrapping a paper about a mandrel and impregnating the paper with a resin so as to form a semirigid cylindrical filter cartridge. Another technique would include vacuum-forming of a slurry of fibers into the desired form. Where desired, the end sections only of the tubes may contain or be sealed with a gasket or be compressible where a self-sealing gaskettype cartridge is to be used. Further, the filter tubes may be composed of open-cell foam material, particulate material such as sintered resin particles and other porous material formed into a tube.

What we claim is:

1. A cylindrical support core adapted for use in supporting a filter tube, which core comprises in combination:

a. a plurality of individual, generally circular-shaped disc elements of substantially equal diameter and each characterized by an aperture therein and containing;

i. on one surface thereof each disc having a series of generally radial-projecting partitions spaced along the surface and extending to the outer peripheral edge of the disc, the edges of the partitions projecting substantially vertically from the edge of the disc and of substantially equal height;

ii. interlocking means on the other surface of each said disc elements to interlock the same to an adjacent substantially identical disc element; and

iii. means on one of said surfaces of each disc to receive the interlocking means of an adjacent substantially identical disc element;

b. disc elements arranged in an adjacent, close, joined, stacked relationship to define a plurality of flow passages between the surfaces of the disc and the partitions and to form a support core, the disc elements when placed in a stacked relationship defining an axial passageway throughout the core, and the core characterized by a plurality of predetermined flow passages in the walls thereof, which flow passages provide communication between the axial passageway and the exterior of the core, the edges of the partitions and the edges of the discs forming the outer wall of the core;

c. end elements adapted to be secured to the opposite ends of the core to confine sealingly therebetween a filter tube placed on said core;

(1. means to secure said end elements on opposite ends of the core; and

e. at least one of said end elements having an opening therein in fluid communication with the axial passageway.

2. The support core of claim 1 wherein the projecting partitions are generally uniformly distributed about the aperture of the disc.

3. The support core of claim 1 wherein the end elements are of a greater diameter than the disc elements and contain an outwardly extending projecting flange, the inner surface of which flange is adapted to form a sealing relationship with the ends of a filter tube placed on the core.

4. The support core of claim 1 wherein at least one of the end elements is adapted to be placed in an axially movable relationship with an end of the support core formed from the stacked interlocked disc elements, whereby the said at least one end element may be moved axially to confine a filter tube between the end elements.

5. The support core of claim 1 which includes a filter tube surrounding the support core and disposed between the end elements of said core to form a cartridge filter. V

6. The support core of claim 5 wherein the filter tube is composed of finely divided fibers of between 0.1 to 5.0 microns in average diameter.

7. The support core of claim 5 wherein the filter tube is composed of resin-impregnated glass fibers.

8. The support core of claim 5 wherein the filter tube is semirigid and is composed of nonwoven, resin-impregnated fibers of between 0.1 to 5.0 microns in average diameter.

9. A cylindrical support core adapted for use in supporting a filter tube which core comprises in combination:

a. a plurality of generally circular-shaped disc elements of substantially equal diameter and each characterized by a central aperture therein;

the disc elements each containing on one surface thereof a series of projecting partitions extending outwardly from the surface of the disc element and generally arranged uniformly and radially about the central aperture, the partitions extending from the central aperture to the outer periphery of the element, the edges of the partitions projecting substantially vertically from said one surface of the disc element and being of substantially equal height,

the opposite surface of each disc element containing a plurality of outwardly extending projecting elements which projecting elements have at their outer ends hook-like engaging elements, the extending projecting elements extending substantially perpendicular to said opposite surface of the disc element, the hook-like portion of said engaging projecting elements adapted to fit in and engage in an interlocking close relationship with an adjacent disc element of similar construction,

the disc element further characterized by containing a plurality of engaging apertures arranged generally uniformly on the inner periphery of the central aperture of the disc element which apertures are adapted to receive the hook-like extending elements of the adjacent disc element,

the disc elements arranged in an adjacent close interlocking stacked relationship to define a plurality of flow passages between the surfaces of the disc and the partitions and to form a support core, the disc elements when placed in a stacked relationship defining an axial passageway throughout the core, and the core characterized by a plurality of flow passages, which flow passages provide communication between the axial passageway and the exterior of the core,

end elements adapted to be secured to the opposite ends of the core and of a greater diameter than the disc elements and further adapted to confine sealingly therebetween a filter tube placed on said core,

means to secure said end elements on opposite ends of the core,

at least one of the end elements adapted to be secured in an axial movable relationship with an end of the support core formed from the stacked interlocked disc elements whereby the said at least one end element may be moved axially to confine a filter tube between the end elements, and

at least one of said end elements having an opening therein in fluid communication with the axial passageway.

10. The support core of claim 9 which includes a filter tube surrounding the support core and disposed between the end elements of said core to form a cartridge filter.

11. The support core of claim 9 wherein the filter tube is semirigid and is composed of nonwoven, resinirnpregnated fibers of between 0.1 to 5.0 microns in average diameter.

12. The support core of claim 1 wherein the means to join one disc element to an adjacent disc element includes interlocking means on one surface of each of said disc elements to interlock the same to an adjacent disc element; and

means on the other surface of each disc element to receive the interlocking means of an adjacent disc element.

13. The support core of claim 12 wherein the means by which the disc element may receive the interlocking means of the adjacent element includes an aperture in the disc element adapted to receive the interlocking means of an adjacent disc element.

14. The support core of claim 12 wherein the means or the disc element to interlock the disc element in an interlocking stacked relationship with an adjacent element includes a plurality of elements extending outwardly from the surface of the disc elements opposite to that surface containing the projecting partitions, the elements arranged generally uniformly and containing an enlarged engaging element on the outer end thereof, the engaging element adapted to interlock and be received by an adjacent disc element.

15. The support core of claim 14 wherein the means whereby the disc element may be received in an interlocking means of an adjacent element includes an aperture in the disc element adapted to receive the enlarged engaging element of the adjacent disc element so that the interlocked disc elements are placed in a close stacked relationship.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2654440 *Oct 18, 1951Oct 6, 1953Fram CorpFilter element formed of paper impregnated with thermoplastic resin
US2692220 *Nov 19, 1951Oct 19, 1954Glass Fibers IncMethod for making glass paper
US3259248 *Jan 30, 1963Jul 5, 1966Wood Conversion CoFilter unit, cartridge and coupling means
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3847813 *Dec 27, 1972Nov 12, 1974Gen ElectricCoalescing plate for fluid mixture plate separator
US4517088 *Jul 29, 1983May 14, 1985Quantum Systems CorporationFiltering apparatus
US5409606 *May 4, 1993Apr 25, 1995Sta-Rite Industries, Inc.Filter apparatus
US5601713 *Dec 6, 1994Feb 11, 1997Nupro CompanyFilter systems and apparatus
US6554139Jun 1, 2000Apr 29, 2003Parker-Hannifin CorporationExtension and locking assembly for dripless element, and container therefore
US6837993Feb 21, 2003Jan 4, 2005Parker-Hannifin CorporationExtension and locking assembly for dripless element, and container therefore
US6848584Sep 26, 2002Feb 1, 2005Drilltec Patents & Technologies Co., Inc.Strainer basket and method of making and using the same
US6983851Nov 16, 2004Jan 10, 2006Parker Intangibles LlcExtension and locking assembly for dripless element, and container therefore
US6986426Jan 13, 2005Jan 17, 2006Parker Intangibles Inc.Extension and locking assembly for dripless element, and container therefore
US7086537Aug 18, 2005Aug 8, 2006Parker-Hannifin CorporationExtension and locking assembly for dripless element, and container therefore
US7204370Jun 19, 2006Apr 17, 2007Parker Intangibles LlcExtension and locking assembly for dripless element and container therefore
US7237682Jun 23, 2004Jul 3, 2007Parker-Hannifin CorporationFilter assembly with slip thread
US7360658Jan 30, 2007Apr 22, 2008Parker Intangibles LlcExtension and locking assembly for dripless element and container therefore
US7374722 *Apr 8, 2002May 20, 2008Proengin SaSystem for taking a gas sample able to contain particles of suspended materials
US7837875Aug 29, 2006Nov 23, 2010Eaton CorporationFluid filter
US8215493 *Feb 2, 2007Jul 10, 2012Mitsui Engineering & Shipbuilding Co., Ltd.Membrane treatment apparatus
US8592329 *Oct 6, 2004Nov 26, 2013Hollingsworth & Vose CompanyVibrationally compressed glass fiber and/or other material fiber mats and methods for making the same
US8985343Jan 24, 2014Mar 24, 2015Kirby Smith MohrMethod and apparatus for separating immiscible liquids and solids from liquids
US20020146351 *Apr 8, 2002Oct 10, 2002Henri LancelinSystem for taking a gas sample able to contain particles of suspended materials
US20050000886 *Jun 23, 2004Jan 6, 2005Reynolds Anita L.Filter assembly with slip thread
US20050075030 *Oct 6, 2004Apr 7, 2005Kvg Technologies, Inc.Vibrationally compressed glass fiber and/or other material fiber mats and methods for making the same
US20050103704 *Dec 20, 2004May 19, 2005Drilltec Patents & Technologies Company, Inc.Strainer basket and method of making and using the same
US20100096318 *Feb 2, 2007Apr 22, 2010Mitsui Engineering & Shipbuilding Co., Ltd.Membrane Treatment Apparatus
DE29610837U1 *Jun 20, 1996Aug 29, 1996Hydac Filtertechnik GmbhFilterelement mit Adapter
EP0452592A1 *Dec 19, 1990Oct 23, 1991Minnesota Mining And Manufacturing CompanyFilter cartridge end cap assembly and method of manufacture
WO2001091881A2 *May 8, 2001Dec 6, 2001Parker Hannifin CorpExtension and locking assembly for dripless filter element and container therefore
WO2013060907A1 *Oct 3, 2012May 2, 2013Ozeano Urdina, S.L.Ethylene absorption filter for refrigerated spaces
Classifications
U.S. Classification210/488, 210/497.1
International ClassificationB01D24/08, B01D29/11
Cooperative ClassificationB01D29/111, B01D2201/4084, B01D2201/088, B01D24/08, B01D2201/0415, B01D2201/305
European ClassificationB01D29/11B, B01D24/08
Legal Events
DateCodeEventDescription
Aug 3, 1983AS01Change of name
Owner name: WHATMAN REEVE ANGEL LIMITED
Owner name: WHATMAN REEVE ANGEL PUBLIC LIMITED COMPANY,
Effective date: 19830623
Aug 3, 1983ASAssignment
Owner name: WHATMAN REEVE ANGEL PUBLIC LIMITED COMPANY,
Free format text: CHANGE OF NAME;ASSIGNOR:WHATMAN REEVE ANGEL LIMITED;REEL/FRAME:004153/0155
Effective date: 19830623
Owner name: WHATMAN REEVE ANGEL PUBLIC LIMITED COMPANY,, MASSA