Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3699294 A
Publication typeGrant
Publication dateOct 17, 1972
Filing dateMay 18, 1971
Priority dateMay 18, 1971
Publication numberUS 3699294 A, US 3699294A, US-A-3699294, US3699294 A, US3699294A
InventorsSudduth William B
Original AssigneeFlex Key Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Keyboard, digital coding, switch for digital logic, and low power detector switches
US 3699294 A
Abstract
Electric switches are described in which a resilient, electrically conductive, elastomeric member is spaced adjacent but apart from contact means; among features are the elastomeric connector: of sheet form; on metal contacts as a movable contact bridge; defining a simple and durable multiple switch array including a keyboard, a digital coding assembly and a detector; and as the means, especially with proper selection of distributed conductive particles in the elastomer for limited conductivity, of eliminating the electrical effects of bounce in solid state electronic logic circuitry and the like. Fabrication of the switch as a simple, thin compact laminate using printed circuit boards is shown using the preferred silicone elastomer and carbon filler. In preferred embodiments pressure against conductive elastomer sheet means will cause it to connect to a contact element conductively and release of pressure will cause the sheet means to disconnect. The sheet means can be used as a floating connection for one or more circuit elements, and in this form has particular application in a keyboard assembly, particularly in connection with replaceable printed circuit boards and in digital coding techniques with a single printed circuit board. Preferably, the sheet means resiliently, reversibly deforms from first to second conditions, typically engaging the contacts in the deformed or bulged condition. Preferably in one condition the sheet means takes a planar form, positioned by a spacer layer from the contacts. And preferably the contacts are elements of a printed circuit.
Images(5)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Sudduth [54] KEYBOARD, DIGITAL CODING, A

SWITCH FOR DIGITAL LOGIC, AND LOW POWER DETECTOR SWITCHES [72] Inventor: William B. Sudduth, Gloucester,

[21] Appl. No.; 144,453

Related,U.S. Application Data [63] Continuation-in-part of Ser. NO. 888,758, Dec.

29, 1969, abandoned, which is a continuationin-part of 'Ser. No. 801,438, Feb. 24, 1969, abandoned.

[52] US. Cl ..200/166 C, 200/159 B, 200/166 PC, 1 200/166 l-l, 200/86 R, 200/83 R, 200/5 A [51] Int. Cl. ..H0lh 1/20, HOln 1/50, HOlh H04 [58] Field ofSearch ..200/166 C, 166 H, l59 R,

200/159 B, 168 6,86 R, 166 PC,5 R,5 A, 83 R, 83 N; l79/90K [56] References Cited UNITED STATES PATENTS 355,858 l/l887 Brainard ..200/159 B 2,528,086 10/1950 Schenck ..200/166 H 3,054,879 9/1962 Soreng ..200/168 G X 3,267,233 8/1966 Basile et al ..200/83 N 3,308,253 3/1967 Krakinowski ..200/86 R X 3,359,386 12/1967 Howard ..200/83 R 3,382,338 5/1968 Arseneault et al. ....200/l59 B 3,466,410 9/1969 Jordan et al. ..200/83 R 3,056,005 9/1962 Larson ..200/86 R 2,843,695 l2/l956 Osuch et al. ..200/86 R FOREIGN PATENTS OR APPLlCATlONS 18,879 10/1961 Japan ..200/166 C 807,883 l/l959 Great Britain 1,039,150 3/1959 Germany 1,060,455 7/1959 Germany OTHER PUBLICATIONS Electromechanical Design Electromechanical Data-Sampling Switch November 1962, pages 40, 41. Flex Key Data Bulletin DK-l Flex Key Integrated Decimal Keyboard Units Published 1970. Electronics, Little Push" Mar. 2, 1970.

Primary Examiner-H. 0. Jones Attorney-John Noel William 57] ABSTRACT Electric switches are described in which a resilient, electrically conductive, elastomeric member is spaced adjacent but apart from contact meansyamong fea tures are the elastomeric connector: of sheet form; on metal contacts as a movable contact bridge; defining a simple and durable multiple switch array including a keyboard, a digital coding assembly and a detector; and as the means, especially with proper selection of distributed conductive particles in theelastomer for limited conductivity, of eliminating the electrical effects of bounce in solid state electronic logic circuitry and the like. Fabrication of the switch as a simple, thin compact laminate using printed circuit boards is shown using the preferred silicone elastomer and carbon filler. In preferred embodiments pressure against conductive elastomer sheet means will cause it to connect to a contact element conductively and release of pressure will cause the sheet means to disconnect. The sheet means can be used as a floating connection for one or more circuit elements, and in this form has particular application in a keyboard assembly, particularly in connection with replaceable printed circuit boards and in digital coding techniques with a single printed circuit board. Preferably, the sheet means resiliently, reversibly deforms from first to second conditions, typically engaging the contacts in the deformed or bulged condition. Preferably in one condition the sheet means takes a planar form, positioned by a spacer layer from the contacts. And preferably the contacts are elements of a printed circuit.

33 Claims, 22 Drawing Figures PATENT EDEN 17 I912 SHEEI 1 OF 5 FIG 3 FIG I PATEN'I'EU IICT I7 I972 SHEET 2 [IF 5 FIG 6 III\ FIG 7 L also FIG 8 FIG IO PATENTEDHN 1 9 2 3.699.294

sum 5 0F 5 FIG I6 FIG l8 KEYBOARD, DIGITAL CODING, swITcII FOR DIGITAL LOGIC, AND LOW POWER DETECTOR SWITCHES BACKGROUNDOF INVENTION This is a continuation-in-part of my prior copending application, Ser. No. 888,758 filed Dec. 29, 1969 and of my prior copending application, Ser. No. 801,438 filed Feb. 24, 1969, now abandoned.

FIELD OF INVENTION This invention solves problems encountered in digital coding, in manual keyboards, in switches for producing signals for use by solid state electronic digital logic circuitry and in low power detector circuits.

DESCRIPTION OF PRIOR ART In the switching of low power level input signals, as for instance associated with solid state electronic circuits, there is a problem of contact bounce; this is true for instance when the input interface circuits of transistor and integrated circuit logic systems require switching of a few milliamperes current at 30 volts or less. This bounce is well known, and concerns the small fraction of a second of initial (or final) engagement of the contact surfaces. It relates both to mechanical variability of engagement, including mechanical transient rebound and to the attendant detrimental electrical effects, especially the effect of erratically varying of conductivity through the switch.

Such variability can cause generation of multiple pulses when only one pulse is desired, and other problems as well. Usually bounce has in the past been assumed to be inherent in switches that are suitable for the applications mentioned. This has either placed limitations on the usefulness of the switch or required additional elements in the circuit for dealing with the problem.

Other problems have been the expense of manufacturing suitable switches, limitations on their ruggedness and life, draw-backs in their bulk, electromagnetic interference, and other requirements placed upon the equipment with which they are used.

One object of this invention is to provide such a switch which is bounceless in the-electrical sense of avoiding the electrical effect of initial mechanical variability of engagement.

Another object of this invention is to provide such a switch with improved life and lower cost.

A further object of this invention is to provide such a switch which will have reduced electromagnetic interference.

Yet other objects of this invention are to provide a switch-which can readily utilize printed circuits as a component part to provide a keyboard assembly and to provide a digital coding assembly with changeable logic codes.

A further object of this invention is to provide a switch which is adapted for use to provide input to digital logic circuitry.

Other objects and advantages of this invention will be apparent from the description and claims which follow, taken together with the appended drawings.

SUMMARY OF INVENTION According to certain important aspects of the invention resilient, electrically conductive elastomer is positioned above two circuit elements to be connected, and functions as a conductive bridge.

According to one such aspect, sheet means of an elastomer having electrically conductive particles distributed therethrough is spaced adjacent but apart from a pair of contact elements so that pressure applied against the sheet means will cause it to connect the elements, thus providing a bridging conductive path through the particle-containing elastomer, and release of pressure will cause the sheet means to disconnect from the element and open the path. In various preferred embodiments of this aspect the elastomer is carbon filled and the sheet means has substantially the electrical resistance of carbon-filled silicone and fluorosilicone elastomers.

According to another aspect of the invention a keyboard utilizing bridging comprises a separator sheet below a conductive sheet means and followed by an electrical circuit board having a plurality of pairs of spaced contacts, the separator sheet having openings registrable with pairs of elements, so that pressure applied and releasedagainst the portion of sheet means above a pair will cause that portion to press against the pair to provide a bridging conductive path and to disconnect the element and open the path. In preferred embodiments of this aspect of the invention: the conductive sheet means is provided on its outer surface with an insulating layer at least in alignment with the Openings, and the conductive sheet means is provided on its outer surfaces with buttons registrable with the openings.

According to another aspect of the invention a digital coding assembly utilizing bridging comprises a separator layer below the sheet means and having a selected pattern of apertures, this followed by an electrical circuit board having on its upper surface a common circuit element interlaced with a plurality of individual circuit elements, pressure against portions of the sheet means bridging the circuit elements exposed by the apertures, and release of pressure opening the bridging path. In preferred embodiments of this aspect: the conducting pattern for all circuit elements is on the upper surface of the board; the common circuit element comprises a series of parallel branches with each individual circuit element disposed between a different pair of branches; and apertures are arranged so that one special circuit element is always connected to the common element by depression of the conductive sheet means at any actuation point and preferably apertures for the special element are smaller than the unit apertures for the other circuit elements thus providing for a delayed action.

According to still another aspect an electric switch for producing a signal for use by solid state electronic digital logic circuitry employs a movable bridge means which is resilient and electrically conductive, made of elastomer with conductive particles distributed therethrough. The bridge means is spaced retaining adjacent but apart from the pair of contact elements so that motion of the bridge means against the contact elements will cause the elements to be connected conductively through the particle-containing elastomer and reverse motion will cause disconnect, the switch enabling production of a signal without electrical bounce effects. In various preferred embodiments of this aspect: the particles are of non-metallic conductive material, limiting the conductivity of the path; the particles comprise carbon filler in the elastomer; the contact elements are printed circuits on a printed circuit board while non-moving portions of elastomer integral with the bridge means are supported by the board in insulated condition from the circuits, these portions retaining the bridge means in its spaced position absent the pressure; neighboring portions of elastomer integral with the bridge means extend to various sides of the bridge means and together therewith comprise sheet means, the direction of movement of the bridge means being normal to the direction of extent of the sheet means and the conductivity path being in the direction of such extent; and the just mentioned arrangement in which the elastomer portion defining the bridge means is sized for deflection by a finger of the human hand.

According to certain other aspects of the invention there are resilient, flexible electrically conductive sheet means of electrically conductive elastomer spaced adjacent but apart from contact means, so that pressure applied against the sheet means will cause it to connect conductively to the contact means and release of pressure will cause the sheet means to disconnect from the contact means. According to one such aspect, positioning means positions the sheet means so that a first portion is adjacent but apart from the contact means and the first portion is free to move relative to neighboring portions to connect and disconnect. In preferred embodiments of this aspect: the neighboring portions support the first portion in spaced position in the absence of external operating pressure, i.e., the switch is of the normally open type; the portion is adapted for manual pressure, the portion being covered by an insulating layer; an outer member exposes the insulating layer for application of actuating pressure to the portion; the layer is in the form of a button accessible to the finger; this button is resiliently deformable, providing travel; this button is thin-walled and hollow; there are a plurality of pairs of electrical contact elements and a plurality of sheet portions free to move against respective contact elements; these contact elements are part of a printed circuit; and these contacts are all adapted for completion of the same circuit to provide a detector switch.

According to certain still further aspects of the invention, portions of electrically conductive elastomer are positioned adjacent but spaced apart from respec tive circuit means carried on a non-conductive base. The elastomer portions are free to move and press against the printed circuit means in response to pressure applied to the portions, the portions being associated with outer insulative pressure-transmitting means for actuation by externally applied pressure. In a preferred embodiment of this aspect the elastomer portions are carbon filled so that when pressure is applied to a portion the element is connected with limited conductivity.

In other preferred embodiments the elastomer is homogeneous except for a graphite lubricant on the contacting surface.

Although the contact sets to be used with the resilient, electrically conductive elastomer according to this invention may be either metal or other conductive material, metal is preferred since elastomer to metal contacting exhibits better mechanical action in most instances. Further, where the metal contact is fixed, external connections are simplified and coding readily changed, e.g., by changing the metallic contact pattern on a printed circuit board.

Materials which can be used for the resilient, electrically conductive connecting elastomer include commercially available electrically conductive silicone or fluorosilicone elastomers. Such an elastomer when carbon filled has the following typical properties:

Electrical Resistivity: 7 ohm-cm Tensile Strength: 750 psi Elongation: 200% to 300% Hardness: 58 (Shore A) The limited conductivity obtained by use of such non-metallic particles as carbon in the elastomer is found to produce electrical properties favorable to elimination of bounce in the present context, and is especially preferred when a movable bridging element, in general, and preferably a bridging element formed as sheet means, engages a pair of contacts, preferably printed circuit contacts. In the example of conventional logic circuitry, for-instance, when the resistance of the elastomer is of a value in the range represented by carbon-filled silicone or fluorosilicone elastomers, the initial engagement of the elastomer with the contact (when erratic variations occur) is in a resistance range above the range which permits flow of an effective current i.e., a current which exceeds the logic threshold. By the time sufficient pressure is exerted at the contact (with attendant deformation of the elastomer, both of which are time-dependent) to reduce the resistance to permit effective flow of current, the system is stabilized, and relatively free of erratic tendencies.

In other instances, as where the number of pulses does not matter, or otherwise where less strict bounds are set, other electrically conductive elastomers are useful, although the particular selection of ingredients are still advantageously made with the same principle in mind.

As thus suggested conductive elastomers may be filled with finely divided metallic particles to obtain lower resistivity valves. Thus, silicone or fluorosilicone elastomer when filled with metallic silver particles has the following typical properties:

Electrical Resistivity: 0.001 to 0.010 ohm-cm Tensile Strength 250-400 psi Elongation: 60% to Hardness: 30 to 60 (Shore A) One embodiment of this invention is adapted for use in a decimal keyboard. The keyboard assembly comprises a sheet of resilient electrically conductive elastomeric material, a thin insulating separator mask and a board having a plurality of electrical contacts. Pressure on a selected portion causes it to extend through the mask and connect a set of contacts on the board. Release of pressure permits the portion to return to its original position. Low operating force values, e.g., less than 6 ounces and small displacements, e.g., one-sixteenth of an inch or less, are feasible with this design. Such a keyboard switch design also automatically provides sufficient sealing against dirt and foreign matter. The switching action is bounceless, the construction simple and inexpensive and electromagnetic interference reduced. This switch is readily adapted for use with printed circuits and whether a single circuit or a multiplicity of such switches is used, the invention provides flexible coding by simple changing of the printed circuit boards.

In another embodiment of this invention, digital coding is achieved by use of a sheet of resilient, electrically conductive elastomeric material, a thin insulating separator mask coded by apertures in a selected pattern and a single circuit board printed on one side with a common circuit element interlaced with a plurality of individual circuit elements. Pressure on the conductive sheet above the selected apertures will provide connection of the common circuit element to the desired individual elements, thus providing coding. The coded mask is provided with the proper pattern of apertures to register only with the circuit elements required by the code.

Where more than a single circuit is to be closed by the activation of a particular button, as is generally the case for a coded system, it is advantageous to employ a mechanism for assuring that all regional circuit elements are contacted during activation of the button. Such a mechanism may be comprised of separate buttons incorporating springs, pivots or levers arranged so as to translate the manually applied actuating force more evenly onto the described resilient switching device.

The switch of this invention may also be constructed such that v the contacting action is accomplished through a sliding, wiping or rolling action of the movable member. For example, a switch could be constructed of a fixed circuit element having at least one contact and a flexible, resilient, electrically conductive, non-metallic member adapted to slide, wipe or roll against said element to cause electrical connection. This can occur with resilient local deformation of a sheet-form conductive elastomer member as it progressively bulges down to engage the contact.

BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a plan view ofa keyboard assembly made in accordance with the present invention;

FIG. 2 is a front end elevation, partially broken away;

FIG. 3 is a plan view of the conductive rubber sheet bearing the buttons;

FIG. 4 is a plan view of the printed circuit board;

FIG. 5 is an exploded sectional view along line 5-5 of FIG. 1;

FIG. 6 is a plan view of a digital coding device made in accordance with this invention;

FIG. 7 is a front elevation of FIG. 6;

FIG. 8 is a plan view of the insulating separator mask;

FIG. 9 is a plan view of the printed circuit board;

FIG. 10 is a plan view of the printed circuit board with strobe;"

FIG. 11 is a plan view of the insulating separator mask for use with board of FIG. 10;

FIG. 12 is a vertical cross-sectional view of another switch similar to that of FIGS. 1-5;

another embodiment of the invention;

FIG. 19 is a plan view, partially broken away, of a further embodiment of the invention;

FIG. 20 is a cross sectional view taken on the line 20-20 of FIG. 19; and i FIG. 21 is a plan-view of still a further embodiment.

SPECIFIC EXAMPLES OF INVENTION Aspecific example of this invention is illustrated in FIGS. 1 to 5 which illustrate an uncoded, simple decimal keyboard assembly made in accordance with the present invention. However, as can be readily seen, this invention is also adapted to coded keyboards.

The keyboard assembly 11 comprises in combination a bezel plate 20 having a plurality of openings 21, an electrically conductive silicone rubber sheet 30 co-extensive with the bezel plate 20 and having a plurality of protrusions 31 each covered with an insulating button shell 32 and registerable with the openings 21, a thin insulating separator mask 40 co-extensive-with the bezel plate and rubber sheet and having a plurality of openings 41 registerable with the protrusions 31, and a printed circuit board 50 having a plurality of pairs of contacts 51 and 52 registerable with said openings 41. The protrusions or buttons 31 are not an essential part of the invention and may be eliminated, such that pressure is applied to the flat sheet 30 surface directly.

Pressure by the operator on a selected button 32, in this case 6, causes the protrusion 31 to extend through the openings 41 in the mask and contact the pair of contacts 51 and 52 of the 6 circuit, providing an electrical connection between them. Release of pressure on the button 32 permits the resilience of the rubber to cause the button and protrusion to rise without electrical bounce, breaking the circuit connection between 51 and 52. Similarly, pressure on selected button 101, in this case 0 causes the corresponding protrusion to extend through the mask opening and contact both or either of pairs 151/152 and 251/252 providing electrical connection for the 0 circuits.

The printed circuit board 50 can be readily changed for some other printed circuit board with different coding, using the same bezel plate, rubber sheet and separator mask. Thus, a device utilizing such a keyboard can be extremely versatile and provide a great variety of flexible coding at a minimum of expense.

Referring now to the embodiment illustrated in FIGS. 6 to 9, there is illustrated therein a digital coding assembly 111 comprising in combination a resilient conductive polymeric silicone rubber sheet having spaced buttons 131-435 for the numerals 1 to 5. Below the conductive sheet 130 is a co-extensive thin insulating separator mask having apertures 201, 202, 203,

204 and the pair of apertures 205 and 206 arranged to be actuable by pressure on the buttons 131-435 having corresponding digital indicia l, 2, 3, 4, or 5. Below the mask 140 is 'a co-extensive printed circuit board 150.

Board 150 has on its upper surface a printed com mon circuit element 160 in the form of parallel closely spaced branches and having a terminal 160a. Interlaced among the branches of the common electrical circuit element 160 are separate individual circuit elements 161, 162 and 163, each having its own separate terminal. Accordingly, pressure on the selected digital area of the conductive sheet directly or by use of the mounted key protrusion will cause selected and coded contacts between the common circuit element 160 and the individual circuit elements. Release of pressure permits the resilience of the conductive sheet to rise without electrical bounce, thus breaking the particular circuit connection.

Such a digital system can be used as a keyboard for feeding manual data into a digital data processing system. This coding method has an advantage over other coding systems in that the printed circuit board requires no connections through the board but has all its connections on the same surface as the conductive elements printed thereon. Further, by using such an interlaced system, different coding may be readily obtained, simply by changing the aperture pattern in the mask. The mask may be a separate self-supporting sheet of insulating material or may be formed as a thin film deposited on the surface of the board, for example, by silk screen or photoresist technique.

In the variation illustrated in FIGS. 10 and 11 an additional circuit element is interlaced with an additional branch 160b of the common circuit element 160. The mask 140 is correspondingly provided with a line of additional apertures 207-211 arranged above element 170. Thus, operation of any key will both connect the particular data elements (161,162, 163) to the common element 160 but also connect the latter to the additional element 170. Element 170 thus can operate as a strobe, to inform a receiving system that there is correct input data available and thus actuate the receiving apparatus to receive the input.

It is generally desirable that closure of the strobe" contacts be delayed with respect to the closure of the input data circuits so as to assure that the selected data circuits are already properly closed at the time the strobe circuit is closed. Such a delay is provided, as shown in FIG. 10, by having the strobe apertures 207-211 narrower than the unit minimal width used for the data circuit apertures, requiring proportionately greater force on the resilient member to accomplish the strobe closure.

In many switching applications, such as keyboards and code generators, particularly including digital circuitry, the transient voltages which are usually produced upon initial closing of conventional switch contacts may have undesirable effects, and these are avoided according to the present invention, as mentioned previously, by use of elastomer filled with conductive particles, and in most instances with nonmetallic conductive particles which provide connecting paths of limited conductivity. To explain more fully, in such digital circuitry, the voltage input to the circuitry must reach a certain threshold value before effective switching action occurs. In a conventional low resistivity switch, the switch resistance drops rapidly and erratically, producing voltage transients which may exceed the threshold value more than once after a single depression of a key, resulting in multiple triggering of the circuitry and causing entry of a particular number where only one entry was intended.

According to the present invention, the production of voltage transients capable of causing multiple entry may be uniquely avoided by the use of an elastomeric material containing a distribution of nonmetallic conductive particles such as carbon or other semi-conductor.

The choice of such semi-conducting particulate material can result in a homogeneous semi-conducting sheet, having volume resistivity in the range of 1 ohmcm to 10 ohm-cm. As noted previously, typically, a commercially available carbon filled silicone or fluorosilicone elastomer has the following properties:

Electrical Resistivity 7 ohm-cm Tensile Strength 750 psi Elongation 200% to 300% Hardness 58 (Shore A) With this resistivity, as applied to solid state logic devices, the usual initial voltage transients occur in a voltage range well below the usual threshold switching value of digital circuitry, and consequently cannot cause erroneous results.

Following the above teachings an embodiment was prepared according to FIG. 12 (similar to FIGS. 1-5) having a homogeneous elastomeric conductive sheet 30 of 0.030 inch uniform thickness, an insulator sheet 40 of 0.003 inch thickness with circular apertures 41 of 0.500 inches and an external button cover 32a of 0. l 25 inch thickness together with a printed circuit board 50 in which the circuits stand approximately 0.001 of an inch above the top of the board. The conductive elastomeric sheet was made of carbon-filled silicone rubber of 7 ohm-centimeters resistivity. The button cover 32a was made of non-conductive silicone rubber. The contacting surface of the conductive elastomeric sheet had a lubricating film of graphite. The graph, FIG. 13, shows the resulting curve of switch resistance in ohms versus force applied perpendicularly in ounces. The change of switch resistance as a function of applied pressure is shown to be a smoothly decreasing function, as the resistance comparable to the threshold resistance is approached with increasing actuating force. Such voltage transients as occur upon initial switch contact are of low amplitude because the semi-conductive sheet resistance is still high. Multiple triggering and hence multiple switching action thus does not occur.

Referring now to the embodiments of FIGS. 14 and 14a; FIGS..15; and FIG. 16, where like elements are identified by like members, in this embodiment, a keyboard unit for use, for example, in a small portable calculator, has a base 212 carrying on it a multiplicity of contact groups such as are shown at 214 and 216 arranged in a common plane. Such contacts may be printed on base 212 if desired. An insulating spacing element in the form of a planar mask 218 is placed adjacent and parallel to base 212, in contact therewith and provides openings 220 so positioned as to register with selected areas of the contact groups. Above mask 218 in contact therewith and parallel thereto is placed a carbondfilled elastomeric connecting member 222, which is, in this embodiment, about 0.030 inch thick.

In the embodiment of FIG. 15 above connecting member 222 is a thin insulating sheet 224, and above sheet 224 is a cover 228, providing side portions 230 for sealing around the other elements of unit 210 to provide a durable sealed unit. Numbers or other symbols, as at 232, may be printed or otherwise provided on, for instance, the interior surface of transparent cover 228 at-locations corresponding to openings 220 in mask 218 and thus to specific connections between contact groups on base 212. Such symbols 232, andopenings 220, typically are separated center-to-center by about three-fourths inch, and preferably have an area about that of a one-half inch diameter circle.

For obtaining good contact between member 222 and contacts 214 and 216, it is preferable to manufacture member 222 with a. matte, rather than a smooth surfaceSuch a surface is somewhat porous. A conductive lubricating agent, comprising a fine graphite powder, is rubbed into the matte surface, and the excess powder is removed before assembly ofthe unit; the resulting surface provides excellent, non-stick connecting action for the switch upon the printed circuit contact elements.

In assembling unit 210, the several layers are sealed together by-a suitable adhesive 233 near their outer edges, and at selected portions interior to the outer edges. Side members 230 of cover 228 are then sealed by further adhesive 233 against the abutting edges of all the contained layers, providing a durable, sealed construction that remains substantially free of contaminants, dirt, liquid, and the like.

Since the total travel of connecting member 222 through an opening 120 in mask 118, in order to form a bridging connection between circuit elements on base 212, may be of the order of 0.005 inch or less depending upon thickness of the mask 220 selected, very little motion of cover 228 is felt by the user of the keyboard unit 210 when he depresses an indicated key area such as 232. In some instances this is highly desirable. In other instances, depending e.g., on prior training of the user, while good contact is actually made, the user may feel uncertain about whether the switching action has occurred. A solution to this problem is a switching keyboard unit such as unit 210 with a cover 234 of another type, shown in FIGS. 14 and 14a.

Cover 234is thin-walled and generally hollow, and composed, in this embodiment, of a soft molded elastomer. Insulating sheet 224 may be omitted when this cover is used. Upraised buttons for the switches are provided, as at 236, in the form of a hollow raised portion. Top button wall 238 is thicker than the remainder of cover 234 and provides a pressure surface 240. Thus, when the user depresses button 238 (FIG. 14), first the button elastically deforms and only after a predetermined travel does pressure surface 240 push connecting member 222 down to provide bridging contact across circuit elements 214 and 216 in the same manner as in the embodiment of FIG. 15. The cover structure thus provides a subjective feel of greater travel and positive switching action than does the cover of FIG. 15.

Various original equipment purchasers desire various degrees of give in the keys. Their needs can be accommodated for instance by varying the wall thickness and durometer of the cover wall or by filling the hollow of the button with various quality resilient foams.

As in the embodiment of- FIGS. 1-5, desired confidence of location may be provided by the use of a bezel plate cover 270 (FIG. 16), providing apertures 272 of dimensions to admit the finger of the operator. Insulating sheet 274 lies over connector element 222, and is suitably marked with symbols indicating the key area; these symbols are visible through apertures 272. Plate 270 provides sloping aperture walls 278, which touch the finger of the operator as he pushes a key, thereby providing a positive feel of location of the key as well as of finger travel to depress the key.

The above embodiments of keyboard units make no provision for lock-out, that is, for preventing the simul' taneous depression of two keys. Such provision is generally made in the associated circuitry which is actuated by the switches (but can also be-made by additional structure of the keyboard). If two keys are depressed together, according to the invention, it is possible to ensure that the contacts of the two switches are not all shorted through the connecting sheet member and thus avoid difficulties in the associated circuitry.

In the embodiment of FIGS. 17 and 18 the connecting member is in the form of discrete individual connecting units insulatingly separated from one another. This keyboard unit 310 has a base 312, carrying circuit elements 314 and 316 to be connected together by the switch. Insulating and spacing member 318 lies above the circuit elements and provides openings 320 registering. with portions of the circuit elements. Individual connecting members 322, each composed of a semi-conducting elastomeric sheet material as previously disclosed, and each of size suitable to cover an opening .320 and to extend therebeyond without touching the next member 322, are positioned above the openings, and are secured to insulating member 318 by suitable adhesive 233 around the outer edges of each connecting member 322. A cover 328 is provided as in the previously described embodiments, and the switching action is the same as has been described, i.e., finger pressure presses the portion of the member 322 registered with opening 320, into the opening. This portion of the elastomer is elastically distended downwardly while neighboring portions remain positioned at the original height by the spacing member. Removal of the finger allows the sheet member 322 to regain its original planar form due to elastic restoring forces.

In many applications of detector switches, as for example, on appliance controls, or as a sensor on an elevator door, or as a limit switch controlling other circuits, e.g., to reverse the motion of a machine tool, voltage transients occurring when the switch is first closed cause no difficulty. In such applications, the conducting connecting element may be made of an elastomeric material such as commercially available electrically conductive silicone or fluorosilicone elastomers, filled with finely divided metallic particles, such as silver, providing a homogeneous conducting elastomer of low resistivity, similar to that of a metal.

Such an elastomer when filled with metallic silver particles typically, as mentioned previously, has the following properties:

Electrical Resistivity 0.001 to 0.010 ohm-cm Referring to FIGS. 19 and 20 there is shown a portion of an embodiment which can utilize a typical silver-filled elastomer. This embodiment forms a mat, typically for use in such applications as the opening of doors in a building such as a supermarket, but useful also in widely varied applications including, for instance, burglar alarms. Mat unit 410, in general, includes a base 412 and conductive sheet element 422 with an insulating spacing element 418 therebetween, all parallel to one another. Base 412 supports two sets of circuit contact elements 414 and 416, adjacent to but spaced from one another, in side by side relationship and connected to terminals 414a and 416a. Such circuit elements may be, for example, printed on a flexible sheet which is adhered to base 412, or the entire base may be flexible. Insulating spacing element 418 between circuit elements 414 and 416 and sheet element 422 comprises a sheet form element of e.g., 0.015 inch thickness, defines openings 420, exposing portions of circuit contact elements 414 and 416. Above insulating spacing element 418 in face-to-face contact therewith is a resilient, flexible, electrically conductive elastomeric sheet element 422 filled with metallic particles such as silver, as previously described. Although insulating spacing element 418 is shown here in integral form, in other embodiments it may advantageously be formed as separate pieces of material cooperating to define openings 420; such separate elements may be joined to the lower surface of the conductive sheet element 422, or to the base 412 and contacts 414 and 416. Alternatively, in some embodiments insulating elements may be provided in the form of a material such as varnish, applied to areas of conductive sheet element 422 or to areas of base 412 and contacts 414 and 416. In all cases, openings 420 are provided for defining possible areas of electrical contact between sheet element 422 and contacts 414 and 416, and must be of such height as to perform its spacing function when activating force is not applied. Insulating elements 418 must be sufficiently thin that, when a force is applied as indicated at arrow 424, to sheet element 422, element 422 is elastically deformed in region 426 into opening 420 in a generally curved shape, convex toward circuit elements 414 and 416, and as increasing downward force is applied, an increasing area of sheet 422 moves through opening 420 and comes into contact with circuit elements 414 and 416, providing bridging electric contact between them. Since sheet 422 is elastomeric, and its portions about the opening 420 are retained at a position spaced from the contact elements, when the applied force is removed, the elastically deformed region 426 returns to its normally planar condition, above opening 420 and spaced from circuit elements 414 and 416. As an example for this application the separation 418 may be .015 inch thick, the elastomer sheet 422, .030 inch, the above foam 428, 0.125 inch thick and the outer skin 430 (either e.g., mylar (duPont Trademark) or rubber coated metal) 0.015 inch thick.

The switching connection between circuit elements 414 and 416 may be used in any convenient way to accomplish the intended function, as for instance, to cause a door to open in response to the pressure of a foot on the mat. An insulating cover 427-is provided over connecting member 422, and in this embodiment is made of a soft (about 25 durometer) rubber 428, on top of which is a relatively stiff outer member 430. Local pressure even on a very small region on the stiff outer member, is spread over a relatively large area by the stiff member, compressing the low density foam which in turn presses the sheet 422 into the openings 420, as just described.

Referring to FIG. 21 this switch is of an extremely elongated form, length 1 being as great as ten feet or more, with a large multiplicity of openings 420 of the spacer distributed over its entire area. In this form it is usable as on under-the-rug burglar alarm, employing a thin flexible base, providing an over-all switch thickness of less than as little as one-quarter inch with over-all flexibility sufficient to permit it to be coiled into a package for handling and shipment.

In light of this disclosure other embodiments will be understood to be encompassed by the various aspects of the invention.

Iclaim:

1. An electric switch comprising in combination at least one pair of contact elements and resilient, flexible, electrically conductive sheet means of an elastomer having electrically conductive particles distributed therethrough, said sheet means spaced adjacent but apart from said elements so that pressure applied against said sheet means will cause it to connect said elements thus providing a bridging conductive path through the particle-containing elastomer, and release of pressure will cause said sheet means to disconnect from said elements and open the path between the elements.

2. The switch of claim 1 wherein said elastomer is carbon filled.

3. The switch of claim 1 wherein said sheet means has substantially the electrical resistance of carbon tilled silicone and fluorosilicone elastomers.

4. An electric switch for producing a signal for use by solid state electronic digital logic circuitry, said switch comprising at least one pair of contact elements and a resilient, movable electrically conductive bridge means made of elastomer with conductive particles distributed therethrough, said bridge means spaced adjacent but apart from said elements so that motion of said bridge means against said elements will cause said elements to be connected conductively through the particle-containing elastomer to provide a bridging conductive path and reverse movement of said bridge means will cause said bridge means to disconnect from said elements and open the path between the elements, the switch enabling production of a signal without electrical bounce effects.

5. The switch of claim 4 wherein said particles are of nonmetallic conductive material, limiting the conductivity of said path. I

6. The switch of claim 5 wherein said particles comprise carbon filler in said elastomer.

7. The switch of claim 4 wherein said elements comprise printed circuits secured to a printed circuit board, and non-moving portions of elastomer integral with said bridge means are supported by said board in an insulated condition relative to said printed circuits, said portions retaining said bridge means in said spaced position in the absence of pressure applied against said bridge means.

8. The switch of claim 4 wherein neighboring portions of elastomer integral with-said bridge means extend to various sides of said bridge means and, together with said bridge means comprising a sheet means, the direction of movement of said bridge means being normal to the direction of extent of the sheet means and the conductivity path between said contact elements being in the direction of said extent.

9. The switch of claim 8 wherein the elastomer portion defining said bridge means is sized for deflection by a finger of the human hand.

10. An electric switch comprising in combination contact means, resilient, flexible electrically conductive sheet means of electrically conductive elastomer and positioning means positioning said sheet means so that a first portion of said sheet means is adjacent but apart from said contact means, and said first portion free to move relative to neighboring portions of said sheet means whereby'pressure applied against said first portion will cause it to connect to said contact means conductively, and release of said pressure will cause said portion of said sheet means to disconnect from said contact means.

11. The electric switch of claim 10 wherein said neighboring portions support said first portion in said spaced apart position in the absence of external operating pressure.

12. The electric switch of claim 10 wherein there are a plurality of electrical contact elements, said sheet means including a plurality of sheet portions positioned over respective electrical contact elements, said respective portions being free to move and press against respective contact elements in response to pressure applied to said portions.

13. The electric switch of claim 12 wherein said contact elements comprise part of a printed circuit.

14. The switch of claim 12 useful as a detector wherein said contact elements when connected by said sheet means all complete the same circuit to a pair of terminals whereby pressure at any of said portions of said sheet means can complete the same circuit.

15. The switch of claim 10 adapted for manual pressure on said portion, said portion being covered by an insulating layer.

16. The switch of claim 15 wherein said insulating layer is in the form of a button accessible to the finger.

17. The switch of claim 16 wherein said insulating layer comprises an elastomer forming a button shape, said button shape being resiliently deformable, provid-' ing for travel of the finger between the time of contact with such button and the time the button is deformed against said sheet means sufficient to apply actuating pressure.

18. The switch of claim 17 wherein said button is a hollow, thin-walled member.

19. The switch of claim 15 including an outer member having an opening exposing to the finger said insulating layer for application of actuating pressure to said portion.

20. An electric switch assembly comprising in combination a non-conductive base carrying a printed circuit means which defines circuit contact elements at a spaced plurality of locations; portions of electrically conductive, resilient elastomer; means positioning elastomer portions adjacent but apart from respective contact elements; the respective elastomer portions being free to move and press against the respective contact elements in response to pressure applied to said portions, said switch adapted for actuation by externally applied pressure on said portions, said portions associated with outer insulative pressure transmitting means.

21. The electric switch of claim 20 wherein said elastomer portions comprise carbon filled elastomer, so

that pressure applied against a said portion will cause it to connect said element with limited conductivity and release of pressure will cause said portion to disconnect from said element.

22. The electric switch of claim 20 wherein said elastomer comprises a homogeneous body of elastom er and electrically conductive particles distributed therethrough.

23. The switch assembly of claim 20 wherein each movable portion of conductive elastomer is integral with neighboring portions of elastomer held so that resilient deflection of said elastomer occurs between Said movable and neighboring portions during application of said externally applied pressure, providing a return force upon release of said pressure.

24. An electric switch comprising in combination at least one pair of circuit contact elements and a resilient, flexible, electrically conductive, elastomeric sheet means of electrically conductive silicone elastomer spaced adjacent but apart from said elements so that pressure applied against said sheet means will cause it to connect said elements conductivelythus providing a bridging conductive path and release of pressure will cause said sheet means to disconnect from said elements and open the path between the elements.

25. A keyboard assembly comprising in combination resilient, flexible, electrically conductive, elastomeric sheet means, an insulatingseparator sheet below said conductive sheet means, and an electrical circuit board below said separator sheet and having contact elements; said separator sheet having openings registrable with said elements so that pressure applied against the portion of said conductive sheet means above an opening will cause it to press against a said element causing it to connect to said element conductively, and release of said pressure will cause said sheet means to disconnect from said element.

26. A keyboard assembly comprising in combination resilient, flexible, electrically conductive, elastomeric sheet means, an insulating separator sheet below said conductive sheet means, and an electrical circuit board below said separator sheet and having a plurality of pairs of spaced contact elements; said separator sheet having openings registrable with said pairs of elements so that pressure applied against the portion of said conductive sheet means above an opening will cause it to press against the pair of contact elements causing it to connect said elements conductively thus providing a bridging conductive path, and release of said pressure will cause said conductive portion to disconnect from said elements and open the path between the elements.

27. The keyboard assembly of claim 26 wherein said conductive sheet means is provided on its outer surface with an insulating layer at least in the area of said openings.

28. The keyboard assembly of claim 26 wherein said conductive means is provided on its outer surface with buttons registrable with said openings.

29. A digital coding assembly comprising in combination a resilient, flexible, electrically conductive elastomeric sheet means, an insulating separator layer below said sheet means and having a selected pattern of apertures and an electrical circuit board below said layer and having on its upper surface a common circuit element interlaced with a plurality of individual circuit elements, pressure applied against the portion of the conductive sheet means above the pattern of apertures causing that portion to provide a bridging conductive path from the common circuit element to each circuit element exposed by the apertures and release of said pressure causing opening of said path.

30. The device of claim 29, wherein the conducting pattern for all said circuit elements is on said upper surface.

31. The device of claim 29 wherein said common circuit element comprises a series of parallel branches with each said individual circuit element being

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US355858 *Sep 3, 1880Jan 11, 1887 Feed e
US2528086 *Nov 8, 1946Oct 31, 1950Bell Telephone Labor IncRelay contacts of conducting rubber
US2843695 *Dec 10, 1956Jul 15, 1958Robot Appliances IncMat switches
US3054879 *Jan 20, 1960Sep 18, 1962Indak Mfg CorpPushbutton switch
US3056005 *Aug 4, 1960Sep 25, 1962Larson Harry JMat switch and method of making the same
US3267233 *Jan 31, 1964Aug 16, 1966Sperry Rand CorpPneumatic transducer
US3308253 *Mar 25, 1965Mar 7, 1967IbmDiaphragm switch having a diaphragm supported on an incompressible layer and an elastomer overlaying the diaphragm
US3359386 *Oct 11, 1965Dec 19, 1967Howard Electric CompanySludge exclusion diaphragm switch
US3382338 *Apr 26, 1966May 7, 1968IbmPushbutton actuator for elastomeric switch
US3466410 *Jan 19, 1968Sep 9, 1969Arden JohnVacuum operated timer switch
*DE1039150A Title not available
DE1060455B *Jul 27, 1957Jul 2, 1959Clouth Rhein GummiwarenfabrikElastischer Kontaktgeber
GB807883A * Title not available
JP36018879A * Title not available
Non-Patent Citations
Reference
1 *Electromechanical Design Electromechanical Data Sampling Switch November 1962, pages 40, 41.
2 *Electronics, Little Push Mar. 2, 1970.
3 *Flex Key Data Bulletin DK 1 Flex Key Integrated Decimal Keyboard Units Published 1970.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3760137 *Sep 27, 1971Sep 18, 1973Alps Electric Co LtdMatrix push-button switch
US3761944 *Jan 14, 1972Sep 25, 1973Alps Electric Co LtdBinary code generator
US3789167 *Dec 20, 1972Jan 29, 1974Chomerics IncMulti-output level keyboard switch assembly with improved operator and contact structure
US3798639 *Jan 3, 1973Mar 19, 1974Epoch Co LtdEncoding switch for educational device
US3806685 *Oct 4, 1972Apr 23, 1974Chromerics IncLinear cam slide switch with guide means and conductive sheet contact
US3808384 *Feb 21, 1973Apr 30, 1974Texas Instruments IncPushbutton keyboard system
US3818153 *Jul 18, 1972Jun 18, 1974T ArvaiPushbutton switch assembly for keyboards including a bridging conductive, elastomeric diaphragm type contact
US3819895 *Oct 4, 1972Jun 25, 1974Lectradate IncElectronic momentary switch
US3854018 *Jun 14, 1973Dec 10, 1974Amp IncMultiple circuit selector switch assembly having movable contact means adapted to retain itself in closed circuit position
US3860771 *Oct 29, 1973Jan 14, 1975Chomerics IncKeyboard switch assembly with dome shaped actuator having associated underlying contactor means
US3862381 *Oct 29, 1973Jan 21, 1975Chomerics IncKeyboard switch assembly with multilayer, coextensive contactor means
US3862382 *Oct 29, 1973Jan 21, 1975Chomerics IncKeyboards switch assembly with multilayer pattern contact means
US3879593 *Mar 29, 1973Apr 22, 1975Magic Dot IncMembrane switch
US3908100 *Mar 25, 1974Sep 23, 1975Gen Signal CorpTouch blend smooth surface switch assembly
US3911780 *Apr 17, 1974Oct 14, 1975Hammond CorpArpeggio keyboard
US3916360 *Aug 9, 1974Oct 28, 1975Singer CoMagnetic keyboard
US3917917 *Aug 22, 1974Nov 4, 1975Alps Electric Co LtdKeyboard pushbutton switch assembly having multilayer contact and circuit structure
US3930083 *Jul 26, 1974Dec 30, 1975Litton Systems IncKeyboard panel for an electric switch contact
US3944763 *Nov 1, 1974Mar 16, 1976Beierwaltes Richard RSwimming pool touch pad
US3959610 *Dec 13, 1974May 25, 1976Motorola, Inc.Hermetically sealed keyboard type assembly with elastomeric electrical connecting link between switch and component modules
US3964594 *Nov 16, 1973Jun 22, 1976Ing. C. Olivetti & C., S.P.A.Keyboard of elastic material for office machines
US3996429 *Apr 18, 1975Dec 7, 1976Northern Electric Company LimitedMulti-contact push-button switch having plural prestressed contact members designed to provide plural circuit simultaneous switching inputs
US4002892 *Sep 16, 1974Jan 11, 1977Zielinski Adolf HPortable calculator
US4017697 *Sep 15, 1975Apr 12, 1977Globe-Union Inc.Keyboard membrane switch having threshold force structure
US4021630 *Apr 25, 1975May 3, 1977Neomed IncorporatedHermetically sealed resilient contact switch having surgical applications
US4029915 *Dec 3, 1975Jun 14, 1977Hoshidenkoseizo Kabushiki KaishaMiniaturized calculator keyboard switch assembly having universally pivoted key actuators
US4029916 *Apr 18, 1975Jun 14, 1977Northern Electric Company LimitedMulti-contact push-button switch and plural embodiment for keyboard switch assembly
US4032738 *May 15, 1975Jun 28, 1977Neomed IncorporatedElectro-surgical instrument
US4039068 *Dec 17, 1975Aug 2, 1977Ing. C. Olivetti & C., S.P.A.Keyboard of elastic material for office machines
US4044642 *Oct 29, 1974Aug 30, 1977Arp Instruments, Inc.Touch sensitive polyphonic musical instrument
US4055735 *Oct 23, 1975Oct 25, 1977Honeywell Information Systems Inc.Touch sensitive device
US4057710 *Mar 29, 1976Nov 8, 1977Willmott Arthur SKeyboard assembly
US4096577 *Oct 20, 1976Jun 20, 1978Ferber Leon AThin flexible electronic calculator
US4114000 *May 25, 1977Sep 12, 1978Motorola, Inc.Multi-position switch with single sliding actuator cam, reciprocable cam follower and compressive conductive elastomer
US4164634 *Jun 10, 1977Aug 14, 1979Telaris Telecommunications, Inc.Keyboard switch assembly with multiple isolated electrical engagement regions
US4184321 *May 20, 1977Jan 22, 1980Kabushiki Kaisha Suwa SeikoshaElectronic wristwatch with calculator having improved conductive packing sheet switch element
US4201043 *Jul 21, 1977May 6, 1980Kabushiki Kaisha Suwa SeikoshaWristwatch calculator imput key positioning assembly
US4207443 *Aug 9, 1978Jun 10, 1980Mikado Precision Industries Ltd.Key-operated switch and an assemblage of such switches for electronic desk calculators or the like
US4228329 *Jun 26, 1978Oct 14, 1980Hitachi, Ltd.Compact keyboard structure
US4234813 *Apr 10, 1979Nov 18, 1980Toray Industries, Inc.Piezoelectric or pyroelectric polymer input element for use as a transducer in keyboards
US4242546 *Nov 6, 1978Dec 30, 1980International Telephone And Telegraph CorporationElectrical push-button switch
US4258096 *Nov 9, 1978Mar 24, 1981Sheldahl, Inc.Composite top membrane for flat panel switch arrays
US4259551 *Mar 14, 1979Mar 31, 1981Citizen Watch Co., Ltd.External operation device for electronic timepieces
US4261042 *Mar 27, 1979Apr 7, 1981Canon Kabushiki KaishaKey signal entering device for thin electronic apparatus
US4287394 *Jan 25, 1979Sep 1, 1981Wilhelm Ruf KgKeyboard switch assembly with printed circuit board
US4300029 *Jan 9, 1980Nov 10, 1981W. H. Brady Co.Remote membrane switch
US4314227 *Sep 24, 1979Feb 2, 1982Eventoff Franklin NealElectronic pressure sensitive transducer apparatus
US4317012 *Apr 17, 1980Feb 23, 1982Nissan Motor Company, LimitedDisplay board type switching device
US4317013 *Apr 9, 1980Feb 23, 1982Oak Industries, Inc.Membrane switch with universal spacer means
US4347504 *Aug 21, 1980Aug 31, 1982Nissan Motor Co., Ltd.Device for detecting a burnt-out fuse
US4350857 *Oct 3, 1980Sep 21, 1982Allen-Bradley CompanyIlluminated industrial membrane switch
US4355483 *Jan 5, 1981Oct 26, 1982The Quaker Oats CompanySwitch mechanism
US4375018 *Jun 16, 1980Feb 22, 1983Sheldahl, Inc.Membrane switch having adhesive label as edge seal
US4376239 *Apr 30, 1982Mar 8, 1983Allen-Bradley CompanyIndustrial membrane switch
US4388509 *Jan 12, 1982Jun 14, 1983Braun AgSynthetic-resin and metallic layered housing for hand-held appliance
US4439647 *Jul 14, 1982Mar 27, 1984Nick CalandrelloTouchpad keyboard
US4488017 *Feb 7, 1983Dec 11, 1984Amiga CorporationControl unit for video games and the like
US4490587 *Apr 7, 1983Dec 25, 1984Microdot Inc.Switch assembly
US4492829 *Feb 13, 1984Jan 8, 1985Rogers CorporationTactile membrane keyboard with asymmetrical tactile key elements
US4500218 *May 20, 1982Feb 19, 1985Toho-Polymer Kabushika KaishaKeyboard key with embedded top character
US4500756 *Mar 19, 1982Feb 19, 1985Pratt-Read CorporationKeyboard switch having a deformable membrane formed of cellular urethane
US4515999 *Jan 24, 1983May 7, 1985Rogers CorporationFull travel keyboard
US4520248 *Aug 15, 1980May 28, 1985Rogers CorporationKeyboard assembly
US4527021 *Feb 3, 1984Jul 2, 1985Shin-Etsu Polmer Co., Ltd.Keyboard switch assembly
US4555601 *Jan 26, 1983Nov 26, 1985Sharp Kabushiki KaishaMembrane keyboard
US4558194 *Mar 21, 1984Dec 10, 1985Towmotor CorporationFoot pedal switch
US4602135 *May 30, 1985Jul 22, 1986Phalen Robert FMembrane switch
US4634818 *Feb 4, 1985Jan 6, 1987Npm InternationalSwitches and keyboards
US4636593 *Apr 17, 1986Jan 13, 1987Motorola Inc.Light conducting, elastomeric membrane keypad
US4639559 *May 7, 1985Jan 27, 1987Sharp Kabushiki KaishaMembrane keyboard
US4640137 *May 31, 1985Feb 3, 1987Lord CorporationTactile sensor
US4716262 *Nov 22, 1985Dec 29, 1987Nena MorseVandal-resistant telephone keypad switch
US4742192 *Jun 1, 1987May 3, 1988Saturn CorporationSteering wheel rim horn blow mechanism
US4791252 *Aug 14, 1987Dec 13, 1988Vdo Adolf Schindling AgTouch panel switch operating arrangement
US4801771 *Oct 13, 1987Jan 31, 1989Yamaha CorporationForce sensitive device
US4818828 *Jun 17, 1988Apr 4, 1989Smith Corona CorporationElectronic keyboard
US4831219 *Aug 2, 1988May 16, 1989Kabushiki Kaisha BandaiKeyboard
US4839474 *Dec 10, 1987Jun 13, 1989Key Innovations LimitedSwitches and keyboards
US4857683 *Dec 28, 1988Aug 15, 1989W. H. Brady Co.Membrane switchcores with key cell contact elements connected together for continuous path testing
US4903563 *Jul 5, 1989Feb 27, 1990Nippon Gakki Seizo Kabushiki KaishaSound bar electronic musical instrument
US4916262 *Nov 3, 1988Apr 10, 1990Motorola, Inc.Low-profile, rubber keypad
US4963876 *Aug 21, 1989Oct 16, 1990Sanders Rudy TThin programmable remote control transmitter
US5015829 *Apr 28, 1989May 14, 1991Hewlett-Packard CompanyKey pad and front panel assembly for an electronic instrument
US5138119 *Mar 15, 1991Aug 11, 1992Lucas Duralith CorporationBacklit tactile keyboard with improved tactile and electrical characteristics
US5149923 *Aug 29, 1991Sep 22, 1992Lucas Duralith CorporationBacklit tactile keyboard with improved tactile and electrical characteristics
US5163765 *Mar 4, 1992Nov 17, 1992Apple Computer, Inc.Collapsible keyboard
US5187647 *Mar 11, 1991Feb 16, 1993John Fluke Mfg. Co., Inc.Electronic instrument keypad assembly with z-axis oriented electrical interconnect
US5217478 *Feb 18, 1987Jun 8, 1993Linvatec CorporationArthroscopic surgical instrument drive system
US5265904 *Jan 7, 1993Nov 30, 1993Ford Motor CompanyAirbag cover with integral horn switch
US5265905 *Jan 7, 1993Nov 30, 1993Ford Motor CompanyAir bag cover horn blow switch assembly
US5371332 *Jan 26, 1993Dec 6, 1994Siemens AktiengesellschaftSensor control and display unit for dental apparatus
US5431064 *Sep 18, 1992Jul 11, 1995Home Row, Inc.Transducer array
US5578765 *Jun 1, 1995Nov 26, 1996Incontrol Solutions, Inc.Transducer array
US5583303 *Jun 1, 1995Dec 10, 1996Incontrol Solutions, Inc.Transducer array
US5632759 *Sep 10, 1993May 27, 1997Linvatec CorporationCutting blade assembly for an arthroscopic surgical instrument drive system
US5729222 *Nov 25, 1996Mar 17, 1998Jerry IgguldenUser-configurable control device
US5748114 *Oct 25, 1994May 5, 1998Koehn; Matthias-ReinhardFlat input keyboard for data processing machines or the like and process for producing the same
US5803748 *Sep 30, 1996Sep 8, 1998Publications International, Ltd.Apparatus for producing audible sounds in response to visual indicia
US5856641 *Jan 8, 1998Jan 5, 1999Packard Hughes Interconnect CompanySwitch having raised contact features and a deflectable substrate
US6040534 *Oct 13, 1998Mar 21, 2000Prince CorporationIntegrally molded switch lighting and electronics
US6041215 *Mar 31, 1998Mar 21, 2000Publications International, Ltd.Method for making an electronic book for producing audible sounds in response to visual indicia
US6809280May 2, 2002Oct 26, 20043M Innovative Properties CompanyPressure activated switch and touch panel
US7091436 *Dec 17, 2002Aug 15, 2006Iee International Electronics & Engineering S.A.Flexible keyboard
US7260999Dec 23, 2004Aug 28, 20073M Innovative Properties CompanyForce sensing membrane
US7327039May 20, 2003Feb 5, 20083M Innovative Properties CompanyCurable thermosetting adhesive
US7468199Dec 23, 2004Dec 23, 20083M Innovative Properties CompanyAdhesive membrane for force switches and sensors
US7482201Jan 11, 2008Jan 27, 20093M Innovative Properties CompanyNanoparticle filled underfill
US7509881Jul 29, 2005Mar 31, 20093M Innovative Properties CompanyInterdigital force switches and sensors
US7823780Dec 18, 2006Nov 2, 2010Harrow Products LlcData interface assembly for electronic locks and readers
US8223130 *Nov 12, 2008Jul 17, 2012Sony CorporationTouch-sensitive sheet member, input device and electronic apparatus
US8647203 *Nov 4, 2011Feb 11, 2014Target Brands, Inc.Transaction product with selectively illuminated buttons
US8704113 *Dec 9, 2011Apr 22, 2014Sony CorporationKeyboard and electronic apparatus
US20090135150 *Nov 12, 2008May 28, 2009Sony CorporationTouch-sensitive sheet member, input device and electronic apparatus
US20100315343 *Sep 11, 2009Dec 16, 2010Hon Hai Precision Industry Co., Ltd.Keyboard
US20120152717 *Dec 9, 2011Jun 21, 2012Itoshiro YasushiKeyboard and electronic apparatus
US20120312672 *Oct 23, 2011Dec 13, 2012Hon Hai Precision Industry Co., Ltd.Push button assembly and electronic device having the same
US20130116050 *Nov 4, 2011May 9, 2013Target Brands, Inc.Transaction product with selectively illuminated buttons
USRE32747 *Jun 25, 1986Sep 13, 1988Braun AktiengesellschaftSynthetic-resin and metallic layered housing for hand-held appliance
CN102034633BSep 29, 2009May 29, 2013比亚迪股份有限公司Full keyboard components, manufacturing method and full keyboard thereof
DE2909882A1 *Mar 14, 1979Sep 25, 1980Braun AgGehaeuse fuer geraete des persoenlichen bedarfs
DE3302892A1 *Jan 28, 1983Aug 18, 1983Sharp KkTastenanordnung in mehrschichtbauweise
DE3340575A1 *Nov 9, 1983May 17, 1984Sharp KkElastisches drucktastenelement
DE4342440A1 *Dec 13, 1993Jul 14, 1994Ford Werke AgAirbagabdeckung mit integriertem Hupenschalter
DE4342440C2 *Dec 13, 1993Feb 24, 2000Ford Werke AgAbdeckung für ein Fahrerairbagmodul
EP0619894A1 *Dec 30, 1992Oct 19, 1994Elonex Technologies, Inc.Flexible keyboard for computers
WO1995012208A2 *Oct 25, 1994May 4, 1995Marketing Partners Ges Fuer MaFlat input keyboard for data processing machines or the like and process for producing the same
WO1998031027A1 *Jan 7, 1998Jul 16, 1998Klaus MayerPower-driven device
WO2004027537A2 *Sep 23, 2003Apr 1, 2004Conzalez Ian Royce William PetMethod for manufacturing a one-touch keyboard and one-touch keyboard
Legal Events
DateCodeEventDescription
Jun 18, 1986AS01Change of name
Owner name: FLEX-KEY CORPORATION
Effective date: 19860603
Owner name: KTK2 CORPORATION
Jun 18, 1986ASAssignment
Owner name: FLEX-KEY CORPORATION
Free format text: CHANGE OF NAME;ASSIGNOR:KTK2 CORPORATION;REEL/FRAME:004604/0187
Effective date: 19860603
Apr 3, 1986ASAssignment
Owner name: KTK2 CORPORATION, 80 SOUTH DAVIS STREET, ORCHARD P
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FLEX-KEY CORPORATION;REEL/FRAME:004531/0729
Effective date: 19860321
Apr 3, 1986AS02Assignment of assignor's interest
Owner name: FLEX-KEY CORPORATION
Owner name: KTK2 CORPORATION, 80 SOUTH DAVIS STREET, ORCHARD P
Effective date: 19860321
Feb 10, 1982AS07Mortgage
Free format text: ROGERS CORPORATION, ROGERS, CT. A CORP. OF MA. * FLEX-KEY CORPORATION : 19811208
Feb 10, 1982ASAssignment
Owner name: ROGERS CORPORATION, ROGERS, CT. A CORP. OF MA.
Free format text: MORTGAGE;ASSIGNOR:FLEX-KEY CORPORATION;REEL/FRAME:003948/0180
Effective date: 19811208
Free format text: MORTGAGE;ASSIGNOR:FLEX-KEY CORPORATION;REEL/FRAME:3948/180
Owner name: ROGERS CORPORATION, A CORP. OF MA.,CONNECTICUT
Owner name: ROGERS CORPORATION, A CORP. OF MA., CONNECTICUT
Feb 8, 1982ASAssignment
Owner name: FLEX-KEY CORPORATION, GLOUCESTER, MA A CORP. OF MA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GLOUCESTER ENGINEERING CO. INC.;REEL/FRAME:003947/0937
Effective date: 19811208
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GLOUCESTER ENGINEERING CO. INC.;REEL/FRAME:3947/937
Owner name: FLEX-KEY CORPORATION, A CORP. OF MA,MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GLOUCESTER ENGINEERING CO. INC.;REEL/FRAME:003947/0937
Owner name: FLEX-KEY CORPORATION, A CORP. OF MA, MASSACHUSETTS
Feb 8, 1982AS02Assignment of assignor's interest
Owner name: FLEX-KEY CORPORATION, GLOUCESTER, MA A CORP. OF MA
Owner name: GLOUCESTER ENGINEERING CO. INC.
Effective date: 19811208