Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3699389 A
Publication typeGrant
Publication dateOct 17, 1972
Filing dateNov 19, 1970
Priority dateNov 19, 1970
Publication numberUS 3699389 A, US 3699389A, US-A-3699389, US3699389 A, US3699389A
InventorsWilliam Perry Holsinger
Original AssigneeUs Health Education & Welfare
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Patient electrode isolation
US 3699389 A
Abstract
A system for preventing the inadvertent electrocution of a surgical patient through accidental coupling of probes and common equipment to ground. Isolation of the patient from ground is obtained through the use of a light emitting diode and a photo transistor in the probe circuit.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United 7 States Patent Holsinger [54] PATIENT ELECTRODE ISOLATION [72] Inventor: William Perry I-lolsinger, Vienna,

The United States of America as represented by the Secretary of the Department of Health, Education, and Welfare Filed: Nov. 19, 1970 Appl. No.: 90,969

Assignee:

[56] References Cited UNITED STATES PATENTS 9/1970 Schuler ..330/30D 8/1969 Gilbert ..330/207P [451 Oct. 17, 1972 OTHER PUBLICATIONS IEEE Transactions Bio Medical Electronics, Vol. 17,

Primary Examiner-J. D. Miller Assistant Examiner-Harry E. Moose, Jr. Attorney-Browdy and Neimark [57] ABSTRACT A system for preventing the inadvertent electrocution of a surgical patient through accidental coupling of probes and common equipment to ground. Isolation of the patient from ground is obtained through the use of a light emitting diode and a photo transistor in the probe circuit.

1 Claim, 1 Drawing Figure DIFFERENTIAL sounce AMPLIFIER FOLLOWERS PASSIVE 2? 24 l0 1 I 25 $4. N I!) J D e 3/ 8 ,m E MINUS 0 TO 5 OP AMPS Lu ,2 [34 35 PLUS (I OP AMPS EXTER I 32 CIRCUI 37 h OUTPUT 4 EXTERNAL CIRCUITRY 4s I OUTPUT 4 PATENTEDHBIUIQR f 3.699.389

' DIFFERENTIAL SOURCE AMPLIFIER FOLLOWERS v ELECTRODES PLUS 'ro WW 0P AMPS I INVENTOR. WILL /AM 1? HOL swam ATTORNEYS PATIENT ELECTRODE ISOLATION BACKGROUND AND SUMMARY .The present invention relates to isolation circuits and, more particularly, to an isolation circuit with an optical arrangement for decoupling an electrical surgical probe from ground.

There are only two ways that a patient can accidentally be electrocuted when connected to electrodes while undergoing an operation or a diagnostic examination. The first ofthese is through interelectrode leakage or short circuits, where the monitoring device leaks lethal "currents'between the electrodes. The second is through coupling with other monitoring equipment, common equipment grounding being the most common culprit. Both possibilities must 'be eliminated, however, to guarantee patient safety.

The hazard of interelectrode leakage can be eliminated by series-connecting a passive current limiting network,i.e.,one that introduces no current of itself, between the electrodes and the monitoring device.

The second cause of accidental electrocution is the most probable. Whenever a patient is grounded, he is vulnerable to almost every conceivable interaction between equipments, such as ground loop currents, electromagnetically coupled transients, and even poor hospital grounding techniques. It takes as little as microamperes to set the heart muscle into fibrillation. This could still occur even where using the aforementioned technique since the ground connection to the patient cannot be current limited. However, if the whole input amplification network were floating and battery powered, this major cause would also be eliminated. FM modulation and demodulation techniques suffer from critical frequency controls and bulky component needs, and still do not guard against coupled electromagnetic transients through the transformer windings or leakage currents through transfor- BRIEF DESCRIPTION OF THE DRAWING The drawing shows a schematic diagram of the isolation circuitry DETAILED DESCRIPTION Referring now to the lone FIGURE of the drawing, which sets outa schematic diagram of the invention, there are provided input terminals 10, l1 and 12, these inputs furnishing signals from other surgical test or diagnostic devices (not shown) in use during an operation, such as intracavitary transducers, electronic probes and the like. Connected to terminal 10 there is a resistance 13, while a similar resistance 14 is tied to terminal l2; terminal 11, on the other hand is connected with a junction point 20.

A pair of oppositely poled diodes l5 and 16 are tied between the far end of resistance 13 and junction point 20, while another pair of oppositely poled diodes 17 and 18 are located between the far end of resistance 14' and junction 20. The output signal from resistance 13 is applied to a series connected resistance 21 from whence it is fed to an FET source follower amplifier 22. From amplifier 22 the signal is impressed on series resistance 24 and then to a differential amplifier 25, this' amplifier having a feedback loop to its'input and including aresistance 26.

A parallel channel, similar to the one described above, includes a series resistance 27 connected to the output terminal of resistance 14, the output of resistance 27 being applied to an FET source follower amplifier 28. From amplifier 28 the signal goes through mers leakage capacitances. OPtical isolation ex-- periences no such drawbacks and further allows wider frequency bandwidths using practical components.

Thus, the present invention offers many improvements and advancements over the weaknesses and drawbacks of prior systems. The dual-function isolation technique disclosed herein is inexpensive, compact, reliable, and even adaptable to existing equipment. If all patient monitoring equipment were isolated in this manner, accidental electrocution could never occur.

It is, accordingly, an object of the present invention to overcome the defects of the prior art, such as indicated above.

It is another object of the present invention to provide a safe environment to prevent electrocution.

It is yet another object of the present invention to provide a device for isolating a patient, particularly a series resistance 30 before acting as a second input to differential amplifier 25. A lone resistance 31 is tied between the output end of resistance 30 and junction point 20. The output of amplifier 25 is applied as on input to a driver amplifier and drives 32 after passing through a series resistance 33. Feedback loop 36 provides the necessary gain control while the other input to amplifier 32 is connected to junction point 20.

Potential for the isolation network is supplied by two batteries 34 and 35; the positive terminal of battery 35 and the negative terminal of battery 34 connecting to junction point 20.

The driver signal, as produced by amplifier 32, passes through a dropping resistance 37 before being applied to an optical coupler 38, shown generally within the dotted lines. The return from coupler 38 is connected to the negative terminal of batter 35.

The optical coupler 38 consists of a light emitting diode 41 and a phototransistor 42. Positive potential is supplied to the phototransistor by means of a lead 43 connected to one electrode, while negative potential is furnished by lead 44 and resistance 45 connected to the output electrode of the phototransistor.

The output of the optical coupler, and therefore of the isolation network is furnished by an output terminal 46, connected to the output electrode of the phototransistor 42, this output converted from the infrared radiation generated by diode 41 acting as a variable resistance to generate a proportional current for subsequent amplification.

In operation the isolation network receives input signals on input tenninals 10, 11 and 12, as from intracavitary transducers, and other surgical instruments,

fore applyingthem to monitoring equipment via output terminal 46. interelectrode leakage, or short circuits, where the monitoring device leaks lethal current between electrodes is eliminated by series connecting a passive current limiting network, or one that introduces no current of itself, between the electrodes and the 'monitoring devices, and including such passive network as a portion of the present overall isolation network. Resistances 21 and 27 limit any current from the amplifiers 22 and 28 to a low enough value so as not to exceed the rating of diodes 1s, 16, 17 and 18, even if full battery supply voltages were short-circuited. Two diode pairs 15, 16, 17 and 18, reverse connected, can handle either positive or negative voltages. Since the junction of the diodes can never exceed i0.7 volts (silicon), 0.7 volts through resistances l3 and 14 limit interelectrode current to 3.5 microamperes, which is sufficiently low for safe connection even to intracavitary transducers. The high 200K input resistors 13 and 14 necessitate amplifiers 22 and 28 to have very high input impedances (FET source follower) with extremely low bias currents; otherwise the amplifiers could not track the in put waveforms. Diodes 15, l6, l7 and 18 must be fast acting so as to dissipate the transient energy arising from a defibrillator pulse. Here; the 200K input resistors 13 and 14 limit the high voltage current.

The elimination of accidental coupling between monitoring and other equipment, by forming a common ground, is accomplished by the circuitry of the source follower amplifiers 22' and 28, differential amplifier 25, driver amplifier 32 and optical coupler 38. Optical isolation experiences none of the drawbacks of electromagnetic coupling or interaction between components since electrical current flow is broken by the 'beam of light. An operational amplifier 32 modulates the light emitting diode 41 and is biased sufficiently far in the linear operating region to preserve signal fidelity. Thus the emitted infrared radiation is optically coupled to a phototransistor 42 which acts as a variable resistor to generate a proportional current at its output terminal 46 for subsequent amplification and use by monitoring equipment.

From the above description of the structure and operation of the invention, it is obvious that the present device offers a number of improvements over the drawbacks and shortcomings of prior art isolation circuits. The device discloses a dual function isolation technique that is inexpensive, compact, reliable and adaptable to existing present day equipment. If all patient monitoring equipment were isolated in this manner, accidental electrocution could never occur.

Obviously many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.

What is claimed is: i

1. A patient electrode isolation circuit for preventing accidental electrocution of a patient comprising first, second, and third input means for receiving 1 signals from electrical equipment as might be used in the treatment of a patient;

a first passive current limiting network connected between the first and second'input means, said network bemg a resistance and a diode, said resistance preventing possible high voltage on the first and second input means from breaking down the diode;

a second passive current limiting network connected between the second and'third inputmeans, said networkbeing a resistance and a diode,'said resistance preventing possible high voltage on the second and third input means from breaking down the diode;

a first source follower series connected in the first input means;

a second source follower series connected in the third input means;

a third passive current limiting network connected between the input of the first source follower and the second input means, said network being a resistance and a diode, said diode being poled oppositely from the diode in the first passive current limiting network and the resistance preventing any excessive interelectrode leakage in the first source follower from breaking down the diode;

a fourth passive current limiting network connected between the input of the second source follower and the second input means, said network being a resistance and a diode, said diode being poled oppositely from the diode in the second passive cur- I rent limiting network and the resistance preventing any excessive interelectrode leakage in the second source follower from breaking down the diode;

a differential amplifier connected to receive the outputs of the first and second source followers;

a driver amplifier connected to receive the output of the differential amplifier;

an optical coupler consisting of a diode and a phototransistor connected to the output of the driver; and i output means connected to the phototransistor.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3462697 *Jul 9, 1965Aug 19, 1969Applied Dynamics IncStabilized amplifier having improved overload recovery
US3528405 *Apr 10, 1967Sep 15, 1970Canadian Patents DevLow noise differential amplifier for measuring biological signals
Non-Patent Citations
Reference
1 *IEEE Transactions : Bio Medical Electronics, Vol. 17, No. 2 pp. 163 166, April 1970.
2 *Medical and Biological Engineering Vol. 6, No. 4, pp. 447 448 Van der Weide et al., Aug. 1968.
3 *Medical and Biological Engineering Vol. 8, pp. 103 105 Bracale et al., 1970.
4 *Medical and Biological Engineering Vol. 8, pp. 207 208, Ross et al., 1970.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3808502 *Aug 7, 1972Apr 30, 1974Birtcher CorpIsolator circuit for use with electrical medical equipment
US3906293 *Jan 28, 1974Sep 16, 1975Meshbane AlexElectrophoresis testing apparatus
US3924251 *Mar 25, 1974Dec 2, 1975Hydril CoInput signal powered converter
US4121573 *Jan 13, 1976Oct 24, 1978Goebel Fixture Co.Wireless cardiac monitoring system and electrode-transmitter therefor
US4175255 *Sep 6, 1977Nov 20, 1979Branderud Nils PDevice to protect against flow of current
US4191189 *Oct 19, 1977Mar 4, 1980Yale BarkanStone disintegrator
US4243044 *Sep 7, 1978Jan 6, 1981Hewlett-Packard CompanyCoupling circuit with driven guard
US4303073 *Jan 17, 1980Dec 1, 1981Medical Plastics, Inc.Electrosurgery safety monitor
US4361153 *May 27, 1980Nov 30, 1982Cordis CorporationImplant telemetry system
US4494541 *Nov 2, 1981Jan 22, 1985Medical Plastics, Inc.Electrosurgery safety monitor
US4679568 *Sep 19, 1985Jul 14, 1987Siegen CorporationPhysiological potential preamplifier
US4987902 *Dec 30, 1988Jan 29, 1991Physio-Control CorporationApparatus for transmitting patient physiological signals
US5736038 *Mar 6, 1996Apr 7, 1998United Medical Manufacturing Co.Shockproof haemodialyzer
US7191011 *Apr 7, 2003Mar 13, 2007Advanced Neuromodulation Systems, Inc.Access port indicator for implantable medical device
US7899544Jan 31, 2007Mar 1, 2011Advanced Neuromodulation Systems, Inc.Access port indicator for implantable medical device
WO1982000413A1 *Jun 19, 1981Feb 18, 1982Abbott LabImproved radiopaque medical tubing
WO1982000414A1 *Aug 7, 1981Feb 18, 1982R2 CorpPhysiological electrode systems
Classifications
U.S. Classification361/1, 128/908, 340/870.29
International ClassificationG01R15/14, A61B5/0428
Cooperative ClassificationY10S128/908, G01R15/14, A61B5/04282
European ClassificationA61B5/0428B, G01R15/14