Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3699970 A
Publication typeGrant
Publication dateOct 24, 1972
Filing dateJun 23, 1970
Priority dateJun 26, 1969
Publication numberUS 3699970 A, US 3699970A, US-A-3699970, US3699970 A, US3699970A
InventorsBrindley Giles Skey, Donaldson Peter Eden Kirwan
Original AssigneeNat Res Dev
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Striate cortex stimulator
US 3699970 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Brindley et al. 1 Oct. 24, 1972 154 STRIATE CORTEX STIMULATOR 3,449,768 6/1969 D6 16 .'....3/1 [72] Inventors: Giles skey Brindley, London; Peter 2,784,375 5/1957 Mehlman ..324/57Q bEde: dvonaldm, Oxford, FOREIGN PATENTS OR APPLICATIONS 0t 0 n an 7 575,075 4/1924 France ..128/419 R [73] As ign g g z g 1,910,972 10/1969 Germany ..12s/404 orpora on, on on, n an Primary Examiner-William E. Kamm 2 1970 2 led o gj Attorrwy-Cushman, Darby & Cushman [21] Appl.No.: 49, 1

[57] ABSTRACT Foreign pp Priority Data An implantable neurological prosthetic device com- June 26 1969 Great Britain "3239859 prises a plurality of electrodes for stimulating the striate cortex, a matrix of normally closed gates con- 1 R 3 1, 324 57, nected in one-to-one relationship with said electrodes, [52] US. Cl 128/4 9 3340/4107 and a plurality of radio receivers tuned to predeteb [511 I t Cl A61 mined frequencies and constituting at least two [58] F t ld a 159 410 1 .di ting y9 ets, each gate being connected for e I' 7 switching to an open state to energize the respective Q 57 343/703- 4 "ohm said-electrodes by a unique group of at least ,1, a. v I two of said receivers from respectively different sets thereof. The receivers are themselves energizable by [56] References Cited externally located respective transmitters conveniently UNITED STATES PATENTS positioned by a technique in which the transmitter tuned circuit is included as one arm in a bridge circuit 3,195,540 7/1965 Waller ..l28/419 P balanced. for maximum absorption by the respective 3,491,377 l/l970 Bolle ..3/l mceiver tuned circuit. This technique is more 1 21 23232 genegall y applicable to any implant provided with a 6 6 6 6 6 v n 6 n Q 3,426,748 2/1969 Bowers ..l28/4l9 P 2,721,316 10/1955 Shaw ..3/1 8 Claims, 2 Drawing Figures 1 a ,1 7 EN APSULATEI Dfi B} E11 E1? 1-? 511 l "IN ANATOMICALLI D2 c1 R1 1 SHAPED MOULD OF R R SILICONE lauseEiz r (3 lit musmrrsk '2 0 POWER SOURCE PR POWER SOURCE TRANSMITTER-S P ATENTED 0m 24 I972 ENCAPSULATED-/- RB IN ANATOMICA LLY D2 T SHAPED MOULO 0F SILICONE RUBBER P WER SOU RCE PC, PR

POWER SOUQCE STRIATE CORTEX STIMULATOR Consideration has been given to the possibility of producing a prosthesis which will afford electrical stimulation of the striate cortex and give useful visual sensations to patients who have lost the use of their eyes. Initial work to this end has proved promising. Briefly, this work involved the implantation of an array of radio-driven stimulators. The implant comprised an intracranial part and an extracranial part. The intracranial part had the form of a cap of silicone rubber, molded to fit the calcarine and neighboring cortex of the right hemisphere, and bearing a plurality of platinum electrodes. The electrodes were joined in a one-to-one relationship by a cable to the extracranial part which comprised an array of radio receivers between the parieto-occipital skull and pericranium. Delivery of a train of short pulses of radio waves to one of the receivers resulted in the patient seeing a small spot of white light, or phosphene, while simultaneous delivery to a number of receivers produced a pattern of phosphenes. In practice, it was proposed that delivery to such a device be affected by a corresponding array of radio transmitters housed in a cap or hat for the patient.

Various aspects of the above work are discussed in more detail in articles entitled Transmission of electrical stimuli along many independent channels through a fairly small area of intact skin by G.S. Brindley (J. Physiol. 177, 44-46P), The visual sensations produced by electrical stimulation of the medical occipital cortex" by G.S. Brindley and W.S. Lewin (J. Physiol. 194, 54-55P), and The sensations produced by electrical stimulation of the visual cortex by 0.8. Brindley and W.S.,Lewin (J. Physiol. 196, pp.479493 Clearly a useful endeavor of this kind will involve a large number of stimulating electrodes, and corresponding numbers of receivers and transmitters.

According to the present invention in one aspect, the number of receivers in such a device, and by the same token the number of associated transmitters also, is reduced by employing a selection matrix arrangement for controlling the energization of the electrodes. Thus, a matrix of gate circuits is provided for connection to the stimulating electrodes, each gate being controlled by a unique group of receivers, one each from at least two sets of receivers connected with the matrix of gates in respectively different co-ordinate senses.

Selection matrix arrangements are in fact known in other applications and it is usual to talk of rows and columns in the matrix since the matrix is normally thought of as a two-dimensional, rectangular one with Cartesian coordinates. Reference is accordingly made hereinafter to rows and columns, but it is to be understood that this is for convenience only since the physical lay-out need not be rectangular and there can be more than two dimensions.

In any event, a clearer understanding of this aspect of the invention will be gathered from the following consideration of the accompanying drawings which are given by way of example, and in which:

FIG. 1 illustrates the circuit, partly schematically, of one embodiment of the invention, and

FIG. 2 similarly illustrates a further circuit ancillary to that of FIG. 1.

In FIG. 1, three row conductors R1, R2, R3 and three column conductors CLl, CL2, and CL3 are shown affording control of nine gates by way of six receivers. Three of the receivers RRI, RR2, RR3 are respectively connected to the row conductors R1, R2, R3 and the other three receivers RC1, RC2, RC3 are respectively connected to the column conductors CLl, CL2, and CL3. Gate G11 is connected to row conductor R1 and column conductor CLl, gate G12 is connected to row conductor R1 and column conductor CL2, and so on to gate G33 connected to row conductor R3 and column conductor CL3. Each gate is connected to a different one of nine stimulating electrodes denoted as terminals E11, E12, E33, and each electrode is energized by sending a radio signal to the row and column receivers to which the associated gate is connected. This energization is such that the row receiver connects the base of the gate transistor T1 to earth, while the column receiver lowers the emitter potential of that transistor, and so the gate is rendered conductive against the base electrode bias B which normally holds all of the gates non-conductive.

In operation of the device to produce. a pattern of phosphenes, it is necessary that the gates be controlled by a scanning action. For example, if only gates G11 and G22 are to be activated, receivers RRI and RC1 and, receivers RR2 and RC2 are involved, but simultaneous energization of these four receivers will also activate gates G12 and G21. Accordingly, the row receivers are energized on a sequential basis and the column receivers for any gates to be activated in a given row are selectively energized simultaneously with the receiver for that row. This may appear to be a practical disadvantage consequent upon the use of a selection matrix arrangement, but it is in fact fully compatible with the normal visual processes. Indeed, there is practical advantage in that compensation can be made for the different threshold energization appropriate to stimulation with different ones of the electrodes. Thus, the row receivers can be scanned with energization at a predetermined level, while the column receivers are selectively energized at variable levels. Alternatively, variation of column receiver duration of energization can be employed in place of power level.

This mode of operation is' indicated schematically in the drawing by the row transmitters TRl, TR2, TR3 and column transmitters TCl, TC2, TC3 which are tuned to match their respective receivers RRI, RR2, RR3 and RC1, RC2, RC3, and are respectively energizable from power sources PR and PC by way of selector switches SR and SC. It will be noted that the power source for the column transmitters is denoted as variable by an arrow, this denoting variability of transmitted pulse power level or duration.

In connection .with production of patterns rather than single phosphenes, it is desirable, particularly where different energization levels are to be involved, that adjacent column receivers be tuned to mutually different frequencies to avoid any cross-talk, and these frequencies should also differ from that, or those, of the row receivers.

In this same connection, it is to be understood that the primary input pattern can be derived from a television camera tube or other suitable form of sensor, the output of which is translated to appropriate signal form for energization of the transmitters to stimulate a corresponding pattern in the recipient. In general, the transmitters will normally energize the row receivers in sequence, each for a period during which any relevant associated column receivers are also energized, so giving a column scanning action within each phase of a row scanning action.

While various circuit arrangements may be employed for the receivers of the presently proposed device, and also for the associated receivers, the illustrated common emitter configuration is preferred for the gates.

For completeness, the component values of the illustrated example are as follows:

Transistors T1 currently have Vceo 60V.

Diodes D1 are currently chosen with p.i.v. 2 60V.

Zener diodes Z are 55V, that is, less than Vceo of T1.

The tunedcircuit coils are all wound from common material to 1 cm. diameter. Coils II for the rows are each wound to twelve turns and tapped at two turns for a frequency of Mc/s. Coils I2 and I3 are used in alternating sequence along the columns, I2 being wound to thirteen turns and-tapped at ten turns for a frequency of 8 Mc/s, and I3 being wound to seventeen turns and tapped at ten turns for a frequency of 6 Mc/s.

Turning to another aspect of the present invention: difficulty may arise in attaining the desired location of the transmitters relative to the receivers since the latter are implanted while the former are employed externally of the subject. The difficulty is not exclusive to the above-proposed visual prosthetic device, but it clearly becomes more significant when a number of inductive links are to be established within a small area. It might also be mentioned that this difficulty is not readily resolved by attempting to mark on a patients exteri or the locations of the implanted receivers.

A technique for obviating this difficulty has been evolved in. the course of the present work, which technique derives from the fact that the implant or implant item to be located in the present instance includes a tuned circuit, and there is a corresponding external tuned circuit in the associated transmitter. Location is achieved by connecting the external tuned circuit in a bridge circuit including a meter and arranged for balance when a corresponding tuned circuit is immediately adjacent that of the bridge. Thus, the bridge is balanced for maximum absorption from its tuned circuit and it can be used to locate the corresponding tuned circuit of an implant by watching the meter while scanning the patient with the tuned circuit.

This technique is naturally suitable when, as here, the tuned circuits are to be provided anyway, and this is indicated in FIG. 2 by the bridge circuit B in which the voltage to one side of the meter M is derived from the tuned circuit of the relevant transmitter.

The results with this technique have been found so satisfactory that tuned circuits, or an adjustable tuned circuit, might be provided specifically for the purposes of receiver location. Indeed the technique can be employed more generally in the location of implanted devices, and an absorption or rejection mode may be employed.

Accordingly, the present invention provides, in a second aspect, apparatus for locating an implant including a tuned circuit, the apparatus comprising a bridge circuit including a corresponding tuned circuit as one arm of the bridge, and means for indicating the degree of balance of the bridge. The indicating means need not necessarily be of visual form, such as a meter, but may alternatively, or in addition, be of audible form whereby a variable tone is generated in dependence upon the degree of bridge balance.

Yet'another aspect of the present invention involves the manufacture, and in particular the molding and encapsulation of implantable prosthetic devices. It is usual to encapsulate such devices with a silicone rubber material which is conventionally available as a paste in a tube. However, this form of material has not been found fully satisfactory in a situation such as that for the above form of device where the encapsulating material can also serve as a mold material to be formed to a required shape in which other components are carried. The necessary molding will often, as here, be best carried out by casting and a paste is clearly not suitable. Also, the usual paste material is only self-adhesive and not suitable for encapsulating complex physical shapes, such as an array of electrodes. Lastly, the usual paste material is somewhat hard when cured for the present purpose.

These difficulties have been reduced in accordance with the invention in its'last-mentioned aspect, by mixing a medical silicone rubber adhesive of paste form with a solvent to form a liquid adhesive, and adding an inert filler. Initially, the adhesive paste was simply mixed with the solvent, but this was found to be too thin and to leave cavities and voids after pouring and curing with consequent trapping of air and water. This is undesirable as a cause of electrical failure, and the filler is included to reduce this problem. As to the constituent proportions: these can be varied dependent on the hardness or softness of cured rubber required. However, it is useful to specify the constituents of the product found. generally satisfactory for the above purposes, namely Dow Corning Medical Adhesive Type A, Dow Corning Medical Fluid 360 and xylene in the respective proportions of nine inches, 5 c.c. and 10'c.c. This resultant adhesive does not shrink, distort, or absorb water.

We claim:

1. An implantable device comprising a plurality of electrodes for stimulating the striate cortex, a matrix of normally closed gates connected in one-to-one relationship with said electrodes, and a plurality of radio receivers tuned to predetermined frequencies and constituting at least two distinctive sets, each gate being connected for switching to. an open state to' energize the respective one of said electrodes by a unique group of at least two of said receivers from respectively different sets thereof.

2. A device according to claim 1 wherein adjacent receivers in at least one set thereof are tuned to respectively different frequencies.

3. A device according to claim 1 wherein each of said gates comprises a semi-conductor switching device connected in the common emitter configuration.

4. A device according to claim 1 in combination with a plurality of radio transmitters respectively associated vbridge circuit.

6. A device according to claim 1 wherein said gates and said receivers are encapsulated'in an anatomically shaped mold of silicone rubber. I

7. In combination,

an implantable device including a plurality of electrodes for stimulating the striate cortex, a matrix of normally closed gates connected in one-to-one relationship with said electrodes, and a plurality of radio receivers-tuned to predetermined frequencies and constituting at least two distinctive sets, each gate being connected for' switching to an open state to energize the respective one of said electrodes by a unique group of at least two of said receivers from respectively different sets thereof, and

an exterior mounted device including a plurality of radio transmitters respectively associated with and tuned to common frequencies with said receivers in a one-to-one relationship, at least one set of said transmitters being energizable at a predetermined constant level, and the transmitters of at least one other set thereof being energizable at adjustable power levels, and means for mounting said exterior device on a body adjacent said implantable device.

8. In combination, an implantable device comprising a plurality of elecan exterior device including a bridge circuit having a tuned circuit in one arm thereof for matching one of said receivers, and means for indicating the degree of balance of said bridge circuit.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3848608 *Jul 23, 1973Nov 19, 1974Gen ElectricSubject integument spatial stimulator
US3850161 *Apr 9, 1973Nov 26, 1974Liss SMethod and apparatus for monitoring and counteracting excess brain electrical energy to prevent epileptic seizures and the like
US3918461 *Jan 31, 1974Nov 11, 1975Cooper Irving SMethod for electrically stimulating the human brain
US4018218 *Mar 12, 1975Apr 19, 1977Carlson James EMethod and apparatus for sleep induction
US4250637 *Jun 13, 1979Feb 17, 1981Scott Instruments CompanyTactile aid to speech reception
US4354064 *Feb 19, 1980Oct 12, 1982Scott Instruments CompanyVibratory aid for presbycusis
US4554928 *Sep 16, 1983Nov 26, 1985Webster Wilton W JrElectrophysiological switching unit
US4603697 *Jan 7, 1985Aug 5, 1986William KamerlingSystem for preventing or treating open angle glaucoma and presbyopia
US4979508 *Apr 11, 1987Dec 25, 1990Beck Stephen CApparatus for generating phosphenes
US6658299Jan 4, 2000Dec 2, 2003William H. DobelleArtificial system for vision and the like
US7054689 *Aug 13, 2001May 30, 2006Advanced Bionics CorporationFully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction
US7142909Sep 6, 2002Nov 28, 2006Second Sight Medical Products, Inc.Biocompatible bonding method and electronics package suitable for implantation
US7149586Mar 28, 2002Dec 12, 2006Second Sight Medical Products, Inc.Variable pitch electrode array
US7211103Jun 17, 2002May 1, 2007Second Sight Medical Products, Inc.Biocompatible bonding method and electronics package suitable for implantation
US7228181Apr 6, 2004Jun 5, 2007Second Sight Medical Products, Inc.Retinal prosthesis with side mounted inductive coil
US7257446Oct 12, 2001Aug 14, 2007Second Sight Medical Products, Inc.Package for an implantable medical device
US7645262Sep 7, 2006Jan 12, 2010Second Sight Medical Products, Inc.Biocompatible bonding method and electronics package suitable for implantation
US7725191Oct 28, 2007May 25, 2010Second Sight Medical Products, Inc.Package for an implantable device
US7794499Jun 8, 2004Sep 14, 2010Theken Disc, L.L.C.Prosthetic intervertebral spinal disc with integral microprocessor
US7813796Jul 24, 2006Oct 12, 2010Second Sight Medical Products, Inc.Biocompatible bonding method and electronics package suitable for implantation
US7835794Oct 30, 2007Nov 16, 2010Second Sight Medical Products, Inc.Electronics package suitable for implantation
US7835798Oct 28, 2007Nov 16, 2010Second Sight Medical Products, Inc.Electrode array for visual stimulation
US7840274Oct 28, 2007Nov 23, 2010Second Sight Medical Products, Inc.Visual color prosthesis
US7846285Oct 26, 2007Dec 7, 2010Second Sight Medical Products, Inc.bonding a hermetically sealed electronics package to an electrode or a flexible circuit with a plated platinum and/or gold; implanting in a living eye tissue to enable restoration of sight to certain non-sighted individuals
US7894911Aug 17, 2005Feb 22, 2011Second Sight Medical Products, Inc.Electrode array for neural stimulation
US7904148Sep 7, 2006Mar 8, 2011Second Sight Medical Products, Inc.Biocompatible bonding method and electronics package suitable for implantation
US7904164Oct 23, 2007Mar 8, 2011Second Sight Medical Products, Inc.Retinal prosthesis with side mounted inductive coil
US7908010Oct 16, 2007Mar 15, 2011Second Sight Medical Products, Inc.Retinal prosthesis with side mounted inductive coil
US7957810Oct 28, 2007Jun 7, 2011Second Sight Medical Products, Inc.Motion compensation for a visual prosthesis
US7981062Oct 9, 2009Jul 19, 2011Imi Intelligent Medical Implants AgMechanically activated objects for treatment of degenerative retinal disease
US8036751Aug 2, 2006Oct 11, 2011Second Sight Medical Producers, Inc.Retinal prosthesis with side mounted inductive coil
US8068913Dec 1, 2005Nov 29, 2011Second Sight Medical Products, Inc.Visual prosthesis for improved circadian rhythms and method of improving the circadian rhythms
US8090448Sep 5, 2008Jan 3, 2012Second Sight Medical Products, Inc.Low profile package for an implantable device
US8121697Aug 23, 2010Feb 21, 2012Second Sight Medical Products, Inc.Biocompatible bonding method and electronics package suitable for implantation
US8131378Oct 28, 2007Mar 6, 2012Second Sight Medical Products, Inc.Inductive repeater coil for an implantable device
US8165680Oct 6, 2010Apr 24, 2012Second Sight Medical Products, Inc.Electronics package suitable form implantation
US8170676Oct 28, 2007May 1, 2012Second Sight Medical Products, Inc.Electrode array
US8180453Nov 9, 2001May 15, 2012Second Sight Medical Products, Inc.Electrode array for neural stimulation
US8200338Jan 13, 2006Jun 12, 2012Second Sight Medical Products, Inc.Flexible circuit electrode array for improved layer adhesion
US8285380Mar 23, 2012Oct 9, 2012Second Sight Medical Products, Inc.Electronics package suitable for implantation
US8355800Oct 28, 2007Jan 15, 2013Second Sight Medical Products, Inc.Coating package for an implantable device
US8374698Aug 18, 2007Feb 12, 2013Second Sight Medical Products, Inc.Package for an implantable neural stimulation device
US8380326Aug 11, 2003Feb 19, 2013Second Sight Medical Products, Inc.Insulated implantable electrical circuit
US8406887Sep 1, 2011Mar 26, 2013Second Sight Medical Products, Inc.Package for an implantable neural stimulation device
US8412339Oct 26, 2007Apr 2, 2013Second Sight Medical Products, Inc.Package for an implantable neural stimulation device
US8538540Sep 7, 2011Sep 17, 2013Second Sight Medical Products, Inc.Retinal prosthesis with side mounted inductive coil
US8551271Oct 25, 2007Oct 8, 2013Second Sight Medical Products, Inc.Method for providing hermetic electrical feedthrough
US8571672Mar 1, 2013Oct 29, 2013Second Sight Medical Products, Inc.Package for a neural stimulation device
US8588917Jun 11, 2012Nov 19, 2013Boston Scientific Neuromodulation CorporationFully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction
US8644937Sep 11, 2012Feb 4, 2014Second Sight Medical Products, Inc.Electronics package suitable for implantation
US20100228319 *Mar 8, 2010Sep 9, 2010National Chiao Tung UniversityElectrical stimulation system and method using multi-group electrode array
EP2477467A1Jan 14, 2011Jul 18, 2012Second Sight Medical ProductsFlexible Circuit Electrode Array and Method of Manufacturing the Same
WO1985001214A1 *Sep 14, 1984Mar 28, 1985Wilton W Webster JrElectrophysiological switching unit
WO2004011080A1Jul 28, 2003Feb 5, 2004Second Sight LlcField focusing and mapping in an electrode array
Classifications
U.S. Classification607/54, 607/60, 324/692, 607/66, 607/61, 324/636, 324/652
International ClassificationA61N1/36
Cooperative ClassificationA61N1/36046
European ClassificationA61N1/36V