Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3700280 A
Publication typeGrant
Publication dateOct 24, 1972
Filing dateApr 28, 1971
Priority dateApr 28, 1971
Publication numberUS 3700280 A, US 3700280A, US-A-3700280, US3700280 A, US3700280A
InventorsPapadopoulos Michael N, Ueber Russell C
Original AssigneeShell Oil Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of producing oil from an oil shale formation containing nahcolite and dawsonite
US 3700280 A
Abstract
A new and improved method of recovering hydrocarbons and dawsonite decomposition products from a subterranean oil shale formation containing substantial amounts of nahcolite and dawsonite comprising penetrating said formation with at least one well borehole and forming a cavern therein. A hot fluid is circulated in the upper region of the cavern to effect formation of carbon dioxide by decomposition of the nahcolite and dawsonite thereby causing pressure build-up resulting in fracturization and/or rubbling and enlargement of the cavern, thereafter injecting simultaneously or sequentially into the upper region of the cavern a cooling liquid, and into the rubblized zone a kerogen-pyrolyzing fluid to recover hydrocarbons and final by recovering dawsonite decomposition products by suitable means such as solution mining.
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

lC -Zh-YZ XR 337009280 EJnited States Patent Papadopoulos et al.

1 Oct. 24, 1972 [72] Inventors: Michael N. Papadopoulos, Lafayette, Calif; Russell C. Ueber, Houston,

Tex.

[73] Assignee: Shell Oil Company, New York, N.Y.

[22] Filed: April 28, 1971 [21] Appl. No.: 138,379

Related US. Application Data [63] Continuation-impart of Ser. No. 835,323, June 23, 1969, abandoned.

[52] US. Cl. ..299/5, 166/271, 166/272,

166/303, 166/307 [51] Int. Cl. ..E21b 43/24, E2lb 43/28 [58] Field of Search ..l66/266, 269, 270, 271, 272, 166/303, 307; 299/4, 5

[56] References Cited UNITED STATES PATENTS 3,480,082 11/1969 Gilliland ..166/272X 3,501,201 3/1970 Closmann ..166/259 x 3,502,372 3/1970 Prats ..299/5 3,572,838 3/1971 Templeton ..299/4 Primary Examiner-Robert L. Wolfe Attorney-Harold L. De'nkler and George G. Pritzker 57 ABSTRACT A new and improved method of recovering hydrocarbons and dawsonite decomposition products from a subterranean oil shale formation containing substantial amounts of nahcolite and dawsonite comprising penetrating said formation 'with at least one well borehole and forming a cavern therein. A hot fluid is circulated in the upper region of the cavern to effect formation of carbon dioxide by decomposition of the nahcoiite and dawsonite thereby causing pressure build-up resulting in fracturization and/or rubbling and enlargement of the cavern, thereafter injecting simultaneously or sequentially into the upper region of the cavern 'a cooling liquid, and into the rubblized zone a kerogen-pyrolyzing fluid to recover hydrocar-' bons and final by recovering dawsonite decomposition products by suitable means such as solution mining.

5 Claims, No Drawings METHOD OF PRODUCING OIL FROM AN OIL SHALE FOTION CONTAINING NAHCOLITE AND DAWSONITE CROSS-REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of copending application, Ser. No. 835,323, filed June 23, 1969 and now abandoned.

BACKGROUND OF THE INVENTION The use of various techniques both nuclear and nonnuclear to fracture, rubblize or break-up or fragment underground oil shale formations so as to form a fractured formation or a chimney or cavern filled with rubble or fragmented oil shale to facilitate shale oil recovery from such fractured, fragmented oil shale areas by in-situ pyrolysis is well known in the art. Although some oil shale formations are known to contain nahcolite and dawsonite, their recovery in conjunction with insitu pyrolysis of shale oil recovery has not been thought feasible in the past because of the thermal decomposition of the nahcolite and dawsonite and in the case of the latter the formation of insoluble oxides and/or silica complexes of aluminum. Therefore, attempts to recover dawsonite from subterranean oil shale formations containing rich zones of nahcolite and dawsonite has not been attempted except with respect to shallow deposits from which the minerals are mined and processed at surface locations.

A number of proposals have been made in the art to recover dawsonite from oil shale above ground by subjecting an oil shale previously retorted above ground to a leaching process using an aqueous solution of sodium carbonate and sodium hydroxide and subsequently precipitating the dawsonite with carbon dioxide in order to recover dawsonite. In US Pat. No. 3,502,372 in-situ recovery of oil and dawsonite from subterranean rubblized oil shale formation is described using a combination of a pyrolysis and solution mining technique involving forming a fracture-permeated zone within a subterranean oil shale formation, prior to such treatment.

The above-ground retorting techniques for recovering oil and dawsonite are outside the scope of the present invention, and are undesirable and unsuitable for carrying out the process of the present invention since the process results in the formation of large amounts of insoluble materials which are undesirable and difficult to handle making these operations costly and unattractive. The process described in U.S. Pat. No. 3,502,372 is more attractive and less costly than an above-ground retorting technique but tends to cause a formation of some insoluble products and a failure to recover a significant proportion of the dawsonite.

OBJECTS or THE INVENTION It is an object of this invention to provide an improved method for recovering hydrocarbons and dawsonite decomposition products from underground oil-shale formations containing nahcolite-dawsonite deposits.

Still another object of this invention is to decompose the nahcolite and dawsonite of an underground oilshale formation rich in these minerals to carbon dioxide to aid in the fracturing and rubbling of the formation; insitu recovering hydrocarbons therefrom by means of a kerogen-pyrolyzing fluid and finally recovering the insoluble complexes of aluminum from the decomposed dawsonite.

Still another object of this invention is to circulate a hot fluid preferably along the roof of the cavern to effect formation of carbon dioxide by decomposing the nahcolite and dawsonite to cause enlargement of the cavern and fracturization and/or rubbling of the oilshale therein, cooling the roof or upper portion of the cavern to terminate this process; injecting a kerogenpyrolyzing fluid into the rubbled oil shale to effect recovery of hydrocarbons therefrom and finally recovering the dawsonite decomposition products containing water insoluble aluminum complexes.

Still another object of this invention is that the cavern in the oil shale formation containing the nahcolite-dawsonite zones is formed by leaching a portion of the nahcolite and thereafter forming carbon dioxide by decomposing the remaining nahcolite and dawsonite by means of a hot fluid such as steam.

Still another object of this invention is that the kerogen-pyrolyzing fluid to effect hydrocarbon recovery from the oil shale and the cooling fluid used to prevent vertical migration of the cavern roof can be circulated through the cavern sequentially or simultaneously.

SUMMARY OF THE INVENTION These and other objects are preferably accomplished by forming a cavern preferably one which is generally horizontally controlled in a subterranean oil shalebearing formation that is impermeable and contains a significant proportion of nahcolite and dawsonite below its upper boundary region and providing fluid communication between the earth surface and the cavern. Hot fluid is injected and circulated through the cavern in its upper region and should preferably be in contact with the roof thereof at a temperature sufficient to cause decomposition of the nahcolite and dawsonite and form carbon dioxide and water thereby causing a high pressure build-up within portions of the cavern and cause fracturing and rubbling of the roof of the cavern. As the volume of the hot fluid within the cavern increases, the paths of fluid flow within the cavern are preferably adjusted to keep the hot fluid in contact with the upward migrating roof of the cavern. The fluid circulation is continued for a time sufficient to enlarge the cavern by a significant amount. The cavern roof is cooled prior to its migration above a selected depth, such as an upper boundary region of the normally impermeable hydrocarbon-bearing formation, by displacing a cooling fluid into contact therewith. Relatively cool fluid is maintained in contact with the roof of the enlarged cavern while circulating a kerogen-pyrolyzing fluid through the hydrocarbonbearing material within the cavern to recover hydrocarbons therefrom and finally solution mining to recover the dawsonite decomposition products.

The process of this invention is particularly applicable to various subsurface oil shale formations, such as in the Green River formation in the Colorado area of the United States, containing rich deposits of nahcolite and dawsonite. The nahcolite and dawsonite are apt to occur within an oil shale formation in the form of beds, lenses, nodules, loads, veins, or the like, having sizes ranging from microscopic particles to layers that are many feet in thickness and many miles in extent. Dawsonite is particularly apt to occur in the form of microscopic particles in amounts of .up to about 10 or 12 percent by weight of the oil shale while the nacholite can vary in amounts of -40percent.

The present process provides a means for enlarging a permeable zone within a normally impermeable oil shale by circulating a hot fluid such as hot water, steam, mixtures thereof or non-aqueous fluids to effect decomposition of the nahcolite and dawsonite present therein to carbon dioxide at a temperature between about 300 F and about 1,500 F, preferably between 350 F and 750 F. The invention also provides a means for terminating the enlargement of the permeable zone at a selected depth and avoiding the danger of extending fractures to surface or subsurface locations that would create a danger or disadvantage by means of cooling fluids. It further provides a procedure that generates significant amounts of carbon dioxide as a circulating fluid which also has a significant stripping action on the hydrocarbon materials released from the heated oil shale by a kerogen pyrolyzing fluid which may be an aqueous or non-aqueous pyrolyzing fluid or by use of hydrocarbon extracting materials such as phenols etc. Oil shale begins to release hydrocarbons at significant rates at temperatures from about 400 F and preferably between 550 and 750 F. In the presence of carbon dioxide, the hydrocarbons released from the oil shale by a pyrolyzing fluid such as steam tend to be entrained and transported in the form of vapors. This provides both an economy in the recovery of hydrocarbon products and their upgrading. The utilization of the carbon dioxide and water that are generated in-situ can be used as a part of the hot fluid that is circulated along the cavern roof to cause vertical expansion of the cavern within a subterranean oil shale and results in a significant increase in the amount of shale oil recovered.

The recovery of dawsonite decomposition products can be finally recovered by solution mining using an aqueous fluid preferably containing a chelating agent.

The chelating agents useful as additives in the aqueous alkaline fluid of this invention can include any organic chelating agent capable of chelating with the aluminum or other prevalent metallic compounds present in the oil shale and forming soluble compounds in the aqueous solution and include nitrogen-containing carboxylic acids and amine or metallic salts thereof such as amino-, imino-, nitrilo-, carboxylic acids and salts thereof such as described in US. Pats. Nos. 2,631,978; 2,959,547; 3,256,196 and 3,409,551 and include amino carboxylic acids, e.g., ethylene diamine tetraacetic acid and salts thereof methyl iminodiacetric acid, nitroacetic acid, phenyl iminodiacetic acid, 1, 2- diamino cyclohexane tetraacetic acid of which preferred are the amine and alkali metal (sodium) salts of ethylene diamine tetraacetic acid, e.g., di-, tn'- and tetrasodium ethylene diamine eteraacetate (Na Na or Na EDTA), 1, 2-d.iamino cyclohexane tetraacetic acid and mixtures thereof.

The presence of the chelating agent in the aqueous alkaline solutions aids in the recovery of dawsonite decomposition products which are substantially insoluble aluminum compounds, such as analcite.

SPECIFIC EMBODIMENT OF THE INVENTION The procedural steps in carrying out the process of the present invention are essentially as follows:

1. establishing at least one well borehole into a nahcolite-dawsonite rich oil-shale formation;

2. forming a cavern therein by leaching a portion of the nahcolite with an aqueous fluid such as water which may be cool or hot, preferably the latter;

3. circulating a hot fluid such as hot water and/or steam in the upper region and preferably along the cavern roof to effect decomposition of the nahcolite and dawsonite to carbon dioxide and water insoluble products of dawsonite such as insoluble oxides and silicates complexes of aluminum such as analcite to effect enlargement of the cavern by upward migration of the cavern roof as well as fracturization and/or rubbling;

4. circulating sequentially or simultaneously a cooling fluid such as hydrogen along the cavern roof and a kerogen pyrolyzing fluid such as steam and/or solvents such as benzene phenol, etc. through the rubbled oil shale to effect hydrocarbon recovery; and

5. solution mining to recovery the aluminum complexes from dawsonite.

EXAMPLE Into an oil-shale formation rich in nahcolite and dawsonite a well was completed at below about 2000 feet and a portion of the nahcolite bed was water leached to form a cavern. Steam was injected along the cavern roof to decomposition the nahcolite and dawsonite to form carbon dioxide thereby building up pressure and cause upward migration of the cavern roof and oil shale rubbling. The dawsonite is essentially converted to water insoluble complexes of aluminum such as analcite. A cooling fluid hydrogen is thereafter circulated along the cavern roof to prevent further upward roof migration while steam is injected into the oil shale rubble to effect hydrocarbon recovery thereafter.

After the hydrocarbons such as oil have been recovered a basic solution containing a chelating agent such as an alkali metal salt of ethylene diamine tetraacetic acid, e.g., Na EDTA (the sodium salt of ethylenediaminetetraacetic acid) or Na salt of l, 2- diamino cyclohexane tetraacetic acid is injected into the treated oil recovery zone of the shale formation preferably at a temperature of from about F to about 500 F to effect recovery of analcite.

The foregoing description of the invention is merely intended to be explanatory thereof. Various changes in the details of the described method may be made within the scope of the appended claims without departing from the spirit of the invention.

I claim as my invention 1. A method of producing hydrocarbons and dawsonite decomposition products from a subterranean oil shale formation containing rich deposits of nahcolite and dawsonite comprising the steps of:

a. penetrating at least one well borehole into an underground nahcolite-dawsonite oil shale formation;

b. injecting a nahcolite leaching solution to create a cavern;

c. circulating a hot fluid along the cavern roof to release carbon dioxide from the nahcolite and dawsonite and thereby increasing the volume of the cavern by effecting rubbling;

d. injecting a cool fluid along the enlarged cavern roof while injecting a kerogen-pyrolyzing fluid into the oil shale rubble and recovery hydrocarbons therefore; and

e recovering water insoluble dawsonite decomposition products.

2. The method of claim 1 wherein the leaching solution in step (b) is hot water and the hot fluid in step (c) is steam.

3. The method of claim 1 wherein the decomposed dawsonite is recovered by solution mining.

4. The method of claim 3 wherein the decomposed dawsonite is essentially analcite.

S. A method of producing hydrocarbons and analcite from an underground oil shale formation rich in nahcolite and dawsonite comprising the steps of:

a. penetrating at least one well borehole into an underground oil shale formation rich in nahcolite and dawsonite;

b. leaching a portion of the nahcolite with hot water to create a cavern;

c. circulating steam along the roof of cavern to release carbon dioxide from the nahcolite and dawsonite the latter being converted to analcite to enlarge the cavern vertically and rubble the oil shale;

d. injecting a cooling fluid along the roof of the cavern;

e. injecting steam into the rubbled oil shale and recovering hydrocarbons therefrom; and

f. recovering analcite by solution mining.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3480082 *Sep 25, 1967Nov 25, 1969Continental Oil CoIn situ retorting of oil shale using co2 as heat carrier
US3501201 *Oct 30, 1968Mar 17, 1970Shell Oil CoMethod of producing shale oil from a subterranean oil shale formation
US3502372 *Oct 23, 1968Mar 24, 1970Shell Oil CoProcess of recovering oil and dawsonite from oil shale
US3572838 *Jul 7, 1969Mar 30, 1971Shell Oil CoRecovery of aluminum compounds and oil from oil shale formations
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3779602 *Aug 7, 1972Dec 18, 1973Shell Oil CoProcess for solution mining nahcolite
US3792902 *Aug 14, 1972Feb 19, 1974Shell Oil CoMethod of preventing plugging of solution mining wells
US3804169 *Feb 7, 1973Apr 16, 1974Shell Oil CoSpreading-fluid recovery of subterranean oil
US3880238 *Jul 18, 1974Apr 29, 1975Shell Oil CoSolvent/non-solvent pyrolysis of subterranean oil shale
US3915234 *Aug 28, 1974Oct 28, 1975Cities Service Res & Dev CoIn situ production of hydrocarbon values from oil shale using H{HD 2{B S and CO{HD 2{B
US3987851 *Jun 2, 1975Oct 26, 1976Shell Oil CompanySerially burning and pyrolyzing to produce shale oil from a subterranean oil shale
US4243638 *Jun 15, 1978Jan 6, 1981Westinghouse Electric Corp.Iron EDTA chelate catalyzed oxidation of uranium
US4557910 *Mar 29, 1982Dec 10, 1985Intermountain Research & Development CorporationProduction of soda ash from nahcolite
US4743439 *Jan 16, 1984May 10, 1988General Chemical CorporationWet calcination of alkali metal bicarbonates in hydrophobic media
US4815790 *May 13, 1988Mar 28, 1989Natec, Ltd.Nahcolite solution mining process
US6609761Jan 10, 2000Aug 26, 2003American Soda, LlpSodium carbonate and sodium bicarbonate production from nahcolitic oil shale
US7040397Apr 24, 2002May 9, 2006Shell Oil CompanyThermal processing of an oil shale formation to increase permeability of the formation
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7644993Mar 22, 2007Jan 12, 2010Exxonmobil Upstream Research CompanyIn situ co-development of oil shale with mineral recovery
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyHigh strength alloys
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US7866388Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8082995Dec 27, 2011Exxonmobil Upstream Research CompanyOptimization of untreated oil shale geometry to control subsidence
US8083813Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8087460Jan 3, 2012Exxonmobil Upstream Research CompanyGranular electrical connections for in situ formation heating
US8104537Jan 31, 2012Exxonmobil Upstream Research CompanyMethod of developing subsurface freeze zone
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8122955Apr 18, 2008Feb 28, 2012Exxonmobil Upstream Research CompanyDownhole burners for in situ conversion of organic-rich rock formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146664May 21, 2008Apr 3, 2012Exxonmobil Upstream Research CompanyUtilization of low BTU gas generated during in situ heating of organic-rich rock
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151877Apr 18, 2008Apr 10, 2012Exxonmobil Upstream Research CompanyDownhole burner wells for in situ conversion of organic-rich rock formations
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151884Oct 10, 2007Apr 10, 2012Exxonmobil Upstream Research CompanyCombined development of oil shale by in situ heating with a deeper hydrocarbon resource
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8200072Oct 24, 2003Jun 12, 2012Shell Oil CompanyTemperature limited heaters for heating subsurface formations or wellbores
US8220539Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8230929Jul 31, 2012Exxonmobil Upstream Research CompanyMethods of producing hydrocarbons for substantially constant composition gas generation
US8233782Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8540020Apr 21, 2010Sep 24, 2013Exxonmobil Upstream Research CompanyConverting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8596355Dec 10, 2010Dec 3, 2013Exxonmobil Upstream Research CompanyOptimized well spacing for in situ shale oil development
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8616279Jan 7, 2010Dec 31, 2013Exxonmobil Upstream Research CompanyWater treatment following shale oil production by in situ heating
US8616280Jun 17, 2011Dec 31, 2013Exxonmobil Upstream Research CompanyWellbore mechanical integrity for in situ pyrolysis
US8622127Jun 17, 2011Jan 7, 2014Exxonmobil Upstream Research CompanyOlefin reduction for in situ pyrolysis oil generation
US8622133Mar 7, 2008Jan 7, 2014Exxonmobil Upstream Research CompanyResistive heater for in situ formation heating
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8641150Dec 11, 2009Feb 4, 2014Exxonmobil Upstream Research CompanyIn situ co-development of oil shale with mineral recovery
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8701788Dec 22, 2011Apr 22, 2014Chevron U.S.A. Inc.Preconditioning a subsurface shale formation by removing extractible organics
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8770284Apr 19, 2013Jul 8, 2014Exxonmobil Upstream Research CompanySystems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8839860Dec 22, 2011Sep 23, 2014Chevron U.S.A. Inc.In-situ Kerogen conversion and product isolation
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8851177Dec 22, 2011Oct 7, 2014Chevron U.S.A. Inc.In-situ kerogen conversion and oxidant regeneration
US8857506May 24, 2013Oct 14, 2014Shell Oil CompanyAlternate energy source usage methods for in situ heat treatment processes
US8863839Nov 15, 2010Oct 21, 2014Exxonmobil Upstream Research CompanyEnhanced convection for in situ pyrolysis of organic-rich rock formations
US8875789Aug 8, 2011Nov 4, 2014Exxonmobil Upstream Research CompanyProcess for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US8936089Dec 22, 2011Jan 20, 2015Chevron U.S.A. Inc.In-situ kerogen conversion and recovery
US8992771May 25, 2012Mar 31, 2015Chevron U.S.A. Inc.Isolating lubricating oils from subsurface shale formations
US8997869Dec 22, 2011Apr 7, 2015Chevron U.S.A. Inc.In-situ kerogen conversion and product upgrading
US9016370Apr 6, 2012Apr 28, 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9022109Jan 21, 2014May 5, 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9022118Oct 9, 2009May 5, 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US9033033Dec 22, 2011May 19, 2015Chevron U.S.A. Inc.Electrokinetic enhanced hydrocarbon recovery from oil shale
US9033042Apr 8, 2011May 19, 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9051829Oct 9, 2009Jun 9, 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9080441Oct 26, 2012Jul 14, 2015Exxonmobil Upstream Research CompanyMultiple electrical connections to optimize heating for in situ pyrolysis
US9127523Apr 8, 2011Sep 8, 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US9127538Apr 8, 2011Sep 8, 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9129728Oct 9, 2009Sep 8, 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US9133398Dec 22, 2011Sep 15, 2015Chevron U.S.A. Inc.In-situ kerogen conversion and recycling
US9181467Dec 22, 2011Nov 10, 2015Uchicago Argonne, LlcPreparation and use of nano-catalysts for in-situ reaction with kerogen
US9181780Apr 18, 2008Nov 10, 2015Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US9309755Oct 4, 2012Apr 12, 2016Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9347302Nov 12, 2013May 24, 2016Exxonmobil Upstream Research CompanyResistive heater for in situ formation heating
US9394772Sep 17, 2014Jul 19, 2016Exxonmobil Upstream Research CompanySystems and methods for in situ resistive heating of organic matter in a subterranean formation
US9399905May 4, 2015Jul 26, 2016Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US20020029885 *Apr 24, 2001Mar 14, 2002De Rouffignac Eric PierreIn situ thermal processing of a coal formation using a movable heating element
US20020038069 *Apr 24, 2001Mar 28, 2002Wellington Scott LeeIn situ thermal processing of a coal formation to produce a mixture of olefins, oxygenated hydrocarbons, and aromatic hydrocarbons
US20020038711 *Apr 24, 2001Apr 4, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US20020040780 *Apr 24, 2001Apr 11, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a selected mixture
US20020043365 *Apr 24, 2001Apr 18, 2002Berchenko Ilya EmilIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US20020056551 *Apr 24, 2001May 16, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US20020057905 *Apr 24, 2001May 16, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US20020077515 *Apr 24, 2001Jun 20, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US20020084074 *Sep 24, 2001Jul 4, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US20030102124 *Apr 24, 2002Jun 5, 2003Vinegar Harold J.In situ thermal processing of a blending agent from a relatively permeable formation
US20030102125 *Apr 24, 2002Jun 5, 2003Wellington Scott LeeIn situ thermal processing of a relatively permeable formation in a reducing environment
US20030102130 *Apr 24, 2002Jun 5, 2003Vinegar Harold J.In situ thermal recovery from a relatively permeable formation with quality control
US20030131994 *Apr 24, 2002Jul 17, 2003Vinegar Harold J.In situ thermal processing and solution mining of an oil shale formation
US20030155111 *Oct 24, 2002Aug 21, 2003Shell Oil CoIn situ thermal processing of a tar sands formation
US20030205378 *Oct 24, 2002Nov 6, 2003Wellington Scott LeeIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US20030209348 *Apr 24, 2002Nov 13, 2003Ward John MichaelIn situ thermal processing and remediation of an oil shale formation
US20040140096 *Oct 24, 2003Jul 22, 2004Sandberg Chester LedlieInsulated conductor temperature limited heaters
US20040177966 *Oct 24, 2003Sep 16, 2004Vinegar Harold J.Conductor-in-conduit temperature limited heaters
US20050051327 *Apr 23, 2004Mar 10, 2005Vinegar Harold J.Thermal processes for subsurface formations
US20070137857 *Apr 21, 2006Jun 21, 2007Vinegar Harold JLow temperature monitoring system for subsurface barriers
US20100147521 *Oct 9, 2009Jun 17, 2010Xueying XiePerforated electrical conductors for treating subsurface formations
CN102808603A *Sep 10, 2012Dec 5, 2012吉林大学Cold and hot alternating high-speed airflow oil shale crushing device and method for crushing oil shale
WO2003035801A2 *Oct 24, 2002May 1, 2003Shell Oil CompanyProducing hydrocarbons and non-hydrocarbon containing materials from a hydrocarbon containing formation
WO2003035801A3 *Oct 24, 2002Feb 17, 2005Shell Oil CoProducing hydrocarbons and non-hydrocarbon containing materials from a hydrocarbon containing formation
WO2012171857A1Jun 11, 2012Dec 20, 2012Akzo Nobel Chemicals International B.V.Treatment of shale formations using a chelating agent
Classifications
U.S. Classification299/5, 423/206.2, 166/272.2, 166/307, 166/271
International ClassificationE21B43/28, E21B43/00, E21B43/16, E21B43/24
Cooperative ClassificationE21B43/281, E21B43/2405
European ClassificationE21B43/24K, E21B43/28B