Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3700883 A
Publication typeGrant
Publication dateOct 24, 1972
Filing dateSep 23, 1970
Priority dateSep 23, 1970
Publication numberUS 3700883 A, US 3700883A, US-A-3700883, US3700883 A, US3700883A
InventorsRobert J Donohue, Bernard W Joseph
Original AssigneeGen Motors Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Faceted reflector for lighting unit
US 3700883 A
Abstract
A reflector for a lighting unit includes a plurality of discrete reflecting facets which are individually oriented with respect to a light source such that the superposition of the reflected images synthesizes a predetermined lighting pattern. The prescription for making the reflector, by the techniques disclosed herein, involves selecting the number, size, curvature, and location of each facet to produce undistorted reflected images of the light source, the cumulative effect of which produces the desired illumination distribution within prescribed limits. Glare from the lighting unit is substantially eliminated by positioning contiguous facets such that uncontrolled reflecting surfaces are shaded from the light source.
Images(5)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Donohue et a1.

[4 1 Oct. 24, 1972 [54] FACETED REFLECTOR FOR LIGHTING UNIT of Mich.

[731 Assignee: General Motors Corporation,

Detroit, Mich.

[22] Filed: Sept. 23, 1970 [21] Appl. No.: 74,563

[52] US. Cl ...240/4l.36, 240/103 R, 350/299 [51] Int. Cl ..F21v 7/09 [58] Field of Search ..240/8.2, 41.36, 103 R;

[56] References Cited UNITED STATES PATENTS 2,255,819 9/1941 Salani ..240/41.36 2,611,857 9/1952 Coulter ..240/41.36 X 1,535,985 4/1925 Clark ..240/41.36 UX 1,726,379 8/1929 Benford ..240/41.36

Primary Examiner-Samuel S. Matthews Assistant Examiner-Fred L. Braun Attorney-J. L. Carpenter, E. J. Biskup and Peter D. Sachtjen [5 7] ABSTRACT A reflector for a lighting unit includes a plurality of discrete reflecting facets which are individually oriented with respect to a light source such that the superposition of the reflected images synthesizes a predetermined lighting pattern. The prescription for making the reflector, by the techniques disclosed herein, involves selecting the number, size, curvature, and location of each facet to produce undistorted reflected images of the light source, the cumulative effect of which produces the desired illumination distribution within prescribed limits. Glare from the lighting unit is substantially eliminated by positioning contiguous facets such that uncontrolled reflecting surfaces are shaded from the light source.

4 Claims, 20 Drawing Figures Smith ..240/8.2 X

PATENTEH B 24 I972 3.700.883

sum 1 or 5 4LD 3LD ZLD 1D 2RD 3RD 4RD I N VEN TORS ATTORNEY PATENTEU I 24 9 3 700 883 sum 3 UF 5 1 N VENTORS ATTORNEY particular, to a reflector for a lighting unit such as a motor vehicle lamp assembly.

Conventional motor vehicle lamps of the types used as headlamps, cornering lamps, taillamps, and backup lamps normally include a reflector and a lens defining a sealed lamp envelope in which a coiled filament light source is positioned. The reflector is provided with a suitably curved surface for collecting illumination from the light source and redirecting the same outwardly onto the lens. A light focusing optical system in the form of dioptic and catadioptric rings, flutes, and prisms is normally provided on the lens for horizontally and vertically distributing the illumination outwardly from the lamp. 5

One of the primary factors afiecting the quality of the projected beam in these lighting units is the ability of the reflector to intercept and direct toward the lens the light which is emitted from the source. This capability of intercepting source illumination, commonly designated the reflector light collection efficiency, is defined as the fraction of total emitted light that is intercepted by the reflector. The collection efiiciency for a given reflector is dependent on many structural characteristics of the lamp such as reflector curvature, frontal area, and depth as well as the location of the filament with respect to the reflector. As a general statement, the efficiency is proportional to the total solid angle subtended by the reflector surface as referenced to the light source. Moreover, for a given reflector volume the efficiency is dependent on the reflector shape or curvature which also influences the quality of the projected beam. Thus, spherical surfaces, while having an excellent light collecting efficiency, provide little control over the reflected beam. Parabolic surfaces provide slightly greater beam control but have a lower light collecting efficiency than the'spherical surfaces. Paraboloidal surfaces, on the other hand, yield high collecting efficiencies and directional beam control and, for this reason, have found the greatest acceptance as reflecting surfaces for projected beam lamps.

The optical performance for a paraboloidal reflector is, to a large extent, determined by the position of the filament and the overall size and focal'length of the reflector. The efficiency as calculatedby conventional means, however, is merely an approximation inasmuch as the filament normally has a finite length and cannot be accurately located at the reflector focal point. For this reason, the efficiency of a typical commercial lighting unit may be considerably below the calculated value. Additionally, the optical performance of a paraboloidal surface for a given focal length and reflector depth is greatly influenced by frontal configuration. By way of example, a right circular section will produce the maximum collection efficiency with alterations of the configuration, particularly from intentionally noncircular frontal profiles, markedly reducing the reflector efficiency. While the resultant loss can be partially recovered by increasing the operating temperature and hence the illumination from the filament, these required compensating manipulations present a definite hindrance to the development of noncircular high performance lamps.

The overall quality of the projected beam from the lamp assembly is further affected by the optical characteristics of the lens used to impart directional control to the reflected beam. More specifically, the lens is typically comprised of numerous optical bodies which refract the incident light to produce an undesirable scattering or glare. Generally, this type of glare is associated with the juncture between the adjacent optical bodies in the lamp lens. The two edges produced during the lens manufacture have radii which uncontrollably scatter illumination throughout the lens thereby producing glare and, additionally, reducing the output efficiency of the lamp assembly.

Accordingly, an object of the present invention is to i provide a reflector having a discretely faceted surface which produces a projected beam of predetermined intensity distribution.

Another object of the present invention is to provide a reflector having a flexible frontal configuration without an accompanying impairment of optical performance.

Another object of the present invention is to provide a lamp wherein the optics are placed entirely on the lamp reflector so as to project a beam outwardly of the lamp in a desired illumination pattern.

Yet another object of the present invention is to provide a method of making a reflector having a predetermined frontal configuration and depth which produces a desired projected light pattern.

A further object of the present invention is to provide a lamp assembly wherein glare is significantly reduced by providing a plurality of selectively oriented facets on the reflectors, the junctures of which are shadowed from the light source to reduce uncontrolled reflecting illumination.

Still another object of the present invention is to produce an improved lighting unit having better pattern control and sharper cut-offs by incorporating beam control entirely on a first optical surface.

Generally, the above objects are accomplished by providing a reflector of predetermined frontal area and depth with a plurality of discrete reflecting facets. Each facet is individually oriented with respect to the light source so as to project an undistorted reflection of the latter in a' prescribed direction. The superposition of the individual reflections is then utilized to produce a given illumination pattern. By combining a sufficient number of reflector facets of the proper size, shape, and orientation, a composite intensity contour can be synthesized within prescribed limits. Such a reflector can incorporate a number of geometrical surfaces. For

example, paraboloidal sections, circular cylinders, or

parabolic cylinder, or a combination thereof may be individually or collectively used to best synthesize the desired pattern. After selection of the facet curvature necessary to fulfill the desired optical prescription, the

- facets are arrayed with respect to adjacent facets and FIG. 1 is a front perspective view of a motor vehicle having a lighting system including a cornering lamp made in accordance with the present invention;

FIG. 2 is an enlarged view taken along line. 2-2 of FIG. 1;

FIG. 3 is a view taken along line 33 of FIG. 2;

FIG. 4 is a two dimensional intensity contour of the illumination pattern for the cornering lamp;

FIG. 5 is a three dimensional intensity contour of the illumination pattern shown in FIG. 4;

FIG. 6 is a view taken along line 6--6 of FIG. 1;

FIG. 7 is a schematic view illustrating horizontal image spread-of a facet reflecting surface;

FIG. 8'is a schematic view illustrating vertical image spread of a facet reflecting surface;

FIG. 9 is a schematic view illustrating the circular approximation of a parabolic surface;

FIG. 10 is a schematic view illustrating selective angular positioning of the facet reflecting surfaces;

FIG. 1 1 is a horizontal schematic view illustrating initial angular positioning of the facets;

FIG. 12 is a view similar to FIG. 11' illustrating shadowing of uncontrolled reflecting surfaces; f I

FIG. 13 is a schematic view illustrating one method of facet rotation;

FIG. 14 isa view similar to FIG. 13 illustrating an alternate method of facet rotation;

FIG. 15 is a view illustrating the glare from a faceted reflector;

FIG. 16 is a view illustrating the glare from a lens;

FIG. 17 is a view illustrating the effect of the facet angle on the focal length position;

FIG. 18 is a top view of a facet die segment;

FIG. 19 is the side view of the die segment of FIG. 18; and

FIG. 20 is the front view of the die segment of FIG. 18.

Referring to FIG. 1, there is shown a motor vehicle 10 having a lighting system including headlamps 12, combination turn signal and parking lamps 14, and cornering lamps 16. All of the lamps are symmetrically disposed on opposite sides of a longitudinal vehicle axis 18. Each of the aforementioned lamps -is designed to project the illumination outwardly of the vehicle into a predetermined illumination pattern as prescribed by applicable standards. Thus, the headlamps 12 are used as a major lighting device to provide general illumination ahead of the vehicle during driving conditions of reduced visibility. The turn signal lamps 14 flash in unison with corresponding rear lamps to indicate the intention of the vehiclev to change direction toward the side on which the signal lamp is flashing. The parking lamps 14 on both sides of the vehicle are simultaneously steadily energized to indicate the overall width and length of the motor vehicle. The cornering lamps 16 are selectively steadily burning lamps used in conjunction with the turn signal system to supplement the head lamps 12 by providing additional illumination in the direction of a contemplated turn.

Referring to FIGS. 2, 3, and 6, the cornering lamps 16 are mounted in an opening 20 formed in the side of the vehicleat the lower forward portion of the vehicle front fender 22. Each lamp 16 generally comprises a reflector 24, a light source 26 carried by the reflector 24, and a lens 28, the outer periphery of which is 24 includes a peripheral groove 30 which retains a resilient gasket 32. The lens 28 includes a rearwardly projecting marginal lip 34 that engages the gasket 32 to form a sealed envelope 36 defined by the interior surfaces of the lens 28 and the reflector 24.

The lens 28 includes a marginal flange 38 on which a second resilient gasket 40 is positioned. The cornering lamp 16 is positioned at the opening 20 with an inwardly turned edge of the latter resiliently engaging the gasket 40. The cornering lamp 16 is then fixedly secured in this position by fasteners 42 which clamp outwardly projecting mounting ears 44 at the sides of the reflector 24 to spaced brackets 46 fixed to the interior surface of the front fender 22.

The lens 28 is formed of a light transmissive material such as plastic and has a clear front window 48. When used with the subject faceted reflector, the lens 28 may be optically passive and require none of corrective optical means conventionally used on lamp lenses. However, the window 48 may include optical flutes or prisms for additionally distributing the illumination controlled by the reflector 24, if the same are deemed desirable.

The light source 26 is horizontally and vertically centered with respect to the reflector 24 and generally includes a socket 50 and a lamp 52 having a helically coiled filament 54. The socket 50 includes a pair of leads 56 which are electrically connected to a power supply (not shown) such as the vehicle battery for energizing the filament 54. While the light source 26 may take various forms depending on the type of lighting unit in which it is. incorporated, appropriate means should be provided for accurately locating the filament 54, in assembly, with respect to the hereinafter described faceted surface of the reflector 24.

The reflector 24 includes a dish-shaped base section 58 having a front faceted surface, generally indicated by reference numeral 60, which is suitably coated or otherwise prepared to intercept and reflect light emitted from the filament 54. More specifically, the faceted surface 60 may be aluminized, silvered, or metallically coated as by chrome deposition to provide the aforementioned reflecting capabilities.

The faceted surface 60 is defined by a plurality of individually oriented discrete facets which will be, for purposes of description, hereinafter designated by subscripts depending on their position with respect to the filament 54. Thus, as shown in FIG. 3, the faceted surface 60 is horizontally divided into three rows, a middle row bearing the subscript M, an upper row bearing the subscript U, and a lower row bearing subscript D. The

faceted surface 60 is vertically divided into seven columns, the middle column being designated 1 with adjacent rows on the left being successively designated as 2L, 3L, and 4L and adjacent rows on the right being More specifically, all facets are deliberately positioned behind the light source 26 so as to reflect an image of the filament 54. In this manner, the,illumination pattern produced by the complete reflector is the sum or superposition of all the individual images. The particular contribution of the individual facet is determined by its projected pattern which has characteristics dependent on its shape and location with respect to the light source 26. By combining facets in a sufficient number of the proper size, shape, and orientation, the contemplated illumination pattern can be accurately synthesized.

Experience, in this respect, has indicated that the intensity pattern for a cornering lamp should provide a wide illumination pattern in a horizontal plane and a relatively narrow or concentrated pattern in a vertical plane. Accordingly, to most conveniently accomplish this result, the major axis 70 of the lamp 16 is horizontally disposed at a suitable angle to the longitudinal vehicle axis 18 and the minor axis 72 is vertical and mutually perpendicular to the major axis 70 and vehicle axis 18.

The intensity or isocandle contour for the cornering lamp 16 positioned on the right side of the vehicle is shown in FIGS. 4 and 5 wherein a high or peak intensity zone 80 is established slightly below the major axis 70 of the lamp and angularly displaced with respect to the longitudinal vehicle axis 18. The high intensity zone 80 is circumscribed by zones of decreasing intensity, designated successively 82, 84, 86, and 88. For purposes of future reference, the nine hundred candlepower (cp) peak intensity zone 80 positioned at 35 from the longitudinal vehicle axis 18 and below the lamp major axis 70. The lamp 16, as referenced to the vehicle longitudinal axis 18, has a reflector axis 120 angularly displaced 45 outwardly and 2.5 downwardly. The center of the overall intensity pattern is determined by the 0 to 100 cp slice pattern which has a relatively narrow vertical spread V and relatively large horizontal spread H. More particularly, in the preferred embodiment, the horizontal spread H is approximately 50 and subtends the sector from 20 to 70. The vertical spread V is approximately 5 and extends downwardly 5 from the horizontal lamp major axis 70.

The cornering lamp 16, as previously mentioned, includes a plurality of individually oriented facets which accurately synthesize the above-described illumination pattern within prescribed limits. The exact size, curvature, and orientation of the individual facets is determined by a number of design requirements, foremost of which are the resultant light pattern; the peripheral configuration of the reflector; the depth into which the reflector must fit; the filament configuration; the position of the filament with respect to the reflector; and the temperature profile of the filament.

With the wide horizontal and narrow vertical spreads required in cornering lamps, a filament positioned with its longitudinal axis in a horizontal plane in combination with reflector facets which are parabolic or circular cylinders having axes parallel to the horizontal plane has been found to provide the most satisfactory results.

The peripheral configuration and depth of the reflector is norinally determined in advance by styling and other design configurations. As such, the basic size of the lamp reflector will be subjectively influenced by aesthetics, the required intensity profile, and the practical limits of reflector efficiency and focal length. Inasmuch as lamps with a collection efficiency of less than 30 percent provide unacceptably low performance, this figure will specify a reflector height once the width and focal length of the reflector are given. The width is usually prescribed by the styling aesthetics insofar as the same is compatible with the practical performance limits.

Regardless of the many considerations noted above, the hereinafter described method of synthesizing a desired illumination pattern restricts the actual reflector size only to the extent that the required precision of the final pattern necessarily controls the number of facets and their accompanying reflector area. The reflector form also, to a large extent, determines the location of the filament and generally establishes the size of the central facet which constitutes the basic building block in determining the boundaries of the desired illumination pattern. The focal length of this central facet will hereinafter be regarded as the focal length of the reflector.

Other criteria for effecting initial design of the reflector are the filament candlepower required to supply the energy for the illumination pattern and the practicability of placing the filament at the focal point of the reflecting surface. Generally, this last criterion establishes a minimum focal length of about one inch for motor vehicle lamps. Insofar as the filament energy output is concerned, the operating temperature and lifetime requirements of tungsten filaments require a cylindrical helically wound configuration which satisfies the specified candlepower requirements.

Once the focal length is set, the depth is detennined from the buildup of the facets. In this respect, the depth can be approximated by computing the depth for a paraboloid of a given frontal area having the same focal length as the faceted reflector. Alternately, the depth can be specified within the limits and the facets designed to fit within the thus prescribed frontal area and depth. This last method of building up the pattern is the most confining, of course, and may produce the least desirable fit of the desired pattern.

' The exact number of facets chosen for a given reflector depends upon the permissible size of the reflector, the shape of the desired intensity pattern, and the precision to which the pattern must be fitted. The size of the facets, in turn, is determined by the size of the desired intensity pattern. The shape and orientation of the facets are primarily controlled by the relative position of the various intensity zones within the overall iland the reflecting surface 102, as well as the overall length and configuration of the filament 104. The reflecting surface 102 will produce vertical image spread Y, the value of which is determined by the subtended angle (1) of the surface 102 with respect to filament 104, the distance between the reflecting surface 102 and the filament 104, the curvature of the reflecting surface 102, and the diameter of the filament 104. The same relationships generally hold true for the other contemplated reflecting surfaces such as paraboloidal, spherical, cylindrical, or elliptical.

With the above guidelines, the optical prescription for the lamp 16 proceeds by dividing the idealized illumination pattern in constant intensity regions, as shown in FIGS. 4 and 5, and thereafter matching the shape and intensity of the images from the several facets with specific regions of the pattern following .two criteria insofar as the shape of each individual facet pattern is concerned. First, the total spread of the image with an individual facet should not exceed either horizontal spread H or the vertical spread V of the desired resultant pattern. Second, the illumination from each facet must be directed toward an appropriate position in the resultant pattern.

In particular, the prescription for the subject comering lamp pattern is established by initially prescribing the central column of facets 1M, 1U, and 1D. Inasmuch as this central column is virtually unrestrained insofar as width and orientation are concerned and need only satisfy the first-mentioned criteria, their facets are, forconvenience, provided with cylindrical reflecting surfaces having axes parallel to the axis of the filament 54. The central facet 1M represents the basic facet in the synthesis of the reflector and is selected to produce an image as wide and as high as the lowest considered intensity zone. .In the present instance, this zone}. is the 100 cp. slice of the resultant beam and is approximately 50 by 5. The sizing and placement of this facet is most easily fulfilled by using a circular cylinder having its focal length coaxial with the filament 54. As shown in FIG. 1 l, the perpendicular bisector of the center or primary facet 1M is colinear with the actual lamp axis 120. Thisorientation directs the illumination toward the geometrical center of the intensity pattern, 45 horizontal and 2.5 down vertical (FIG. 5).

With the width and height of the basic facet thus determined, the sizes of the upper and lower facets, 1U and ID, are established. For convenience of manufacture, the width of these facets is selected to be the same as the widthof the basic facet 1M. However,the height of these facets will generally be less than the height of the center facet. Accordingly, the facets will produce an image as wide as the 100 cp. pattern but with a considerably narrower vertical band.

Because of the ability of the parabola to project a confined beam the facets 1U and ID are most suitably parabolic cylinders having the filament 54 at their respective focallengths. However, in order to simplify construction, inasmuch as a parabolic cylindrical surface is considerably more difficult to manufacture than the circular cylindrical surface, the present invention uses a circular approximation of these surfaces. By way of example, the radius of an approximating circular surface can be represented in the following manner taken with reference to FIG. 9 wherein a parabolic surface 122 having a focal length P is approximated by a circular surface 124 having radius R and a center C at (Yo, according to the formulas:

The shape of the circle thus generated matches the parabola at the point (Y,Z) 126 which is taken at the vertical midpoint, (Y, Y )/2 of the surface. Of course, the degree of approximation diminishes as the distance from point 126 increases. Therefore, the focal point 132 and center of curvature of the circular cylinders are not necessarily in the plane of the filament 54 which is still located at the focal length P of the original parabolic surface 122.

The remaining vertical height of the reflector in the center column is evenly divided between the upper and lower facets 1U and 1D. The images of these facets are directed'toward the most intense vertical region, 2.5 down, of the pattern with the center of the facet image centered on the axis 120. The center column of facets thus establishes the lowest intensity region of the desired pattern and partially contributes to the remaining regions. Thereafter, buildup of the reflector proceeds outwardly from the vertical edges of the center column facets.

The length and height of each facet in the M or middle horizontal row is governed by the length and height of that intensity slice of the total pattern which the facet image is attempting to match. For example, the constant intensity slice 300 cp., FIG. 4, has a horizontal spread of about 40 and a vertical spread of approximately 4 with a and centers at 40 horizontal. Thus, as shown in FIG. 11, the 2M facets are directed toward I 40 horizontal with sufficient width for a 40 horizontal spread.

For the initial synthesis, the vertical edges of adjacent facets should be continuous in order to most efficiently utilize the predetermined reflector volume to best initially synthesize the desired pattern. The remaining middle facets are directed toward the peak intensity region of the total pattern 35 horizontal (FIG. 11). Representatively, as shown in FIG. 10, these two requirements orient the 2LM facet or surface at an angle 6 with respect to the basic facet IM or line 152 with the facets being commonly joined at vertical edge 154. Insofar as the middle row of facets is concerned, the angle is referred to the plane of the basic facet 1M at the horizontal center line of the lamp. The angle 0, for each facet is determined byv solution of the following equation:

tan (20 (a+ L)/(PL tan 6,)

For each of these facets, theradius of curvature, r,,, is I equal to twice the distance between the line 152 which comprises the cylindrical surface in the horizontal plane and a second line 158 through the center of the filament 54 parallel to and in the same plane as the first line, or r 2P for facet 1M.

. Referring to FIG. 11, the 4RM facet includes a line 160 comprising the cylindrical surface of the facet in the central horizontal plane. A second line 162 passes through the center 164 of the filament 54 and is parallel toand lies in the same plane as line 160. This spacing establishes a D-value or distance D between the lines 160 and 162 which is one-half the radius of curvature, r of the facet 4RM. The D-values" for the remaining facets in the middle row M are established in a similar manner. For the upper rows U and lower rows D, the facets are circular cylinders which approximate parabolic cylinders in the above-described manner. The focal length P of the initially parabolic cylinder is the D-value of the middle facet in the corresponding column. However, as previously mentioned, when the parabolic cylinder is established, the focal point and the center of curvature of the resulting circular cylinders are not necessarily in the horizontal plane.

The upper or lower facets in a given column are, to a large extent, dependent on the size and position of the middle facet. More specifically, in as much as both the middle row of facets and the total lamp height are symmetrical about the horizontal lamp axis, the height of the upper facets, for instance, is the distance between the upper edge of facet 2RM and the upper vertical edge of the reflector. The width and angle 0, with respect to the axis of the filament 54 is the same as for the middle facet to minimize boundary gaps. This process is applicable to all the rows and columns of facets to complete initial synthesization of the desired pattern. The pattern thus prescribed, in many instances, provides an acceptable optical performance for the reflector. However, further precision and refinement of the basic reflector surface can be achieved by selectively reorienting the separate facets.

While many repositioning techniques can be used to improve the optical performance of the reflector, the two methods described below significantly improve the illumination pattern while minimizing the required facet movement. In one method, as shown in FIG. 14, a representative fac-et 170 as referenced at the geometrical center of the reflecting surface 172 is universally rotated about the focal axis 174. Alternately, the facet 170 is rotated about a horizontal axis 176 passing through the center 177 of its reflecting surface 178 to produce a vertical shift of the image and about a vertical axis 179 passing through the center 177 to produce horizontal shift of the image. Inasmuch as the latter method generally requires a lesser repositioning of the individual facets to achieve a given improvement in the overall illumination pattern, this method will be hereinafter described.

The aforementioned rotation of the element 170 about its geometrical center causes the focal length of the surface to retreat from a line through the center of the filament 54 thereby distorting the reflected image of the latter. With each incremental shift, the image projected by the reflecting surface will become increasingly distorted. Thus, at some predetermined point, which we have determined to be about 4 percent of the focal length, an unacceptably distorted image will be produced. Therefore, if the shift of the image is greater than this value, a revised facet angle 0 and a new radius of curvature r for the facet must be established so that the reflected image is once again within prescribed limits of distortion and directed toward the intended position in the illumination pattern.

For example, as shown in FIG. 17, a facet 180 has an original facet angle 0 with respect to the axis 182 of the filament 54 and a D-value, D as established between a line 184 through the center of the filament 54 and a parallel line along the reflecting facet 180. As the surface 180 is rotated about its center 188 through an angle (2, to a rotated position 190, the line 192 parallel to the surface 190 placed at the original D- value is shifted an incremental distance d from the center of the filament 54. To compensate for this displacement, the radius of curvature of the facet is appropriately changed to establish a revised facet D- value, D By way of example, if the original radius and the facet angle 6 for the 2RM facet are 3.065 in. and 54 40, and the image is to be shifted 10 toward the car axis in the horizontal plane, the facet is rotated 5 about the center of its surface to effect this required shift. However, this movement causes a 0.100 in. inward shift of the facet focal length thereby producing a distorted image. This movement exceeds the aforementioned 4 percent for an undistorted image inasmuch as:

shift/focal length 0. /1 .5 6.7%

This 10 image shift can be accomplished while maintaining the filament on focus by recomputing the facet prescription to a radius of 3.268 and a facet angle of 6132'A.

By either of the above rotational methods, the marginal edges retreat or advance with respect to the edges of adjacent facets. Referring to FIG. 12, the boundary discontinuities between adjacent facets shown in solid lines produces uncontrolled reflecting surfaces 206 and shadowed reflecting surfaces 208. The surfaces 206 are exposed to the the filament 54 and because they have indiscriminate shapes and positions, scatter the intercepted light thereby causing glare. On the other hand, the surfaces 208 are not exposed to the light and, accordingly, do not present a glare problem.

For the molded lamp components, a minimum draft angle must be provided at the juncture between the facets in order to permit the release of the article from the mold. A conventional lens, as shown in FIG. 16, having optical flutes 209 or the like formed on an interior surface produces uncontrolled surfaces 210 between exposed edges 212 and 214 produced by the draft anglerll At each of these edges, the light will be uncontrollably reflected and refracted. However, for the facet reflector shown in FIG. 15, the required draft angle 41,; produces releasable, conical surfaces 220 and permits location of adjacent facets such that only one edge 222 is exposed to the light from the filament. The other radius 224 is hidden from the filament and, therefore, does not contribute to glare.

Referring to FIG. 12, for an arbitrary diepull angle Z between reflector and the lamp axis and the pull line 230, the uncontrolled surfaces 206 are not deliberately positioned with respect to the filament and thus randomly distribute or scatter illumination. The glare caused by such surfaces is obviated in the present invention by shifting the outward facets rearwardly facet angle is then recalculated .to redirect an. undistorted image toward the intended position in the intensity pattern.

When the above operations have been completed, the same is translated into numerical form for construction of a die from which the desired reflectors can be manufactured by conventional forming processes. Each facet, as shown in FIGS. 18 through 20, will be produced by a die segment 240 having a reflecting surface 242 with a profile width A and a profile height B. The reflecting surface 242 will have a radius R with origin axis 244 displaced a distance Q from the center axis 246 of the segment 240. The surface normal 247 between the reflecting surface 242 and the axis 246 is inclined at an angle a. The center of the reflecting surface 242 will be displaced a distance I from rear face 250 of the segment 240. The axis 244 is then displaced a distance 2 in the horizontal plane as measured from a reference pin 252 aligned with the axis 246 and having a 0.250 in. diameter. As designated in the aforementioned manner, a lamp assembly having a frontal profile of 2.50 in. X 5.00 in. and a central facet focal length of 1 inch was successfully manufactured to produce a resultant light pattern as shown in FIGS. 4 and 5 using the following dimensions.

facet A B Sina Z R 0 0.625 1.250 0.0218 3.250 2.000 0.021 Right 1U 1.625 0.625 0.l062 3.903 2.694 1.138 Left 10 0.625 0.625 0.1062 3.901 2.694 1.144 Right 0.688 1.000 -0.27l2 3.413 2.097 0.019 Right 0.688 0.750 -0.-3720 3.903 2.666 1.040 Left 0.688 0.750 0.3788 3.920 2.666 0.988 Right 0.688 1.000 0.2506 3.378 2.090 0.015 Left 2RU 0.688 0.750 0.2197 3.942 2.663 1.020 Right 2Rd 0.688 0.750 -0.2346 3.939 2.663 1.015 Left 0.750 1.000 0.6l55 3.839 2.440 0.019 Right 0.750 0.750 -0.6473 4.260 2.925 0.983 Left 0.750 0.750 0.6481 4.269 2.925 0.054 Ri'ght 0.750 1.000v 0.36574 3.748 2.296 0.034 Right 0.750 0.750 0.3746 4.362 2.901 1.048 Right 0.750 0.750 0.3926 4.359 2.901 1.020 Left 0.750 1.000 -0.8l61 4.556 3.065 0.047 Right 0.750 0.750 -0.8l89 4.919 3.447 0.983 Left 0.750 0.750 0.8179 4.946 2.447 0.900 Right 0.750 1.000 0.5033 4.374 2.706 0.019 Left 0.750 0.750 0.5253 4.785 3.130 0.923 Right 0.750 0.750 -0.5249 4.769 3.130 0.973 Left The instruction left or right in the last column of the table refers to the direction of the center of the radius 244 from the facet centerline 246 (distance Q) as viewed in FIG. 19.

Although only one form of this invention has been shown and described, other forms will be readily apparent to those skilled in the art. Therefore, it is not intended to limit the scope of this invention by the embodiment selected for the purpose of this disclosure but only by the claims which follow.

What is claimed is:

1. A reflector for projecting light from a source in a predetermined illumination pattern, said' reflector comprising: a plurality of discrete reflecting facets; light focusing reflecting surfaces on said reflectingfacets, each of said reflecting surfaces having curvatures individually focused with respect to the source to project an undistorted image of the source, said reflecting surfaces having reflecting areas projecting individual images with a given horizontal and vertical image spread and intensity, said reflecting surfaces further being spacially located with respect to the source to direct said images toward select portions of the desired illumination pattern such that the superposition of said individual images synthesizes the pattern within said prescribed limits, a portion of said reflecting surfaces being in the form of right circular cylinders having curvatures approximating parabolic cylinders which are focused with respect to the source.

2. A faceted reflector for projecting light from a source in a predetermined horizontal and vertical illumination pattern, said reflector comprising: a plurality of discrete and contiguous reflecting facets; light focusing reflecting surfaces on the facets having uncontrolled light diffusing surfaces between contiguous facets, said reflecting surfaces having reflecting areas for projecting images with desired horizontal and vertical spreads and projected intensities, said reflecting surfaces further being focused with respect to the source for projecting glare free undistorted images of the latter and being spacially located with respect to the source to direct said undistorted images toward select portions of said illumination pattern such that the superposition of the projected undistorted images synthesizes the pattern, the facets being further positioned with respect to adjacent facets so as to shade said uncontrolled light diffusing surfaces from said source thereby further reducingglare due to scattered reflection.

3. A lighting unit having optics entirely on a reflecting surface for distributing light in a desired illumination pattern, comprising: an optically passive lens; a reflector, said lens and said reflector having facing interior surfaces defining a lamp envelope; a light source positioned in the envelope; a plurality of facets on said reflector; cylindrical light focusing reflecting surfaces on said facets, said reflecting surfaces being interconnected by uncontrolled reflecting surfaces, said light focusing reflecting surfaces having a shape and curvature for intercepting illumination from the source and reflecting the latter with a given image spread and intensity outwardly through said optically passive lens toward select portions of said illumination pattern, the position and shape of the individual facets being interrelated so as to focus the facets with respect to the source to project glare free undistorted images thereof and being additionally positioned such that the image spreads and intensities provide a composite pattern synthesizing said desired pattern, the individual facets being further positioned relative to adjacent facets and the light source so as to shade said uncontrolled reflecting surfaces from the light source thereby reducing glare from scattered illumination.

15.; 4. A motor vehicle lamp having optics placed entirely on a reflecting surface for projecting a light beam in a desiredhorizontal and vertical illumination pattern,

comprising: a lens having an optically passive light transmitting region; a reflector adapted to be mounted on the motor vehicle and cooperating with the lens to form a lamp envelope; a light source positioned within said lamp envelope; a faceted surface-0n said reflector including horizontal rows andvertical columns of discrete facets, said faceted surface having sufficient area to project illumination of requisite intensity throughout the contemplated pattern, said facets being interconnected by uncontrolled glare producing reflecting surfaces, said facets having right cylindrical reflecting surfaces approximating parabolic cylinders focused with respect to the source so as to project undistorted images through said light transmitting region, each of said facets having a width, height, and curvature and being positioned relative to the source to distribute illumination with a given spread and intensity toward a select portion of the desired illumination pattern, the facets being interrelated so as to match the overall spread and intensity of the illumination pattern within prescribed limits, the facets being positioned relative to adjacent facets so as to shade said glare producing reflecting surfaces from the light source thereby reducing glare from uncontrolledreflection.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1535985 *Aug 27, 1920Apr 28, 1925Clark Paul LProjection screen
US1726379 *Nov 30, 1925Aug 27, 1929Gen ElectricLight projector
US2255819 *Dec 8, 1937Sep 16, 1941Vitaliano PassardiProjector
US2611857 *Aug 11, 1948Sep 23, 1952Electric Auto Lite CoCombined vehicle headlighting and turn illuminating system
US3456153 *Feb 6, 1967Jul 15, 1969C M Hall Lamp CoDual function lamp
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4087682 *Mar 15, 1976May 2, 1978Kolodziej Henry WIlluminating device
US4143412 *Jun 21, 1977Mar 6, 1979Sassmannshausen KnutLighting fixture, for a tail, warning or signal light
US4358816 *Sep 5, 1980Nov 9, 1982General Electric CompanyRoadway luminaire
US4481563 *May 10, 1982Nov 6, 1984Corning Glass WorksAutomotive headlight having optics in the reflector
US4694382 *Dec 23, 1986Sep 15, 1987Hubbell IncorporatedReflector for roadway lighting luminaire
US4704661 *Aug 25, 1986Nov 3, 1987General Electric CompanyFaceted reflector for headlamps
US4789923 *Sep 11, 1987Dec 6, 1988Hubbell IncorporatedReflector for roadway lighting luminaire
US5406464 *Nov 12, 1993Apr 11, 1995Koito Manufacturing Co., Ltd.Reflector for vehicular headlamp
US5532909 *Aug 3, 1994Jul 2, 1996Koito Manufacturing Co., Ltd.Reflector for a vehicular lamp and method of producing a die therefor
US5655828 *Feb 21, 1996Aug 12, 1997Koito Manufacturing Co., Ltd.Vehicle lamp and a method of forming a reflector of the vehicle lamp
US5779340 *Oct 27, 1995Jul 14, 1998Koito Manufacturing Co., Ltd.Vehicle lamp and method of manufacturing the same
US5816679 *Oct 27, 1995Oct 6, 1998Koito Manufacturing Co., Ltd.Vehicle lamp and method of manufacturing the same
US5826964 *Jan 22, 1997Oct 27, 1998Autopal S.R.O.Headlamp with complex reflector
US5940308 *Dec 27, 1996Aug 17, 1999Koito Manufacturing Co., Ltd.Computer-implemented method and system for creating motor vehicle lamp design layout
US5975723 *Jun 4, 1997Nov 2, 1999Robert Bosch GmbhLight for vehicles with stepped lateral reflector region
US6113238 *Feb 16, 1999Sep 5, 2000Younger Mfg. CompanyGlare demonstrator
US6176597Mar 30, 1998Jan 23, 2001Hill-Rom, Inc.Reflector for surgical light apparatus
US6637914 *Apr 24, 2002Oct 28, 2003Koito Manufacturing Co., Ltd.Vehicle headlamp
US7150551 *Aug 4, 2004Dec 19, 2006C.R.F. Societa Consortile Per AzioniComplex reflector for a vehicle headlamp, and method for the manufacture of the reflector
US7160010Nov 15, 2005Jan 9, 2007Visteon Global Technologies, Inc.Light manifold for automotive light module
US7207700Sep 22, 2005Apr 24, 2007Visteon Global Technologies, Inc.Near field lens with spread characteristics
US7401948Oct 17, 2005Jul 22, 2008Visteon Global Technologies, Inc.Near field lens having reduced size
US7438454Nov 29, 2005Oct 21, 2008Visteon Global Technologies, Inc.Light assembly for automotive lighting applications
US7445362Mar 3, 2006Nov 4, 2008Hubbell IncorporatedParking garage luminaire with interchangeable reflector modules
US7489453Nov 15, 2005Feb 10, 2009Visteon Global Technologies, Inc.Side emitting near field lens
US7547120 *May 15, 2007Jun 16, 2009Auer Lighting GmbhLight reflector with a defined contour sharpness of the light distribution produced thereby
US7554742Apr 17, 2007Jun 30, 2009Visteon Global Technologies, Inc.Lens assembly
US7564070Nov 23, 2005Jul 21, 2009Visteon Global Technologies, Inc.Light emitting diode device having a shield and/or filter
US7762700Oct 28, 2008Jul 27, 2010Osram Sylvania Inc.Rear-loaded light emitting diode module for automotive rear combination lamps
US7762701Oct 28, 2008Jul 27, 2010Osram Sylvania Inc.Rear-loaded light emitting diode module for automotive rear combination lamps
US7905639Oct 28, 2008Mar 15, 2011Osram Sylvania Inc.Side-loaded light emitting diode module for automotive rear combination lamps
US8052309 *May 31, 2007Nov 8, 2011Jacob DysonLighting system with reflector that moves in a periodic manner
US8118448 *Mar 27, 2009Feb 21, 2012Chen Hui YuReflector component for a LED lamp
DE3024040A1 *Jun 26, 1980Jan 8, 1981Cibie ProjecteursScheinwerfer, insbesondere fuer kraftfahrzeuge
DE102009022723A1May 26, 2009Dec 3, 2009Osram Sylvania Inc., DanversVon rückwärts anzubringendes Leuchtdioden-Modul für Kombinationsrücklichter an Kraftfahrzeugen
DE102009022724A1May 26, 2009Dec 3, 2009Osram Sylvania Inc., DanversVon der Seite anzubringendes Leuchtdioden-Modul für Kombinationsrücklichter an Kraftfahrzeugen
DE102009022726A1May 26, 2009Dec 3, 2009Osram Sylvania Inc., DanversVon der Rückseite anzubringendes Leuchtdioden-Modul für Kombinationsrücklichter an Kraftfahrzeugen
EP1338468A2 *Feb 21, 2003Aug 27, 2003Ichikoh Industries, Ltd.Lighting fixture for vehicles
Classifications
U.S. Classification362/518, 362/348
International ClassificationF21V7/00
Cooperative ClassificationF21S48/137
European ClassificationF21S48/13D10D