Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3701482 A
Publication typeGrant
Publication dateOct 31, 1972
Filing dateMar 17, 1971
Priority dateMar 17, 1971
Publication numberUS 3701482 A, US 3701482A, US-A-3701482, US3701482 A, US3701482A
InventorsNorman H Sachnik
Original AssigneeNorman H Sachnik
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Foam generating nozzle
US 3701482 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Sachnik FOAM GENERATING NOZZLE [72] Inventor: Norman H. Sachnik, 1035 Columbia, Houston, Tex. 77008 [22] Filed: March 17, 1971 [2l] Appl. N0.: 125,172

[56] References Cited UNITED STATES PATENTS 2,361,980 11/1944 Tin'ell ..169/15 2,990,885 7/1961 Brazier 169/1 R 2,556,239 6/1951 Tuve et al. "169/4 2,388,508 11/1945 Timpson ..239/428.5 2,737,413 3/1956 Mitchison ..169/l5 X 2,774,583 12/1956 i-laftke ..239/428.5 X 3,388,868 6/1968 Watson et al ..239/590.3 X 3,512,912 5/1970 Linch ..239/590.3 X

2 2 2,95% 22 UVDER [151 3,701,482 1' Oct. 31, 1972 Primary Examiner-Lloyd L. King Assistant Examiner-Thomas C. Culp, Jr.

Attorney-Joe E. Edwards, M. H. Gay, Alfred H.

Evans, Jack R. Springgate, W. Ronald Robins and Julian Clark Martin ABSTRACT sure chamber is isolated from the high pressure chamber by a throat section. Effort is made to conserve as much energy as possible so the high pressure section will have a pressure of at least one-fifth the pressure of the source of the liquid. The foam is dispersed from the high pressure section by interchangeable spray-pattern nozzles to obtain the desired pattern for dispersing the foam.

2 Claims, 12 Drawing Figures NORMAN H. SACHNIK INVENTOR.

entrained therein. 1 r

1 FOAM GENERATING NOZZLE 561,740 6-30-66 (now abandoned) However, at the time of filing, the claims of this application do not read on any of the prior applications.

BACKGROUND on THE INVENTION 1. Field of the invention 1 This invention relates to horticulture and more particularly to applying treating material such-as herbicides, pesticides, fungicides and the like, entrained in foam, to plants. More specifically, it is concerned with the generation of the foam with the treating material 2. Description of the Prior Art Treating materials for plants, traditionally, have been dusted upon the plants dry or applied to the plantsin a liquid. Sometime the treating material is applied to the plants in an oil or hydrocarbon base. More generally, the treating material is applied to the plant in a water spray.

LOWENSTEIN, British PatrNo. 486,113, suggests that the treating material could be entrained in a foam.

My prior patent applications, set out above, all involve applying treating materials to plants, the treating material being entrained in foam.

The Department of Agriculture has made some investigation of this, although I am unaware of any publication of their work, but there have been some news releases of their work as reported in the November 1968 issue of the Farm Journal.

Whereas there is almost no prior art before my entry into the field concerning the entrainment of treating material into foam to be applied to plants, the art has been highly developed for foam generating nozzles for fire fighting purposes. 1

TUVE ET AL, U.S. Pat. No. 2,556,239, discloses a nozzle and goes into considerable detail. He discloses a nozzle which has the low pressure chamber with the i.e., TUVE liquid spray jetted into it, the low pressure chamber having a converging section to a cylindrical throat followed by diverging section wherein it then extends to a dispersing nozzle. TUVEs high velocity nozzle converges at the same angle as the low pressure chamber. Also, TUVE recognizes in his particular field of fire fighting the desirability of generating a low expansion foam. l.e., a foam having about three parts air to one part liquid. He recognizes it is desirable to have a throat area of about two and one-half times the velocity nozzle area. However, TUBE considers it important for his application to have a very large volume in the high pressure chamber. He states that the length of the high pressure chamber should be to times the diameter of the throat section. Of course, TUVE contemplates an operation wherein once the generator was activated, it would remain generating until its'task was completed and does not contemplate an intermittent operation.

BRAZIER, U.S. Pat. No. 2,990,885, discloses a nozzle to produce foam for fire fighting wherein the high velocity nozzle jets the initial stream of liquid outward against a converging ring. BRAZllER states that one of his objects is to provide a foam nozzle to obtain a very high volume of expansion. Also, he contemplates that the ambient atmosphere is in direct communication with the turbulent area, which is in direct conflict to my teaching herein.

TIMPSON, U.S. Pat. No. 2,388,508, discloses a nozzle for a generating foam which has a selector valve wherein it can either produce foam or a solid stream. TIMPSON is not believed to disclose his valve as being a cutoff valve.

[Other U.S. patents found in a search before filing this patent application, but were not considered pertinent, include:

RE. 25.037 3.040.758 1,816,417 3,l|7,629] 2,936,835

SUMMARY OF THE INVENTION 1. New and Different Function Generating foam for applying treating material to plants is basically different than generating foam for tire fighting purposes. Although, TUVE discloses a low expansion ratio for fire fighting purposes, most fire fighting foam is a high expansion ratio, sometimes as high as 50 to 1. However, probably the most important difference between the generation of foam for application to plantsand for tire fighting is that the generation for plants must be an intermittent or an on and off proposition. i.e., normally the application will be by a hand-held gun sprayer wherein a valve is opened to produce spray for a short period of time to apply the spray to a particular plant or a group of plants and the valve is closedto shut off the generation of foam until the operator moves on to the place of next application. This is even the pattern of operation for aerial spraying, I.e., the foam will be generated for spraying one pass over a field and then the valve is closed to shut off generation while the plane turns to be in position to generate foam for the next pass. On the other hand, for

fire fighting purposes, once the foam is generated, it is not discontinued until the fire is extinguished. When foam generation is discontinued in the use of a fire fighting nozzle of known design, the nozzle has compressed air therein which will cause the foam within the nozzle to expand and since there is no flow through the nozzle, the foam will back up and clog the air inlet holes. As stated before for fire fighting, this is no problem whatsoever because when the nozzle is shut down, the equipment is cleaned up in preparation for the next fire. However, if this type nozzle were used for applying treating material, it gives an undesirable effect because it not only produces a foam of undesirable quality, but the nozzle often must be cleaned each time the generation of foam is interrupted.

Therefore, I have found that the volume of the high pressure chamber must be reduced to a minimum. The high pressure chamber must be present because it is necessary that there be an agitation or a mixing of the liquid and the air to generate foam. Therefore, when the flow is shut off, the generated foam in the high pressure section, as it expands, will not expand sufficiently to clog the low pressure chamber nor the air ports into the low pressure chamber.

Also, the dispersing nozzles for fire fighting purposes have been almost identical to water nozzles. I have found that to spray the foam for agricultural purposes, it is usually necessary to break the foam up into globulets. For different types of application, there are various, distinct spray patterns desirable; therefore, I have found it desirable to beable to interchange the spray pattern dispersing nozzle without having to completely redesign the entire generating nozzle.

2. Objects of the Invention BRIEF DESCRIPTION OF THE DRAWING,

FIG. 1 is a axial sectional view, partially schematic, of a foam generating nozzle according to this invention.

FIG. 2 is a side elevational view of the generating nozzle attached to a hand gun for hand operation.

FIG. 3 is an illustration of a modified form of the nozzle particularly adapted for use on an airplane.

FIG. 4 is an elevational view of a part of the airplane modification taken on line 4-4 of FIG. 3.

FIG. 5 is a sectional representation of a spray pattern nozzle for projecting the foam an extremely long distance.

FIG. 6 is a cross-sectional view taken substantially on line 6-6 of FIG. 5.

FIG. 7 is an axial sectional view of another spray pattern nozzle projecting another foam pattern.

FIG. 8 is a sectional view taken on line 8-8 of FIG. 7.

FIG. 9 is an axial sectional view of a spray pattern nozzle designed to produce a scattered foam pattern. FIG. 10 is a cross-sectional view taken on line 10- 10 of FIG. 9.

FIG. 11 is an elevational view of yet another spray pattern nozzle producing a fan-shaped pattern.

FIG. 12 is an axial sectional view taken substantially on line 12l2 ofFIG. 11.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawing, there is shown schematically in FIG. 1 a source 10 of mix under pressure. The mix would include water, foam agent, and treating material. Foam agents are well known to the art as demonstrated by the patents identified above. The treating material is also well known, as set out above. The treating material may be any of several materials used for treating plants. These materials may be herbi- 4 cides, insecticides, fungicides, or other pesticides. These materials also may include fertilizer to be applied to the leaves of the plants.

From the source 10 under pressure, the material is transmitted in suitable conduit such as hose 12 to valve 14. As illustrated in FIG. 2, this valve in the form of a hand gun with the generating nozzle 16 attached thereto, or in the case of the particular modification for airplanes, the valve (not shown) is controlled by the pilot and it would not be immediately adjacent to the plurality of airplane foam generating nozzles 18. (FIG. 3, also see FIG. 3 of application Ser. No. 824,868). Referring to FIG. 1, it may be seen that inlet nipple 20 has external threads 22 thereupon. These threads mate with internal threads 24 of nozzle body 26. Velocity nozzle disc 28 is within the inlet of the body 26 and one edge seats against shoulder 30 formed between the internal bore 32 of the body and the end of the nipple 20. The disc 28. has drilled therethrough a plurality (such as three to six) of inlet velocity nozzles 34. The cylindrical nozzles divert outward, having an apex angle of a, which I have found to be desirable'at 4 to 6. Other than the apex divergent angle, the nozzles 34 are straight, i.e., they are not helixed.

The bore 32 has a first low pressure chamber 36. This includes a short cylindrical section 38 and a frusto-conical convergingoutlet section 40. The frustoconical outlet section 40 has an apex angle b of from l0to 14. Ports 42 extend through the body 26 into the cylindrical section 38. The ports 42 admit ambient air into the low pressure chamber 36. The low pressure chamber 36 terminates with throat 44. The throat is a cylindrical portion of the bore 32. The length of the throat 44 is no less than twice its diameter. The crosssectional area of the throat 44 bears a specific relationship to the combined cross-sectional area of the velocity nozzles 34. I.e., the cross-sectional area of the throat 44 is between 2.2 and 2.75 times the cross-sectional area of all of the velocity nozzles 34. Because there is some leeway with this area, it is possible to change discs 28 for a grater or lesser foam generation. The rate the foam is generated will depend solely upon the area of the velocity nozzles 34 and the pressure of the source 10 within the nipple 20 just before the mix enters the velocity nozzles 34. Therefore, although the optimum size of the area of the velocity nozzles will be l/2.5 of the cross-sectional area of the throat 44, it may be seen that this may be increased by 10 percent to 2.75 or decreased by about 10 percent to 2.2 for the production of greater or lesser foam. Also, the pressure can be increased or decreased so the nozzle produces a greater or lesser amount of foam.

As will be discussed later, spray pattern nozzle 46 may be changed to produce different spray patterns, but the changing of the spray pattern nozzle 46 does not affect the quality or the quantity of the foam produced. When I use the term it does not affect the quality, it is meant that the size of the air bubbles or the ratio of air to liquid in the foam is not affected. It does afi'ect the quality of the foam if the size of globulets is considered to be a factor of foam quality.

From the throat section 44, the bore 32 has a diverging frusto-conical section 48. This diverging section will have an apex angle c between l4 and 30. The body 26 at the diverging section 48 has external threads a diameter which is greater than the diameter of the throat section 44.

With this design, the mix jetting through the velocity nozzles 34 will create a low pressure area within the low pressure chamber 36. This low pressure area will be below ambient pressure and therefore, there will be an inward flow of air through the inlet ports 42. The jets impinge against the converging walls of conical outlet 40 and proceed on into the throat section 44. The throat section 44 will have low pressure. The flow through the majority of the throat section will be straight forward without turbulence. Therefore, up until this point there will be little or no foam generated, although there will be a carrying of the air forward into the throat area. At the outlet of the throat area begins turbulence and therefore, the beginning of foam generation. There will be additional foam generation and turbulence through the diverging section 48. The generation is completed and the foam refined in th high pressure chamber 52.

As the area 48 diverges, the pressure will increase. There has been a very small loss of energy to this point. I.e., all of the energy contained in the entering fluid within the nipple 20, because of its pressure, has been retained in the high pressure chamber 52. This pressure energy in the nipple was changed to velocity energy as it went through the nozzles 34 and through the throat section 44. In the high pressure chamber 52, the energy is again converted to pressure energy. Specifically, after the foam has been discharged from the spray pattern nozzle bore 54, the volume will be three or four times as great as the entering liquid volume in the nipple 20. Therefore, if from an energy standpoint the nozzle were one hundred percent efficient, the pressure in the high pressure chamber 52 would be less because of the greater volume. I have been able to maintainthe gauge pressure within the high pressure chamber 52 in ratio to the gauge pressure within the nipple 20 of 5 to l maximumto a low of 2.7 to l. The energy of the material within the high pressure chamber 52 is again transformed into velocity energy as it is discharged from the spray pattern nozzle bore 54.

The design criteria set forth above are specifically designed to obtain a well mixed, fine bubble-size foam, a short nozzle 16, a high velocity discharge, a wet foam having about four times the volume of the inlet liquid. In addition to these factors, it is also essential that when the valve 14 is snapped shut and the flow of the liquid ceases, the foam from the high pressure chamber 52 does not back up through the throat 44 into the low pressure chamber 36 and clog the air ports 42. It is essential in ordinary operation that the turbulence within the latter part of the throat area 44 and the generation of the foam does not permit any of the foam to back up so as to clog the low pressure area.

One of the functions of the high pressure chamber 52 is the refinement of the foam so there are fine air hub- 6 bles through the foam; particularly when a wet foam is being generated, (such as 3 A to l or less expansion), difficulty is experienced with some of the liquid exits in the liquid phase rather than in a foam phase. If there is not good mixing witha small air bubble or a fine air bubble structure, this is likely to happen. However, with the design set forth as I have described it, I have been able to achieve my desired objective. One of the points in the design is that the volume of the high pressure chamber is no greater than ten times the volume of the throat 44. E.g., if the volume of the throat is one cubic centimeter, the volume of i the high pressure chamber must be no greater than ten cubic centimeters.

Referring to FIG. 3, there may be seen a slightly different modified form of the nozzle as would be used on aircraft. In this figure, the source of mix under pressure has not been shown nor has the valve to cause intermittent flow to the generator 18 been shown. It will be understood that there would be a manifold and a plurality of generators 18 on the manifold. and the valve would be located between the source of the mix under pressure and the manifold. There is an inlet nipple having external threads 122 which mate with internal threads on 124 upon a cuff 123 which holds the body 126 in place. The body has a plurality of air inlets or air ports 142 in the low pressure chamber which includes the frusto-conical outlet 140 which leads into the throat 144 which then is dispersed from the diverging frusto-conical portion 148 into the high pressure chamber 152. The twirling disc has a plurality of veins 127 which import a circular motion to the fluid. Then when the fluid passes through the orifice 134 within the disc 128, the liquid will spray from the oriiice from about 4 to 6 conical angle. Also, the apex angle upon the diverging frusto-conical section 148 is much greater than 30. The spray pattern nozzles formed by the bores 154 through the outlet of the spray pattern nozzle 146 have a very high diameter to the length. Therefore, the foam would pass through them with a great deal of turbulence rather than high velocity jet and they impinge against the exterior flange 156.

Because of the particular design of the airplane generator 18 shownin FIG. 3, the: pressure in the high pressure chamber 152 will not be extremely high because there is a loss of energy through inefficiency of the passage through the orifice 134 and the other inefficiencies of the design. However, with the airplane nozzle, the only pressure needed in the high pressure chamber 152 is to force the foam out through the nozzles 154 and against the splatter flange 156. As soon as the foam is forced out and against the splatter flange, the air stream created by the movement of the aircraft through the air will cause the spray to break up into globulets and then it is necessary only that they be carried by the air stream and gravity to their desired location.

However, it will be understood that the nozzle shown in FIG. 3 is a special purpose nozzle and it is adapted to be used only for dispersing the foam into an air stream and therefore, because of this special consideration, it is designed as it is.

One of the advantages of my design is that the same generator with the same body 26 may be used with several different dispersing nozzles. The dispersing nozzle 46 shown-in FIG. 1 has a length of about twice its diameter; therefore, this will result in a pattern wherein the foam stays reasonably well together and there is only medium turbulence at the time foam is discharged, resulting in a rather close together stream which projects a reasonable distance.

Referring to FIG. 7, there is illustrated a spray pattern nozzle 746, having spray pattern nozzle bore 754 illustrated where the length of the bore is several times greater than the diameter of the bore. However, there is one single bore. Because of the longer bore, there will be less turbulence in the spray and therefore, the spray will be projected a longer distance and there will be less scattering of the foam.

FIG. 5 illustrates a spray pattern nozzle 546 wherein there is illustrated a plurality of bores 554, each of which is extremely long with respect to the diameter. Also, the bores have a slight angle of convergence with a conical apex angle d of only one or two degrees. Therefore, foam will be thrown an extremely long distance without particularly breaking up. With pressures of 100 pounds at the inlet to the velocity nozzle, this dispersing nozzle will throw foam for over 50 feet. With pressures up to 300 pounds, the nozzle will throw foam about 70 feet.

The dispersing nozzle 946 shown in FIG. 9 is designed so it produces an F-shaped pattern which has a width of over half its maximum projected distance. Therefore, it is desirable for certain applications. To obtain this, slot 956 is out along the bottom of bore 954 of the spray pattern nozzle 946. Thus, the pattern is spoiled in this particular area so it produces this particular design and breaks the foam into globulets.

FIG. 12 shows a design of dispersing nozzle 246 for producing a fan-shaped pattern. In it two nozzles 254 project a jet of fluid which converge at a sharp angle and therefore splatter, breaking the foam into small globulets on either side. The two bores 254 project from the high-pressure chamber 252. Wings 258 help to shape and control the spray pattern.

The embodiments shown and described above are only exemplary. I do not claim to have invented all the parts, elements or steps described. Various modifications can be made in the construction, material, arrangement, and operation, and still be within the scope of my invention. The limits of the invention and the bounds of the patent protection are measured by and defined in the following claims. The restrictive description and drawing of the specific example above do not point out what an infringement of this patent would be, but are to enable the reader to make and use the invention.

I claim as my invention:

1. A foam generating nozzle comprising an inlet nipple adapted to receive fluid under pressure,

a disc disposed in the downstream end of said nipple, said disc having at least one passage extending therethrough,

a body joined to said nipple, said body having a low pressure chamber in communication with said disc and receiving fluid passing therethrough and said body having a throat smaller in diameter than said low pressure chamber and connected to and rec aivir ig fluid from the low pressure chamber and sat bo y having at least. one radial y disposed air port therein communicating between said low pressure chamber and the exterior of said body and said body having a diverging frusto-conical section communicating at its smaller end with the downstream end of said throat,

a spray pattern member joined to the larger end of said frusto-conical section, said spray pattern member having at its upstream end a high pressure chamber and at its downstream end one or more bores conveying fluid from said high pressure chamber to the exterior of said nozzle,

said high pressure chamber having a volume no greater than ten times the volume of said throat, so that a back pressure is held on foam being released from the nozzle but upon stoppage of flow of fluid to said nipple foam will not back up and discharge into said air port.

2. The nozzle of claim 1 wherein said spray pattern member has a plurality of bores and wherein a pair of spaced wings are provided on the outlet end of the spray pattern member and wherein the said bores converge toward their outlet ends to mix fluid from the bores in the space between said wings.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3836076 *Oct 10, 1972Sep 17, 1974Delavan Manufacturing CoFoam generating nozzle
US3918647 *Jan 14, 1974Nov 11, 1975Chemtrust Ind CorpFoam generating apparatus
US4128206 *May 31, 1977Dec 5, 1978Delavan CorporationLow drift flat spray nozzle and method
US4330086 *Apr 30, 1980May 18, 1982Duraclean InternationalNozzle and method for generating foam
US4390069 *Jul 6, 1981Jun 28, 1983Grumman Aerospace CorporationTrifluorobromomethane foam fire fighting system
US4565324 *Jun 1, 1983Jan 21, 1986The Babcock & Wilcox CompanyNozzle structure for sootblower
US4598862 *May 31, 1983Jul 8, 1986The Dow Chemical CompanyFoam generating device and process
US4632314 *Jun 5, 1985Dec 30, 1986Nordson CorporationAdhesive foam generating nozzle
US4830790 *Nov 4, 1987May 16, 1989Co-Son IndustriesFoam generating nozzle
US5054688 *Dec 20, 1989Oct 8, 1991Robwen, Inc.Foam producing nozzle
US5085371 *Jun 15, 1990Feb 4, 1992Shop-Vac CorporationFoam creating nozzle system
US5113945 *Feb 7, 1991May 19, 1992Elkhart Brass Mfg. Co., Inc.Foam/water/air injector mixer
US5232632 *Aug 16, 1991Aug 3, 1993The Procter & Gamble CompanyFoam liquid hard surface detergent composition
US5335734 *May 4, 1993Aug 9, 1994Scott Plastics Ltd.Reciprocating additive mixing pump apparatus and method
US5445226 *May 4, 1993Aug 29, 1995Scott Plastics Ltd.Foam generating apparatus for attachment to hose delivering pressurized liquid
US5613773 *Jun 2, 1995Mar 25, 1997Scott Plastics Ltd.Apparatus and method for generating foam from pressurized liquid
US5664733 *Sep 1, 1995Sep 9, 1997Lott; W. GeraldFluid mixing nozzle and method
US5837168 *Dec 3, 1996Nov 17, 1998Rowe; Carroll G.Foam generating apparatus
US6086052 *Jan 28, 1998Jul 11, 2000Rowe; Carroll G.Foam generating apparatus
US6138994 *Sep 9, 1999Oct 31, 2000Rowe; Carroll G.Foam generating apparatus
US6217009May 15, 2000Apr 17, 2001Carroll G. RoweFoam generating method
US6347752Nov 12, 1999Feb 19, 2002James W. DavidsonFoam spray gun nozzle extension assembly
US7059543 *Mar 21, 2002Jun 13, 2006Dushkin Andrey LLiquid sprayers
US7866572 *Dec 12, 2006Jan 11, 2011Saiseiko Co., LtdBubble-generating structure, and showerhead that includes that structure
US8360339 *Nov 13, 2008Jan 29, 2013Forced Gas Technologies, LlcFire suppression apparatus and method for generating foam
US8500046 *Apr 23, 2009Aug 6, 2013Briggs & Stratton CorporationTurbulence control assembly for high pressure cleaning machine
US8678244Mar 2, 2012Mar 25, 2014Simplehuman, LlcSoap dispensing units with anti-drip valve
US8702019 *Jul 13, 2010Apr 22, 2014Chien-Lung ChenTransportation device
US9265383Feb 7, 2013Feb 23, 2016Simplehuman, LlcLiquid dispensing units
US9283578 *Apr 5, 2011Mar 15, 2016Dow Global Technologies LlcDispensing device for both froth and non-froth coatings
US9453243Feb 26, 2014Sep 27, 2016Chien-Lung ChenTransportation device
US20040124269 *Mar 21, 2002Jul 1, 2004Dushkin Andrey LLiquid sprayers
US20070158467 *Jan 11, 2006Jul 12, 2007Kennco Manufacturing, Inc.Foam generator
US20090090793 *Dec 12, 2006Apr 9, 2009Saiseiko Co., Ltd.Bubble-generating structure, and showerhead that includes that structure
US20100044454 *Dec 19, 2007Feb 25, 2010Krzysztof KarazniewiczWater spray nozzle and method of optimization of working parameters of water spray nozzle
US20100116512 *Nov 13, 2008May 13, 2010Darren Sean HenryFire suppression apparatus and method for generating foam
US20100270402 *Apr 23, 2009Oct 28, 2010Briggs & Stratton CorporationTurbulence control assembly for high pressure cleaning machine
US20110011958 *Jul 13, 2010Jan 20, 2011Chien-Lung ChenTransportation device
US20130022751 *Apr 5, 2011Jan 24, 2013Eung Kyu KimDispensing device for both froth and non-froth coatings
US20140091160 *Jun 20, 2012Apr 3, 2014Xiamen Solex High-Tech Industries Co., Ltd.Air-intake and focused-type sprayer apparatus
US20140263751 *Mar 14, 2013Sep 18, 2014Generac Power Systems, Inc.Foaming Nozzle For Portable Pressure Washers
USD699475Feb 28, 2013Feb 18, 2014Simplehuman, LlcSoap pump
EP0107173A2 *Oct 19, 1983May 2, 1984Nordson CorporationFoam generating nozzle
EP2355906A1 *Sep 28, 2009Aug 17, 2011Darren Sean HenryFire suppression apparatus and method for generating foam
WO2002076624A1 *Mar 21, 2002Oct 3, 2002Dushkin Andrey LLiquid sprayers
WO2013119642A1 *Feb 6, 2013Aug 15, 2013Frank YangFoaming soap dispensers and methods
U.S. Classification239/590.3, 169/70, 261/DIG.260, 169/15
International ClassificationB05B7/00
Cooperative ClassificationB05B7/0056, Y10S261/26
European ClassificationB05B7/00C2A