Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3704540 A
Publication typeGrant
Publication dateDec 5, 1972
Filing dateAug 24, 1970
Priority dateAug 24, 1970
Publication numberUS 3704540 A, US 3704540A, US-A-3704540, US3704540 A, US3704540A
InventorsMontagu Roland P
Original AssigneeOlympic Overseas Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Helicopter with rotor having metal ring for flywheel effect
US 3704540 A
Abstract
A toy helicopter having a rotating bladed wheel with a spindle extending from the center and a launcher detachably receiving the spindle for transmitting rotational movement thereby storing kinetic energy in the wheel. At the end of the transmitted rotational movement, the toy is automatically ejected from the launcher and becomes airborne. A fuselage of desired configuration and with suitable landing gear is rotatably mounted on the spindle to allow the wheel to freely spin relative to the fuselage during both the launching movement and flight.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

0 United States Patent [151 3,704,540

Montagu 1 Dec. 5, 1972 s41 HELICOPTER WITH ROTOR HAVING 922,842 s/1909 Bohn ..47/83 ux METAL RING FOR FLYWHEEL 2,012,600 8/1935 Fischer ..46/75 EFFECT FOREIGN PATENTS OR APPLICATIONS [72] Inventor Roland Montagu Houston 928,748 6/1947 France ..46/75 [73] Assignee: Olympic Overseas, Inc., Houston,

Tex. Primary Examiner-F. Barry Shay [22] Filed: Aug. 24, 1970 Attorney-Michael P. Breston and Alfred B. Levine [21] Appl. No.: 66,247 [57] ABSTRACT g A toy helicopter having a rotating bladed wheel with a ['52] U.S. Cl ..46/75, 46/83 Spindle extending f the center and a launcher [51] 110.01. ..A63h 27/12, A63h 27/14 detachably receiving the spindle for transmitting rota- 58 Field of Search ..46/75, 83 tional movement thereby storing kinetic energy in the wheel. At the end of the transmitted rotational move- [56] References Cited ment, the toy is automatically ejected from the launcher and becomes airborne. A fuselage of desired UNITED STATES PATENTS configuration and with suitable landing gear is rotatably mounted on the spindle to allow the wheel to BI'OSS freely spin relative to the fuselage during the 2,382,347 Streater launching movement and 2,537,393 l/1951 Bisch et al. ..46/75 191,246 5/1877 Mets ..46/83 1 Claim, 4 Drawing Figures PATENTEUnEc 51912 SHEET 1 [IF 2 INVENTOR. ROLAND P. MONTAGU,

MICHAEL P. BRESTON ATTORNEY.

PATENTEUHEE 5 m2 3.704540 SHEET 2 OF 2 INVENTOR. ROLAND P. MONTAGU,

FIG.

MICHAEL P- BRES TON ATTORNEY.

HELICOPTER WITH ROTOR HAVING METAL RING FOR FLYWHEEL EFFECT BACKGROUND OF THE INVENTION Helicopter-like toys, adapted to be set into spinning movement by a launching device, which includes a draw string, are well known in the toy art. Such helicopter-like toys, which are described'for example in US. Pat. Nos. 2,012,600 and 2,537,393, are ordinarily provided with a fuselage and with a flight-sustaining rotor capable of assuming various configurations of radially-extending blades or wings.

These blades have been also provided with tip weights which serve to store energy during the launching movement and to deliver up this energy during the helicopters flight.

However, such prior art toy helicopters have not been sufficiently successful for many reasons including: high cost of manufacturing, excessive number of moving parts, and rotors characterized by an inability to store sufficient energy per ounce of helicopter weight thereby preventing the helicopter from carrying out relatively long sustained flights.

It is therefore a general object of this invention to avoid these and other prior art drawbacks and to provide new and improved toy helicopters which are relatively inexpensive to manufacture, which are of sturdy construction, which include a minimum of moving parts, which can be easily'assembled by young children from component parts, and which are characterized by an ability to store highenergy for carrying out long sustained flights.

SUMMARY OF THE INVENTION The improved toy helicopter of this invention includes a fly wheel from the center of which downwardly and vertically extends a spindle having at its lower end a torque pin for detachable co-action with a torque head extending from a launcher. The wheel receives a spinning movement from the launcher. Upon termination of this movement the torque pin automatically disengages from the torque head, and the fly wheel together with its fuselage become airborne for a relatively long sustained flight. The energy stored during the launching movement in the fly wheel is gradually delivered up during flight.

In a preferred embodiment, the launching means includes a rod, a rotatable handle on the rod, a spool fixedly secured to the lower end of the rod, and a cord wound on the spool. When the cord is rapidly withdrawn from the spool, the torque head on top of the rod causes the spindle to spin thereby storing energy in the fly wheel. At the end of the spinning movement, the torque pin automatically separates from the torque head to allow the fly wheel, together with its fuselage, to become airborne. The fuselage is rotatably mounted on the spindle and includes suitable landing gear for safe landing on water or land.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side elevation view, partly in section, of a toy helicopter embodying my invention;

FIG. 2 is a bottom view on line 22 in FIG. 1;

FIG. 3 is a top view of the fly wheel; and

FIG. 4 is a sectional view on line 4-4 in FIG. 3.

To illustrate one form in which my invention can be embodied, I have shown in the drawings a toy helicopter, generally designated as 10. It includes a combined fuselage and landing gear unit 12, a fly wheel 14, and a launching unit 16. The fuselage 12 can be made of any suitable material such as stamped sheet metal or plastic and isshaped to simulate the appearance of the fuselage and appurtenant pans of a helicopter. The fuselage includes two parallel-spaced horizontal wall members 18 and 20. A rod-like spindle 22 vertically extends downwardly through aligned circular openings 24 and 26 in walls 18 and 20, respectively. From the upper face of wall 18 projects a nipple 28 for supporting a removable spindle fastener 30 providing a bottom bearing surface 32 in sliding contact with nipple 28. I

Similarly, a removable fastener 34 provides a bearing surface 36 for establishing a sliding contact with a nipple 38 which extends from the bottom face of wall 20. Accordingly, fasteners 30 and 34 allow spindle 22 to freely rotate relative to walls 18 and 20 and, hence, relative to the fuselage body 12, while at the same time preventing fuselage body 12 from moving up or down relative to the longitudinal axis of spindle 22.

Extending from the lower end of spindle 22 is a driven member, such as a horizontal torque pin 42 which extends through a bore 44. Pin 42 is straight when inserted through bore 44 and then it is slightly twisted to lock it in position relative to bore 44. The landing gear may include two sleigh runners 46 and 48 which are sufficiently spaced apart to allow a detachable coupling between torque pin 42 and launcher l6.

Launching unit 16 includes a crank shaft 50 to the lower end 51 of which is fixedly secured a spool 52 as by a locking pin 54. Extending above spool 52 on shaft 50 is a suitably-shaped handle 56. Shaft 50 freely extends through a longitudinal bore 57. The upper end of shaft 50 is provided with a torque head or collar 60, the bottom surface 61 of which rests on the top surface 62 of handle 56.

Extending downwardly from the top surface 64 of head 60 are two spiraling, diametrically-opposed grooves 66 and 68 adapted to engagingly accept the torque pin 42 therebetween. To maintain during launching fuselage 12 in a stationary position, two downwardly extending pins 70 and 72 on fuselage l2 become inserted into correspondingly disposed holes 74 and 76, respectively, extending downwardly from the top surface 62 of handle 56.

Referring more specifically to FIGS. 2 and 4, fly wheel 14 includes in a horizontal plane two perpendicular blades 82 and 84 extending from an outer hub 86. For a right-handed operator, the fly wheel 14 spins during the launching movement in a counterclockwise direction, as shown by the arrow, and accordingly blades 84 and 86 have a suitable angle of attack, designated a in FIG. 4. Inside outer hub 86 is an inner hub 88 interconnected with hub 86 by spokes 90. Inside hub 88 is a center bore 92 having an inner diameter slightly greater than the outer diameter of spindle 22. Spindle 22 is secured to the inner hub 88 by a cotter pin 94 (FIG. 1) extending through a hole 96 in spindle 22 and a bore 98 in hub 88.

A relatively heavy-weight material is shaped into a circular configuration to form a ring 100 which is suitably secured to the edges of blades 82 and 84 as with reinforced plastic. A stiff wire has been found to be entirely satisfactory for making ring 100 and for storing the desired energy during launching.

In operation, the spindle 22 is inserted into the collar 60 by fitting the torque pin 42 inside slots 66 and 68 so that the collar is in firm engagement with the torque pin. A pull cord 49 having a handle 47 at one end, is then wound about spool 52. Handles 47 and 56 are grasped in the hands of the operator, and cord 49 is pulled with a fast pull to spin spindle 22 and with it the fly wheel 14. During the pull of the cord, the spindle 22 will freely rotate on the bearing surfaces 32 and 36, while any side thrust is absorbed by the pins 70 and 72. At the end of the cords pull, spindle 22 will become automatically ejected from the release slots 66 and 68, resulting in the complete disengagement of the spindle 22 from the torque head 60. As soon as spindle 22 becomes disengaged, fly wheel 14 rises up. The energy then stored in wire ring 100 will be employed to overcome the inertia of fuselage 12 and the helicopter will then be in flight with the launching unit 16 remaining in the hands of the operator.

During flight, the air acting against the pitched portion of the tail or rudder 101 will generate a counter torque in the fuselage l2 sufficient to counteract any torque transmitted to the fuselage by the rotation of the fly wheel through the spindle 22, and consequently the fuselage will maintain a substantially non-rotating positlon.

The energy imparted during launching is mostly stored in the mass of ring 100. At launching the speed of ring 100 is at a maximum and blades 82 and 84 can be variously oriented to optimize the duration of the flight in accordance with well-known practices in the art. At landing, the toy will maintain an upright position due to the centering of a low center of gravity of fuselage 12 with reference to the sleigh runners 46 and 48.

While this invention has been described in connection with specific embodiments, it will be apparent to those skilled in the art that variations can be made without departing from the scope of the appended claims.

What I claim is:

1. A toy helicopter comprising:

a flywheel having a metal ring, a center hub, and

wings coupling said hub to said ring; a spindle extending substantially vertically downwardly from said hub and rigidly joined thereto;

a fuselage rotatably mounted on said spindle;

launching means detachably coupled to said spindle for imparting a rotational movement to said spindle for storing energy in said flywheel whereby, at the termination of said imparting of rotational movement, said spindle becomes automatically disengaged from said launching means to allow said flywheel together with said fuselage to become airborne;

said spindle including a torque pin transversely fixed at the lower end thereof within said fuselage;

said launching means including a torque head defining two diametrically-opposed spiraling grooves extendin downwardl from the top surface thereof or disengagingly receiving opposite ends of said torque pin in said grooves whereby said torque pin remains in said torque head during said imparting of rotational movement and said torque pin becoming automatically released from said torque head upon cessation of said imparting of movement;

an annular shoulder radially extending from the bottom portion of said head, two bores extending downwardly from said shoulder adjacent to said head;

a drive shaft;

said torque head forming one end of said drive shaft;

driving means mounted on said drive shaft for rotating said torque head;

said driving means including:

a handle rotatably mounted on said drive shaft and terminating in said annular shoulder,

adrive spool having a draw string mounted thereon,

said spool being fixedly secured to the other end of said drive shaft, and

said fuselage being restrained from movement along the longitudinal axis of said spindle and having an opening for admitting said head and two downwardly-extending pins for matingly engaging said bores for restraining the rotation of said fuselage while said rotational movement is being imparted to said ring.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US191246 *Jul 29, 1877 Improvement in flying tops
US922842 *Jan 14, 1909May 25, 1909Leonard KarnToy spinner.
US2012600 *May 11, 1934Aug 27, 1935Fischer Louis GToy autogyro
US2382347 *Jan 6, 1944Aug 14, 1945John BrayleyToy helicopter
US2537393 *Jul 27, 1946Jan 9, 1951Bisch Paul EToy helicopter
US3229414 *Apr 30, 1963Jan 18, 1966Frank T JohmannPropeller-driven toy
FR928748A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3995392 *Jan 21, 1975Dec 7, 1976Adolph E. GoldfarbToy flying vehicle set
US4030238 *May 4, 1976Jun 21, 1977Lakin Willis MRotating toys, particularly flying toys
US5474482 *May 9, 1994Dec 12, 1995Davidson; Frankie G.Aerodynamic rotor with chemiluminescent light source holder
US7825554Sep 20, 2005Nov 2, 2010Bastian Family Holdings, Inc.Stabilizing power source for a vehicle
US8648509Jan 15, 2010Feb 11, 2014Allen Bastian II WilliamStabilizing power source for a vehicle
US8734093 *Dec 27, 2010May 27, 2014Industrial Technology Research InstituteMechanism for modulating diffuser vane of diffuser
US20070062543 *Sep 20, 2005Mar 22, 2007Bastian Family Holdings, Inc.Stabilizing power source for a vehicle
US20070281576 *Jun 6, 2006Dec 6, 2007Pao-Chang WuProjectile flier
US20080096460 *Oct 9, 2007Apr 24, 2008Julio SandovalSmall vehicle energized on handheld launcher
US20100116924 *Jan 15, 2010May 13, 2010Bastian Family Holdings, Inc.Stabilizing power source for a vehicle
US20100323582 *Aug 26, 2010Dec 23, 2010Julio SandovalSmall vehicle energized on handheld launcher
US20120134784 *Dec 27, 2010May 31, 2012Industrial Technology Research InstituteMechanism for modulating diffuser vane of diffuser
US20120270472 *Jun 26, 2012Oct 25, 2012Julio SandovalSmall vehicle energized on handheld launcher
Classifications
U.S. Classification446/40
International ClassificationA63H27/14, A63H27/127, A63H27/00
Cooperative ClassificationA63H27/12, A63H27/14
European ClassificationA63H27/14, A63H27/12