Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3705091 A
Publication typeGrant
Publication dateDec 5, 1972
Filing dateOct 5, 1971
Priority dateOct 5, 1971
Also published asCA978140A1, DE2245753A1
Publication numberUS 3705091 A, US 3705091A, US-A-3705091, US3705091 A, US3705091A
InventorsAdir Jacob
Original AssigneeLfe Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Gas discharge apparatus
US 3705091 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Dec; 5, .1972 A. JACOB GAS DISCHARGE APPARATUS Filed Oct. 5, 1971 INVENTOR ADIR JACOB BY WM ATTORNEY United States Patent O ,705,091 GAS DISCHARGE APPARATUS Adir Jacob, West Roxbury, Mass., assignor to LFE Corporation, Waltham, Mass. Filed Oct. 5, 1971, Ser. No. 186,739 Int. Cl. B01k 1/00 US. Cl. 204-312 4 Claims ABSTRACT OF THE DISCLOSURE The admission of a gas to a reaction chamber which has been previously evacuated, is followed by its activation via a high-frequency electromagnetic field formed by a composite coil surrounding a material-handling zone within the chamber. The activated gas reacts with material introduced into the chamber and is thereafter withdrawn, along with inactive gas and resultant gaseous by products, from the system. The construction of the chamber and the composite coil are such as to provide a substantially uniform distribution of gaseous excited species throughout the material-handling volume of the chamber.

BACKGROUND OF THE INVENTION This invention relates to gas discharge apparatus and, more particularly, it is concerned with an improved means for producing an electromagnetic field facilitating eflicient and uniform conversions during heterogeneous (gas-solid) reactions.

In the co-pending application of Georges I. Gorin, Ser. No. 051,275, filed June 30, 1970 and now Pat. No. 3,619,- 403, and entitled Gas Reaction Apparatus, there is disclosed improved apparatus for including reactions between a material and activated (excited) species of a gas. As described therein, a gas is fed into a reaction chamber at a low pressure and is activated by means of an electromagnetic field formed about a conventionally-wound coil which envelops the material-handling zone of the chamber. During reaction with the activated gas stream (plasma) the material decomposes and/or volatilizes. The resultant byproducts together with unreacted species of the gas, are withdrawn from the chamber through an outlet port by means of a mechanical vacuum pump.

Gas reaction systems of the type described above are being used to great advantage in a variety of industrial processes including, for example, the process of manufacturing integrated circuit components from semiconductor substrates. Such systems provide an economical, safe,

and rapid means for selectively removing exposed layers of organic material from predetermined areas during the various steps involved in the manufacturing process. How ever, a basic problem encountered with such systems to date has been their inability to render a sufiiciently uinform distribution of reactive chemical conversions throughout a working zone that must accept the production loads of such substrates. Consequently, some of the semiconductor substrates are overexposed to the plasma environment causing failure of material and malfunctioning of the final product.

Accordingly, the general object of the present invention is to provide improved apparatus of the aforementioned character, whereby uniform heterogeneous reactions are accomplished throughout the material-handling zone of a reaction chamber.

SUMMARY OF THE INVENTION In accordance with the present invention, there is provided a gas discharge apparatus having a composite coil which surrounds the material-handling zone of a reaction chamber. The composite coil consists of two coil sections ice whose respective coil turns are wound in opposite directlons. A suitable RF energy source is coupled to the compos1te coil by means of an impedance matching network.

DESCRIPTION OF PREFERRED EMBODIMENT The novel features of the present invention, together with further objects and advantages, will become apparent from the following detailed description of a preferred embodiment of the invention and from the accompanying drawing to which the description refers.

The drawing is an illustration in diagrammatic form of a gas discharge system constructed in accordance with the principles of the present invention.

With reference to the drawing, it will be observed that reference numeral 1 designates a reaction chamber having an input manifold 2 whose outlets are coupled to four gas inlet ports 4 which are symmetrically disposed about the circumference of the chamber. A container 6 of molecular gas is coupled to the inlet of manifold 2 by way of a feedline 8 having inserted therein a pressure regulator valve 10 and an adjustable flow meter 12 for monitoring gaseous flow rates throughout the system. Gas is exhausted from the chamber via the gas outlet port 14.

A portion of the reaction chamber 1 is shown broken away in the drawing to better illustrate one of the four gas diffusion tubes 16 which are fused to the gas inlet ports 4 and are symmetrically disposed along the inner wall of the chamber. Each of the tubes 16 has a plurality of holes 18 along its length which uniformly distribute the nonactivated gas within the chamber.

Chamber 1 has an opening at one end for material to be inserted into or removed from its material-handling zone. This material may, for example, consist of a tray of semiconductor slices from which it is desired to etch away exposed portions of a silicon dioxide layer. The chambers opening is provided with a closure in the form of a caplike cover 20 which is fitted tightly over the opening after the material is inserted.

Surrounding the material-handling zone of the chamber 1 is a composite coil assembly 22 which is adapted to couple an electromagnetic field to the gas within the chamber. The composite coil 22 is a multiturn coil having a section 24 in which the coil turns are wound in a counterclockwise direction, as observed from the front of the chamber, and a section 26 in which the coil turns are wound in a clockwise direction as observed from the front of the chamber. The coil sections 24 and 26 meet at a common junction 28 and have free end terminals 30 and 32, respectively.

An RF generator 34 has one output lead 36 connected to the input terminal 38 of an impedance matching network 40, and its other output lead connected to a ground reference terminal. The matching network 40 includes a variable capacitor 42 connected between its input terminal 38 and ground, a variable inductor 44 connected between its input terminal 38 and its output terminal 46, and a variable capacitor 48 connected between its output terminal 46 and the common ground. The junction 28 of the composite coil is connected to the input terminal 38 of the impedance matching network, while the end terminals 30 and 32 of the composite coil are each connected to the output terminal 46 of the impedance matching network. The outlet port 14 of the reaction chamber 1 is connected to a vacuum gauge 50, which continually measures the pressure maintained within the chamber, and also to a mechanical vacuum pump (not shown) by way of exhaust line 52.

In operation, the material to be plasma-treated is introduced into the material-handling zone of chamber 1 and the system is initially pumped down to a preset low-pressure level. The gas is then automatically admitted to the chamber via the diffusion tubes 16, and the RF generator 34 is then enabled to deliver its energy. The coupling of RF energy into the gas is achieved by means of the matching network 40 and the composite coil 22 that surrounds the material-handling zone of the chamber. The power provided by generator 34 is preferably in the order of a few hundred watts continuous radiation at a frequency of approximately 13.5 mHz. The unique construction of the composite coil 22 is such that the electric fields produced by its coil sections 24 and 26 tend to produce a weak re sultant electric field, whereas the associated magnetic fields tend to produce a reinforced resultant magnetic field. As a result, the excited species produced by the electromagnetic breakdown of the gas are uniformly distributed throughout the material-handling zone of the chamber and etching reactions occur more uniformly across the large axis of reaction 1.

It is believed that moderation of electron energies coupled with a larger number of electrons sharing the same energy throughout the entire volume are the consequences of the resultant electric and magnetic fields. Presumably the electron energy distribution curve has been flattened and fewer electrons deactivate on the walls of the chamber. Volatile components produced by the various reactions, as well as unreacted and undissociated gas, are continuously removed from the chamber by action of the mechanical vacuum pump. The termination of the reaction process is marked by RF energy and gas supply cut off, followed by the evacuation of the chamber and associated flow lines from gaseous residuals prior to their being purged with air.

While there has been shown what is at present considered to be the preferred embodiment of the invention, it will be obvious to those skilled in the art that various changes and modifications may be made therein without departing from the invention.

What is claimed is:

1. Apparatus for reacting a gas with a material in the influence of an electromagnetic field comprising:

a reaction chamber adapted to contain said gas and said material,

a composite coil disposed about said reaction chamber,

said composite coil having two joined coil sections whose respective coil turns are wound in opposite directions,

an RF source, a

and means for coupling said RF source to said composite coil.

2. The apparatus of claim 1 wherein said reaction chamber has a generally cylindrical shape, a closure means at one end of said chamber to enable vacuum-tight operation, means for introducing a gas within said chamher, and means for with drawing the gas from said chamber.

3. The apparatus of claim 2 wherein said means for coupling said RF source to said composite coil comprises:

an impedance matching network having an input, an

output, and a common terminal,

an inductance coupled between said input and said output terminals,

a capacitor connected between said input and said common terminal,

another capacitor connected between said output and said common terminal,

means for coupling said input terminal to the junctio of said two coil sections, a means for coupling said output terminal to the free ends of said two coil sections,

and means for coupling said RF source between said input terminal and said common terminal.

4. The apparatus of claim 3 wherein said two coil sections have an equal number of coil turns.

References Cited UNITED STATES PATENTS JOHN H. MACK, Primary Examiner T. TUFARIELLO, Assistant Examiner US. Cl. X.R. 204-156, 309

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3904529 *Apr 24, 1974Sep 9, 1975Lfe CorpGas discharge apparatus
US4362632 *Aug 2, 1974Dec 7, 1982Lfe CorporationGas discharge apparatus
US5277751 *Jun 18, 1992Jan 11, 1994Ogle John SMethod and apparatus for producing low pressure planar plasma using a coil with its axis parallel to the surface of a coupling window
US5280154 *Jan 30, 1992Jan 18, 1994International Business Machines CorporationRadio frequency induction plasma processing system utilizing a uniform field coil
US5433812 *Jan 19, 1993Jul 18, 1995International Business Machines CorporationApparatus for enhanced inductive coupling to plasmas with reduced sputter contamination
US5558722 *Sep 14, 1995Sep 24, 1996Matsushita Electric Industrial Co., Ltd.Plasma processing apparatus
US5622635 *Apr 5, 1995Apr 22, 1997International Business Machines CorporationMethod for enhanced inductive coupling to plasmas with reduced sputter contamination
US5711850 *May 22, 1996Jan 27, 1998Matsuhita Electric Industrial Co., Ltd.Plasma processing apparatus
US5962923 *Aug 7, 1995Oct 5, 1999Applied Materials, Inc.In a multilayer integrated circuit
US6045666 *Nov 24, 1997Apr 4, 2000Applied Materials, Inc.Hole is first filled with a barrier film comprising a layer of titanium nitride, conductive aluminum is coated into the hole with an ionized metal process in presence of high density plasma, then filled the hole using low density plasma
US6136095 *Oct 6, 1997Oct 24, 2000Applied Materials, Inc.Apparatus for filling apertures in a film layer on a semiconductor substrate
US6217721Apr 5, 1996Apr 17, 2001Applied Materials, Inc.Filling plug having high aspect ratio by precoating interior of plug hole or other aperture with liner layer deposited by physical vapor deposition utilizing high-density plasma
US6217937Jul 15, 1998Apr 17, 2001Cornell Research Foundation, Inc.Organometallic vapor phase epitaxy; a cold wall reactor; inner wall, central cavity with an open and closed end and a heater, outer wall; space between inner and outer provides a reactor cell with a susceptor rotatably mounted
US6238533Oct 16, 1997May 29, 2001Applied Materials, Inc.Integrated PVD system for aluminum hole filling using ionized metal adhesion layer
US6239553 *Apr 22, 1999May 29, 2001Applied Materials, Inc.RF plasma source for material processing
US6313027Oct 6, 1997Nov 6, 2001Applied Materials, Inc.Method for low thermal budget metal filling and planarization of contacts vias and trenches
US6332928Dec 21, 2000Dec 25, 2001Cornell Research Foundation, Inc.High throughput OMPVE apparatus
US7074714Nov 3, 2004Jul 11, 2006Applied Materials, Inc.Method of depositing a metal seed layer on semiconductor substrates
US7253109Feb 28, 2005Aug 7, 2007Applied Materials, Inc.Method of depositing a tantalum nitride/tantalum diffusion barrier layer system
US7381639Jun 9, 2006Jun 3, 2008Applied Materials, Inc.Method of depositing a metal seed layer on semiconductor substrates
US7687909May 30, 2007Mar 30, 2010Applied Materials, Inc.Metal / metal nitride barrier layer for semiconductor device applications
US8454810Jul 14, 2006Jun 4, 20134D-S Pty Ltd.Dual hexagonal shaped plasma source
DE3632340A1 *Sep 24, 1986Mar 31, 1988Leybold Heraeus Gmbh & Co KgInduktiv angeregte ionenquelle
DE3632340C2 *Sep 24, 1986Jan 15, 1998Leybold AgInduktiv angeregte Ionenquelle
EP0073963A2 *Aug 16, 1982Mar 16, 1983The Perkin-Elmer CorporationInductively coupled discharge for plasma etching and resist stripping
Classifications
U.S. Classification422/186.1, 204/156, 118/723.00I
International ClassificationH01J37/32, B01J19/08
Cooperative ClassificationH01J37/321, B01J19/087
European ClassificationH01J37/32M8D, B01J19/08D
Legal Events
DateCodeEventDescription
Aug 21, 1989ASAssignment
Owner name: CONRAC CORPORATION (80%)
Free format text: ASSIGNS TO EACH ASSIGNEE THE PERCENTAGES OPPOSITE THEIR RESPECTIVE NAME;ASSIGNOR:CODE-A-PHONE CORPORATION, A CORP. DE;REEL/FRAME:005136/0610
Effective date: 19871231
Owner name: MARK IV INDUSTRIES, INC., (20%)
Aug 21, 1989AS99Other assignments
Free format text: MARK IV INDUSTRIES, INC., (20%); CONRAC CORPORATION (80%) * CODE-A-PHONE CORPORATION, A CORP. DE : 19871231 OTHER CASES: NONE; ASSIGNS TO EACH ASSIGNEE THE PERCENTAGES OPPOSITE THEIR RESP
Oct 25, 1988ASAssignment
Owner name: LFE CORPORATION
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MARINE MIDLAND BANK, N.A.;REEL/FRAME:005041/0045
Effective date: 19880223
Jul 1, 1988AS02Assignment of assignor's interest
Owner name: AUDUBORN HOLDINGS INC., A DE. CORP.
Effective date: 19871231
Owner name: MARK IV INDUSTRIES, INC.,
Jul 1, 1988ASAssignment
Owner name: AUDUBON ENTERPRISES INC.
Owner name: AUDUBON HOLDINGS INC.
Owner name: AUDUBON INDUSTRIES INC.
Owner name: AUDUBON VENTURES INC.
Owner name: CODE-A-PHONE CORPORATION
Free format text: MERGER;ASSIGNOR:LFE CORPORATION, (MERGED INTO);REEL/FRAME:005020/0027
Effective date: 19870930
Owner name: MARK IV HOLDINGS INC.
Owner name: MARK IV INDUSTRIES INC.
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AUDUBON ENTERPRISES INC.;REEL/FRAME:005020/0091
Owner name: MARK IV INDUSTRIES, INC.
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MARK IV VENTURES INC.;REEL/FRAME:005020/0082
Owner name: MARK IV INDUSTRIES, INC.,
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AUDUBORN HOLDINGS INC., A DE. CORP.;REEL/FRAME:005020/0118
Effective date: 19871231
Owner name: MARK IV VENTURES INC.
Owner name: PARKWAY ENTERPRISES INC.
Owner name: PARKWAY HOLDINGS INC.
Owner name: PARKWAY INDUSTRIES INC.
Free format text: ASSIGNS TO EACH ASSIGNEE THE AMOUNT SPECIFIED BY THEIR RESPECTIVE NAMES.;ASSIGNOR:CONRAC CORPORATION;REEL/FRAME:005020/0035
Owner name: PARKWAY VENTURES INC.
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AUDUBON INDUSTRIES, INC.;REEL/FRAME:005020/0100
Effective date: 19881231
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AUDUBON VENTURES INC.;REEL/FRAME:005020/0055
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MARK IV HOLDINGS INC.;REEL/FRAME:005020/0073
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PARKWAY ENTERPRISES INC.;REEL/FRAME:005020/0046
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PARKWAY HOLDINGS INC.;REEL/FRAME:005044/0710
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PARKWAY INDUSTRIES INC.;REEL/FRAME:005020/0064
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PARKWAY VENTURES INC.;REEL/FRAME:005020/0109
Sep 1, 1987ASAssignment
Owner name: MARINE MIDLAND BANK, N.A., ONE MARINE MIDLAND CENT
Free format text: SECURITY INTEREST;ASSIGNOR:LFE CORPORATION, A CORP. OF DE.;REEL/FRAME:004804/0379
Effective date: 19870416
Owner name: MARINE MIDLAND BANK, N.A.,NEW YORK
Feb 21, 1986ASAssignment
Owner name: MARINE MIDLAND BANK, N.A., ONE MIDLAND CENTER, BUF
Free format text: SECURITY INTEREST;ASSIGNOR:LFE CORPORATION, A CORP. OF DE.;REEL/FRAME:004526/0096
Effective date: 19860214