Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3706094 A
Publication typeGrant
Publication dateDec 12, 1972
Filing dateFeb 26, 1970
Priority dateFeb 26, 1970
Publication numberUS 3706094 A, US 3706094A, US-A-3706094, US3706094 A, US3706094A
InventorsPeter Harold Cole, Richard Vaughan
Original AssigneePeter Harold Cole, Richard Vaughan
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electronic surveillance system
US 3706094 A
Abstract
A passive label is interrogated by transmitting electromagnetic energy to the label and receiving electromagnetic energy from the label. Time delay means are provided in the label, preferably by utilization of surface acoustic waves, so that the returned energy is transmitted from the label after the interrogation energy has ceased. The label includes a substrate of piezo-electric material having coded information thereon, and serving to receive electromagnetic energy, convert it to acoustic energy, store the converted energy for a suitable time, reconvert the stored energy to electromagnetic energy and to transmit the electromagnetic energy to the receiver.
Images(11)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Cole et al.

[ 51 Dec. 12, 1972 (54] ELECTRONIC SURVEILLANCE SYSTEM [72] Inventors: Peter Harold Cole, 103 Strangways Terrace, N., Adelaide; Richard Vaughan, 6 Taylor St., Sydney, New South Wales, both of Australia 22 Filed: Feb. 26, 1970 21 Appl.No.: 14,607

[52] U.S. Cl ..343/6.5 SS, 343/68 R, 181/05 NP [51] Int. Cl ..G0ls 9/56 [58] Field of Search ..343/6.5 SS, 6.8 R

[56] References Cited UNITED STATES PATENTS 3,273,146 9/1966 Hurwitz ..343/6.5 SS X Primary Examiner-T. H. Tubbesing Attorney-McGlew and Toren ABSTRACT A passive label is interrogated by transmitting electromagnetic energy to the label and receiving electromagnetic energy from the label. Time delay means are provided in the label, preferably by utilization of surface acoustic waves, so that the returned energy is transmitted from the label after the interrogation energy has ceased. The label includes a substrate of piezoelectric material having coded information thereon, and serving to receive electromagnetic energy, convert it to acoustic energy, store the converted energy for a suitable time, reconvert the stored energy to electromagnetic energy and to transmit the electromagnetic energy to the receiver.

27 Claims, 25 Drawing Figures PM'EIITED I2 I97? 3. 706. 094

sum 01 or 1 1 TRANSMITTER RECEIVER ENCODER IFIG.| 5 z OSCILLATOR -D- AMPLIFIER FILTER V OSCILLATOR /8 II REF. OUTPUT Ill 2% 2 M U -lo- 3 I 20- J c A Frequency 080 900 920 94 l MHZ -40r- INVENTORS PETER HAROLD cou-z mcuAno VAUGHAN by m,

ATTORNEYS PATENTEDBEE 12 m2 3.706.094

sum OEUF 11 E g g g; 2' 1 S E 2 A 8 2 x g 8 m INVENTORS PETER HAROLD COLE RICHARD VAUGHAN ATTORNIYH FIG.

P'ATE'NTEDnEc 12 I972 SHEET an 0F 11 CONNECTION Tp ANTENNA w E F R G 0 MY E m AA m E mm mun P U E M SWR ADSORBER TO ANTENNA FIG."

INVENTORS PETER HAROLD -co| E RICHARD vgusnm by .Q.

hjvzfiwq,

COAXIAL OUT ATTORN EYS 3.706094 sum 05 0F 11 PMENTED can 12 me H H= W o So 0 TKEW 3 9.

INVENTORS PETER HAROLD COLE RlCHARD VAUGHAN ATTORNEYS PATENTEDUEB I2 m2 SHEET GATE DEUF 11 3! I! e o E m J n. E 0

INVENTORS PETER HAROLD COLE RICHARD VAUGHAN y ATTORNEYS PA'TENTEBBEB 12 2 3.706.094

SHEET U7UF 11 l +2ov FIG.I6 i I I LOW POWER 7 T AMPLIFIER g 1 INPUT w1+--{ OUTPUT DI 56 SETTING CIRCUIT INPUT OUTPUT F|G |7 O 0 MEDIUM POWER AMPLIFIER 5 8 FIGJB OUTPUT INPUT P I I l -2ov INVENTORS PETER HAROLD COLE RICHARD VAUGHAN ATTORNEYS P'A'TENTED DEC 12 I972 SHEET 08 0F 11 ONGE PETER HAROLD COLE RICHARD VAUGHAN ATTORNEYS PATENTEU 12 I97? 3. 706, 094

wmszs-o L mm mm E;

INVENTORS PETER HAROLD COLE RICZHARD VAUGHAN ATTORNEYS FIG.2|

PATENTEU 12 \973 3. 706, 094

sum 10 0F 11 GATED RF N T JV fi INVENTORS if 0(5 PETER HAROLD COLE R'CHARD VAUGHAN ATTORNEYS ELECTRONIC SURVEILLANCE SYSTEM BACKGROUND OF THE INVENTION The basic principle of operation of any interrogating system for passive labels, is as follows: Energy in some form is transmitted to the label by a transmitter and transmitting antenna unit. This energy is then processed in some way by the label, and the resulting energy retransmitted by the label as a reply" signal. This reply" energy is then detected, suitably processed and information extracted therefrom by a sensitive receiver and receiving antenna unit. It is basic to all interrogation systems that the very small reply energy from the label be distinguished from the very much larger transmitter or interrogation" energy. This distinction can be obtained by various methods.

SUMMARY OF THE INVENTION The present invention utilizes a method which achieves the desired result, incorporating time delay in the label preferably by utilization of surface acoustic waves so that the reply energy is transmitted after the interrogation energy has died away.

The facilities offered by the present invention provide for the open or secret interrogation by radio waves of coded information from prepared passive labels by a remote sensing apparatus. Some of the many applications are: a. Automatic sorting of passengers luggage in airline terminals. b. Sorting and routing of letters and parcels in postal services. c. Identification, accreditation and location of personnel in security installations, factories, hospitals or military theatres. d. Ticketing of passengers in transportation systems. e. Prevention of theft of merchandise from shops or warehouses, of books in libraries or of appropriate items in factories or other places, by tagging such items with a label and locating a receiver covering each exit, so that the unauthorized passage of such tagged items through each exit will be detected.

A system according to the invention may be set up to provide the following features:

a. The system returns several, or even many, binary digits (bits) of information to the interrogator. A social security number for example requires 30 bits of information.

b. The labels containing the coded information are passive, with indefinitely long storage life, can be read non-destructively, are durable under various environmental and handling conditions, are small and have low manufacturing cost.

c. The labels can have any orientation relative to and considerable distance from the sensing apparatus, can be in motion, and can be separated from the sensor by optically opaque barriers.

d. The coded signal is distinguishable from background clutter signals accidently produced by the environment of the label being interrogated.

This distinction from clutter signals is made by the incorporated time delay and, where necessary, by pulsetime coding of the reply signal.

e. The encoding of the information on the label can be performed by simple means at the time the label is put into service. Users of the system need stock only blank labels rather than a complete set of labels with all possible codes.

To better illustrate the principles involved, there is described below one possible design or embodiment for a particular system, namely a system for the encoding of 10 bits of information in a plastic card 5 cm g 8 cm X 1 mm, the card to be sensed from a distance of 3 meters. The card may have any orientation and can be moving at a speed of up to 1 meter per sec. in any direction, as may be required for example in a baggage sorting operation.

The general principle of a system according to this fon'n of the invention is to provide in the label card a means of receiving electromagnetic energy, converting it to acoustic form, storing it for a suitable time, reconverting it to electromagnetic energy for retransmission in a coded form which then contains the information encoded in the label.

A further form of the invention is also described in which a carrier frequency of 10 MHz is used.

BRIEF DESCRIPTION OF THE DRAWINGS:

In order to assist in an understanding of the system it is described with reference to the accompanying drawings in which:

FIG. 1 is a block diagram of the system as a whole,

FIG. 2 is a similar diagram of the transmitter unit,

FIG. 3 is a curve showing the passband of the output filter,

FIG. 4 is an isometric view of a label for use with the system,

FIG. 5 is a view of a portion of the label to an enlarged scale,

FIG. 6 shows details of one of the array elements of the label,

FIG. '7 is a diagram showing the sequence of pulses arriving at the receiver,

FIG. 8 is a block diagram of the receiver,

FIG. 9 is a block diagram of the signal processor, and

FIGS. 10 and 11 show modified forms of array structures for labels intended for simplified applications,

FIG. 12 is a block diagram of the system as a whole,

FIG. 13 is a diagram of the antennas used in the transmitter and receiver units,

FIG. 14 is a circuit diagram of the master oscillator for the transmitter unit (and also of the local oscillator for the receiver unit),

FIG. 15 is a circuit diagram of a gated amplifier used in the transmitter unit (and also of a gated amplifier used in the receiver unit),

FIG. 16 is a circuit diagram of one of two low power amplifiers used in the transmitter unit,

FIG. 17 is a circuit diagram of a dynamic range expanding and power level setting unit used in the transmitter,

FIG. 18 is a circuit diagram of a medium power amplifier used in the transmitter unit,

FIG. 19 is a circuit diagram of the transmitter output amplifier,

FIG. 20 is a diagram of the coded label,

FIG. 21 is a diagram of the surface acoustic delay line,

FIG. 22 is a circuit diagram of the receiver preamplifier,

FIG. 23 is a circuit diagram of a gated rf amplifier used in the receiver,

FIG. 24 is a circuit diagram of a balanced mixer and balance to unbalance amplifier used in the receiver,

FIG. 25 is a circuit diagram of a narrow band amplifier in the output of the receiver.

The basic components of the system are shown in block diagram in FIG. 1. The system contains a transmitter of electromagnetic waves 1, an information carrying label 2, a receiver of electromagnetic waves 3, all of which are operated simultaneously. There is also a customer encoding device 4, which is used to encode the desired information on to previously blank stock labels prior to their use in the system.

Further details of the transmitter unit appear in FIG. 2. The transmitter employs standard UHF and microwave technology. The principle components and specifications are:

a. A master oscillator 5 operating at (in this example) 897.5 MHZ, with a main output 6 and reference output 7 as shown.

b. A low frequency pulse oscillator 8 producing rectangular pulses of duration 100 nanoseconds, rise time 5 nanoseconds, pulse repetition frequency KHZ, provided with a main output 9 and a reference output 10, as shown.

c. A pulsed power amplifier 11, with center frequency 915 MHZ, band width 50 MHZ, peak output power 100 watts, pulse length 100 nanoseconds, pulse repetition frequency 10 KHZ, and on/off ratio in excess of 150 decibels.

d. An output filter 12, with a passband shown in FIG. 3, to restrict the frequency components of the output radiation to those allowed by the statutory authority. The position of the carrier in relation to the passband of FIG. 3 has been chosen to provide vestigial sideband modulation.

e. A microwave antenna system 13, which illuminates the area containing the information label to be read. An antenna gain of 6 decibels is chosen in this design. Higher figures can be used to advantage and without difficulty.

f. Under some circumstances it is useful to employ microwave adsorbing materials 14, in the main lobe of the transmitter antenna to avoid electromagnetic echo signals from distant objects.

The construction of a suitable information carrying passive label is shown in the isometric drawing FIG. 4. The outer section is in the form of a plastic or cardboard card 15, which serves as a protection for the inner sensitive elements 16. Printed or punched information 17 can be included on the card if this is convenient for other purposes. The part of the card which interacts with the sensing system is a microwave antenna system 18, one form of which might be a lumped loaded loop for omni directional response as shown. This antenna is connected via a transmission line 19, to the part of the card on which the information is encoded. This latter element is shown in more detail in FIG. 5.

The coding portion of the card consists first of a piezoelectric substrate 20, in this example a plate of single crystal quartz is used. Other materials can be used providing that they singly or in combination provided a high piezoelectrics co-efficient transducer region and a low acoustic loss propogation region.

The information is encoded on the substrate in the form of the spatial pattern formed by the conducting electrode array deposited on the substrate surface. Details of the space pattern appropriate to the ten bit binary code 1 10100111 1 are shown in FIG. 5, and the details of one of the array elements are shown in FIG. 6. The array contains an end element 22, consisting of 26 electrodes and a set of coding elements 23, consisting of 16 electrodes. Alternate electrodes are connected to different conductors of the transmission line 19, from the microwave antenna 18. The spacing of the electrodes in this example is approximately 2pm, the precise distance is adjusted to be one-half of a wave length of a surface electroacoustic wave at the operating center frequency of 9 15 MHZ.

The precise manner in which the desired code is carried by the array is that the connection or disconnection of an array element 23, at a given point on the main transmission line 19, signifies respectively a one or a zero binary digit. In practice all cards are manufactured with a full sequency of ones by having all array elements present. The required code is impressed on the card by the user by severing the connections of an appropriate number of array elements from the main transmission line. Labels may, however, be coded during manufacture by omitting the electrode structure from one or more elements or by not connecting them to the transmission line.

In operation, the card receives the pulsed electromagnetic energy via its antenna 18, and energizes the entire array along the transmission line 19. The various elements of the array launch surface electroacoustic waves along the piezoelectric substrate in the direction of the transmission line. After a time equal to the propogation time for such waves along the blank portion 24, of the transmission line, the electroacoustic waves are reconverted to electromagnetic energy and reradiate electromagnetic waves via the antenna 18. This reradiated energy is picked up and processed by the receiver 3.

A diagram of the sequence of pulses which arrive at the receiver is shown in FIG. 7. The sequence consists of a large amplitude pulse 25, arriving directly from the transmitter a series of unwanted interference pulses 26, resulting from propogation of electroacoustic pulses between various elements of the coding array, followed by the wanted set of pulses 27, which result from propogation of electroacoustic pulses between the end element 22, and the set of coding elements 23. It is this last group of pulses which are free of interference and contain the coded information, which are processed by the receiver in the manner described below:

The various components of the receiver 3, are shown in block diagram form in FIG. 8. The directional antenna 28 is similar in design to the transmitter antenna 13. A band pass filter 29 serves to reject possible radio frequency interference from sources unrelated to this system. A limiting device 30 protects the receiver from saturation or overload from the large amplitude transmitted pulse. A low noise (noise figure less than 6 db) pre-amplifier 31, and post-amplifier fitted with automatic gain control 32, provide an amplified received pulse sequence to the signal processing unit 33. Details of the design of the signal processing unit capable of providing for maximum sensitivity, using the technique of synchronous detection, are given below.

A block diagram of the signal processor appears in F IG. 9. The amplified pulse sequence from the receiver enters at 34, is divided into two signals, fed via buffer amplifiers 35, to the synchronous detectors 36 and 37. The reference drive for detector 36 is obtained from the transmitter master oscillator signal which enters at 7. The reference drive for detector 37, is derived from the same reference via the "/2 phase shift network 38. As a result the detectors 36 and 37 perform respectively in phase and quadrature phase detection of the received signal with respect to the transmitter master oscillator. The detected signals are fed to buffer amplifiers 39, from each of which outputs, in the present example, are available. Each of the 10 outputs from these buffer amplifiers is then fed to one of 20 gating circuits 40, only two of which are shown. These gates are controlled by a count down circuit 41, which is synchronized with the transmitted pulse via a signal brought from the transmitter through the reference line 10. The count down circuit has ten output pulses each with a width equal to the transmitter pulse, 100 nsec in this example. The various output pulses have different time delays from the transmitted pulse, each adjusted to the delay expected from one or another of the pulses in the received pulse train 27. The outputs of the various gates 40 are filtered in low pass filters 42 which set the effective noise band width of the system. The outputs of these filters are fed through bufi'er amplifiers (not shown) to the square law devices 43, which produce a (unidirectional) output proportional to the square of the input signal over the designed operating range. The design of such a unit presents only a simple problem requiring for solution an operational amplifier and a semiconductor diode network. As a final step in the signal processor the outputs of corresponding pairs of square law devices 43, are added and fed to the set of ten output terminals 44, (only one shown) which provide the 10 bits of information. A reference signal from each of these bits is returned to the receiver via line 45, to provide automatic gain control. The presence of an automatic gain control signal requires at least one non zero bit in the coded sequence. Inclusion of odd parity check in the code ensures the presence of this required bit. The inclusion of this check bit provides an additional safeguard against false triggering of the system by spurious objects.

The outputs of the above described signal processor can be fed to a wide range of logic circuits, not shown in FIG. 9, to perform the various command identification and sorting tasks required of the overall system. The design of such logic circuits follows well established procedures.

Calculations show that the power losses occurring in various parts of the overall transmission path from transmitter to receiver are:

a. Electromagnetic propogation loss from transmitter antenna to label antenna: 33 db.

b. Electromagnetic to electroacoustic conversion loss: 38 db.

0. Electroacoustic propogation loss: 2db.

d. Electroacoustic to electromagnetic conversion loss: 31 db.

e. Electromagnetic propogation loss from label antenna to receiver antenna: 33 db.

The overall transmission path loss is 137 db.

The noise band width of the receiver is determined by the low pass filter 42, which follows the synchronous demodulation and is set to l KHZ. The input noise level of the receiver, allowing for 6 db. noise figure and 1 db loss in the band pass filter 29, is --l 67 db W. The input signal level at the receiver is l07 db W. The signal to noise ratio at the receiver is thus db and the system is not receiver noise limited.

The system depends for its success on distinguishing the acoustically delayed echos from background clutter produced by direct electromagnetic echo. Since the acoustic time delay before retransmission of the coded pulse sequence is, in this example, in excess of 3 microseconds, the relevant electromagnetic echos will be via propogation paths of lengths in excess of 900 meters, and will in most circumstances be suitably small. Problems which may arise can be eliminated by proper use of the antenna patterns of the transmitter and receiver, in conjunction with suitably placed natural or artificial microwave adsorbers. Calculations have shown that direct echo can be reduced well below the acoustic echo level if the resultant enclosure has a Q factor of less than 100, and the system is then not limited by background clutter.

There are certain obvious variations from the design example described in detail which may be made to suit particular applications. In particular some of them are:

a. Change of carrier frequency from 897.5 MHZ. The dimensions of the electroacoustic conversion array may be changed to lower or higher values as required by the technology to be employed in their manufacture.

b. Pulse length and pulse repetition rate may be varied to make a longer or more compact code possible.

c. Changes may be made in transmitter power level and the characteristics of transmitter, receiver and label antennas, including use of duplexing, to provide various microwave propogation systems.

d. A range of substrate materials can be used for the acoustic propogation, including piezoelectric materials whose acoustic loss is not necessarily low, deposited on low acoustic loss substrates. Magnetostriction devices may also used in place of or in conjunction with the piezoelectric materials to accomplish the electroacoustic conversion.

e. The transducer array structure can be modified in number and shape of elements, and in the manner of its interconnection to the transmission line.

f. Coding methods other than the simple binary, such as pulse height, width or position, can be used.

g. The disposition of the various elements in the card, and the size shape and nature of the card can be varied to suit particular applications. In particular it may be advantageous to employ the edge rather than the surface of the acoustic substrate for the propogation of the acoustic waves.

h. The code and array structure can be simplified to fewer, or even one, element for simplified applications such as object surveillance as described in application (e) of section 1. Use is made of a surface wave reflector, or a rat race propogation path, in this case. Two such possible simplified structures are shown diagrammatically in FIG. 10 and FIG. 11. In the structure of FIG. 10, use is made of a surface wave reflector 46, which returns the acoustic pulse to the single acousticwave launching and receiving array 47. In the structure of FIG. 11, the surface wave is constrained by suitable groves 48, etched in the surface of the quartz substrate to propogate around a circular, or rat-race", propogation path so as to again return to the single acousticwave launching and receiving array after a suitable time delay.

i. As an alternative to using a pulse code in simple surveillance applications it is in fact sufficient to couple a resonant acoustic structure of sufficiently high such that it will continue to ring after the termination of the transmitter pulse. If the ringing time be long enough the resulting echo is easily distinguished from background clutter caused by direct electromagnetic echo.

To provide further assistance in understanding the system there is described below with reference to FIGS. 12 to 21, a version which operates at a carrier frequency of MHz and provides for a return signal carrying five bits of information.

The basic components of this realization of the system are shown in FIG. 12. The system is controlled by a pulse repetition frequency generator 50, (of which no schematic is given because it is a commercial instrument), which sends pulses at a 50 KPPS rate to the pulse width generator 51 (another commercial instrument); the output pulses being 0.5 ,1. sec. long. The gated amplifier 52, shown in FIG. 15 is controlled by the pulse width generator, and feeds 0.5 p. sec. pulses of radio frequency energy which have been generated by master oscillator 53, shown in FIG. 14, to the series of low power amplifiers 54 and 55 shown in FIG. 16. The amplified gated radio-frequency pulses are expanded in dynamic range by range expander and level setting circuits 56, shown in FIG. 17, and, after further amplification in medium power amplifier 57 shown in FIG. 18 and output amplifier 58, shown in FIG. 19 are fed to the transmitter antenna 59. The transmitter antenna is in the form of a shielded square magnetic dipole of scale 12 inches of a form of construction well known for aircraft direction finder loops and is loaded to a Q factor of 5. Details of the transmitter antenna are shown in FIG. 13, and schematic diagrams of many of the transmitter circuits are provided in FIGS. 14 to 19 inclusive.

The signal from the transmitter antenna travels by nearfield electromagnetic propogation to the coded label 60, the detailed construction of which is shown in FIGS. 20 and 21. The figures show a label suitable for a reply signal returning the particular five-bit code lllll. FIG. 20 shows the label used, consisting of a printed-circuit magnetic loop antenna 71 on a 6 inches X 4 inches epoxy-glass card 72 tuned to resonate at 10 Mc/s by a fixed capacitor 73 and loaded by a fixed resistor 74 to a Q factor of 5. The coding portion of the label is again a quartz substrate 5 cm X 2.5 cm X 2 cm thickness, carrying the conducting electrode pattern 75 shown in FIG. 21, which returns the five bit binary code 11111, connected to the antenna 71 as shown in FIG. 20.

The electrode pattern 75 is constructed and operates in a manner similar to that described in connection with the first embodiment of the invention. It will be noted however that the dimensions are quite different due to the use of a lower carrier frequency. In the electrode pattern 75 the spacing between individual electrodes of the pattern is 0.1625 mm. After a delay of approximately 6 p. sec. following the completion of the transmitter pulse, the coded reply signal is retransmitted by the label and a portion of the reply energy is received by the receiver antenna 61. The output signal for the receiver antenna is initially amplified by lownoise receiver amplifier 62, shown in FIG. 22, which has been specially designed to provide rapid recovery from overload, and is then passed to gated amplifier 63, shown in FIG. 23.

The gated amplifier 63 is one of two gated amplifiers 63 and 64 which are controlled in the receiver from the pulse repetition frequency generator 50 via delay generator 65 and pulse width generator 66. The function of delay generator 65 and pulse width generator 66 is to open the receiver gate at a period of time so delayed with respect to the time of the transmitter pulse as to correspond to the detection of a particular bit in the reply code. Varying the amount of delay provided by delay generator 65 allows various bits in the reply coded to be detected separately.

The further operation of the receiver is concerned with the balanced mixer 67, shown in FIG. 24, which receives the gated signals both from the low noise amplifier 62 and a highly stable local oscillator 68 and produces at its output the difference frequency resulting from the mixing of the two signals. This frequency is equal to the difference in frequency between master oscillator 53 and local oscillator 68. It is important to the operation of the overall system that master oscillator 53 and local oscillator 68 should have a closely controlled frequency to maintain the difference frequency within the passband of the narrow band tuned amplifier 68a, shown in FIG. 25. This difference frequency must be suitably chosen and must lie sufficiently about zero frequency (that is DC) to avoid l /f or flicker noise, but below the pulse repetition frequency generated by pulse repetition frequency generator 50, such that no mixing products of the gate transients of gates 63 and 64 will contaminate or add noise to the system output. The output from tuned amplifier 68a is fed to a nonlinear detector 69 which measures the magnitude of the difference frequency signal from tuned amplifier 68a and registers a l as being received from label 60 for the particular bit position then under examination if this signal suitably exceeds the system noise level.

We claim:

1. An electronic surveillance system, comprising transmitter means for transmitting electromagnetic signals, label means adapted for attachment to an article under surveillance for receiving a signal from said transmitter means and for retransmitting a reply, and receiver means for receiving and processing the reply; said label means including signal propagating means responsive to the signal from the transmitter for propagating the transmitted signal along a path at a rate slower than electromagnetic propogation, a plurality of sensing means mounted at coded locations along the path of said propagating means each for sensing the presence of a propagated signal at the location so that said sensing means together sense each signal sequentially in a given coded time order, an energy carrier means coupled to each of said sensing means for retransmitting the sequence of signals in the order they are sensed by said sensing means as the reply, said carrier means forming a signal path between said sensing means so that signals can move faster than the propagation rate of said propagating means.

2. A system as in claim 1, wherein said carrier means includes a conductive medium.

3. A system as in claim 1, wherein said sensing means each includes conductive transducing means coupled to said propagating means.

4. An apparatus as in claim 3, wherein said carrier means includes a conductive medium.

5. An apparatus as in claim 1, wherein said propagating medium comprises a piezoelectric material.

6. A system as in claim 1, wherein said propagating means forms a delay line on part of the path free of sensing means, a plurality of said sensing means being located beyond the delay line along the path.

7. A system as in claim 6, wherein said sensing means located beyond the delay line are bunched within a distance less than the length of the line, said path beyond the distance being substantially free of sensing means.

8. A system as in claim 7 wherein one of said sensing means is located at the beginning of the delay line opposite the other of said sensing means.

9. A system as in claim 6, wherein one of said sensing means is located at the beginning of the delay line opposite the others of said sensing means.

10. An electronic surveillance system comprising transmitter means for transmitting electromagnetic signals, label means attachable to an article under surveillance for receiving an interrogation from the transmitter and for retransmitting a reply, and receiver means for receiving and processing the reply; said label means including acoustic signal propagating means responsive to the interrogation from the transmitter for acoustically propagating signals corresponding to the interrogation along a path, a plurality of energy return means mounted on said propogating means at coded locations for removing a portion of the energy of each signal as it passes the location and making the removed portion of the signals available for retransmission to said receiver means at the reply, said energy return means including a first plurality of interconnected parallel transducers mounted on said propagating means and a second plurality of interconnected parallel transducers interleaved between said first plurality of transducers, said transducers being spaced so as to cor' respond with the wave length of the acoustic signals at the frequency of excitation of the signals.

11. A system as in claim 10, wherein said propagating means includes a piezoelectric crystal.

12. A system as in claim 11, wherein said energy return means are mounted on the surface of the crystal and the energy is propagated along that surface of the crystal.

13. An apparatus for responding to an electromagnetic interrogation and producing an electronic reply, comprising signal propagating means responsive to the interrogation for propagating a signal corresponding to the interrogation along a path, a plurality of sensing means respectively mounted at coded locations along the path of said propagating means each for sensing the presence of a propagated signal at the location so that said sensing means together sense each propagated signal sequentially in a given coded time order, and energy carrier means coupled to each of said sensing means for forming the reply from the sequence of signals in the order that they are formed by said sensing means, said carrier means forming a signal line between said sensing means along which the signals can move substantially faster than the propagation rate of said propagation means.

14. An apparatus as in claim 13, wherein said carrier means includes a conductive medium.

15. An apparatus as in claim 13, further comprising antenna means for responding to the interrogation and applying it to said propagating means, said antenna means being connected to said carrier means for retransmitting the sequence of signals formed as the reply.

16. An apparatus as in claim 15, wherein said propagating medium comprises a piezoelectric material, said piezoelectric material being connected to said antenna means.

17. An apparatus as in claim 13, wherein said sensing means each includes conductive transducing means coupled to said propagating means.

18. An apparatus as in claim 13, wherein said propagating medium comprises a piezoelectric material.

19. An apparatus as in claim 13, wherein part of said propagating means forms a delay line free of sensing means, a plurality of said sensing means being located beyond the delay line.

20. An apparatus as in claim 19, wherein said sensing means located beyond the delay line are bunched within a distance less than the length of the line, said path beyond the distance being substantially free of sensing means.

21. An apparatus as in claim 20, wherein one of said sensing means is located at the beginning of the delay line opposite the other of said sensing means.

22. An apparatus as in claim 19, wherein one of said sensing means is located at the beginning of the delay line opposite the others of said sensing means.

23. An apparatus as in claim 13, further comprising antenna means responsive to the interrogation and coupled to said propogating means, said antenna means being connected to said sensing means for transmitting the reply electromagnetically.

24. An apparatus as in claim 23, wherein said propagating means includes a piezoelectric crystal coupled to said antenna means so as to propagate the signals acoustically, said sensing means each including a first plurality of interconnected electrodes mounted on the surface of said crystal parallel to each other and transverse to the direction of propagation of the signals and a second plurality of interconnected electrodes parallel to each other and extending transverse to the direction of propagation of the signals and interleaved between said first plurality of said electrodes, said crystal being tuned to propagate signals at a predetermined expected received frequency, said electrodes being spaced from each other at one half the wavelength of the predetermined frequency, said carrier means being mounted on said crystal and connecting said sensing means.

25. An apparatus as in claim 13, wherein each of said sensing means are removable from the locations for changing the coding of the reply.

26. An apparatus for responding to an electromagnetic interrogation and producing an electronic reply, comprising acoustic signal propagating means responing means and a second plurality of interconnected parallel transducers interleaved between said first transducers.

27. An apparatus as in claim 26, wherein said propagating means is adapted to respond to signals of a given frequency, said transducers being spaced from each other one half wavelength of the frequency.

l I I l i UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,706,09 D t d December 12, 1972 lnventm-(s) Peter Harold Cole and Richard Vaughan It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

In the heading of the patent, add

the following:

[30] Foreign Application Priority Data February 26, 1969 Australia. .5l0 l8/69- Signed and sealed this 1st day of May 1973.

(SAAL) Attest:

EDWARD M. FLETCHER, JR. ROBERT GOTTSCHALK Attesting Officer Commissioner of Patents FORM P0-1050 (10-69) a us covznumzur ranmus ornc: nu o-ase-au,

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3273146 *Aug 7, 1964Sep 13, 1966Gen ElectricObject identifying apparatus
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3750167 *Jul 22, 1971Jul 31, 1973Gen Dynamics CorpPostal tracking system
US3774205 *Aug 2, 1971Nov 20, 1973Ncr CoMerchandise mark sensing system
US3886548 *Oct 12, 1973May 27, 1975Boeing CoResponder for use in a passive identification system
US3981011 *Mar 31, 1975Sep 14, 1976Sperry Rand CorporationObject identification system using an RF roll-call technique
US4019181 *Jul 9, 1975Apr 19, 1977U.S. Philips CorporationTransponder system
US4027840 *Sep 30, 1975Jun 7, 1977International Standard Electric CorporationVehicle position indicator with radar interrogation each of spaced transponders disposed along a pathway for the vehicle
US4059831 *Oct 6, 1975Nov 22, 1977Northwestern UniversityPassive transponders using acoustic surface wave devices
US4096477 *Apr 22, 1977Jun 20, 1978Northwestern UniversityIdentification system using coded passive transponders
US4242671 *Dec 8, 1978Dec 30, 1980Plows Graham STransponders
US4263595 *May 15, 1979Apr 21, 1981Siemens AktiengesellschaftApparatus for identifying objects and persons
US4399441 *Jan 19, 1981Aug 16, 1983Unisearch LimitedApparatus for remote temperature reading
US4604623 *Jun 30, 1983Aug 5, 1986X-Cyte Inc.Surface acoustic wave passive transponder having non-reflective transducers and pads
US4605929 *Jun 30, 1983Aug 12, 1986X-Cyte Inc.Surface acoustic wave passive transponder having optimally-sized transducers
US4620191 *Jun 30, 1983Oct 28, 1986Halvor SkeieSurface acoustic wave passive transponder having parallel acoustic wave paths
US4625207 *Jun 30, 1983Nov 25, 1986X-Cyte Inc.Surface acoustic wave passive transponder having amplitude and phase-modifying surface pads
US4625208 *Jun 30, 1983Nov 25, 1986X-Cyte Inc.Surface acoustic wave passive transponder having acoustic wave reflectors
US4658252 *Jul 7, 1986Apr 14, 1987Gte Government Systems CorporationEncoder/decoder for card entry system
US4698631 *Dec 17, 1986Oct 6, 1987Hughes Tool CompanySurface acoustic wave pipe identification system
US4725841 *Jun 30, 1983Feb 16, 1988X-Cyte, Inc.System for interrogating a passive transponder carrying phase-encoded information
US4734698 *Oct 31, 1985Mar 29, 1988X-Cyte, Inc.Passive interrogator label system having offset compensation and temperature compensation for a surface acoustic wave transponder
US4746830 *Mar 14, 1986May 24, 1988Holland William RElectronic surveillance and identification
US4807140 *Nov 9, 1984Feb 21, 1989Saulnier Dominique CElectronic label information exchange system
US4931664 *Aug 2, 1988Jun 5, 1990Gte Products CorporationController for coded surface acoustical wave (SAW) security system
US4945354 *Nov 25, 1988Jul 31, 1990Gte ProductsSpurious signal correction for surface acoustic wave (SAW) security devices
US4980680 *Feb 20, 1990Dec 25, 1990Gte Products Corp. And Gte Laboratories, Inc.Coded surface acoustical wave (saw) motor vehicle security device
US5115160 *Aug 28, 1989May 19, 1992Gte ProductsEasily encodable surface acoustic wave (SAW) security devices
US5130522 *Aug 16, 1990Jul 14, 1992Mitsubishi Jukogyo Kabushiki KaishaId card using surface acoustic waves
US5423334 *Feb 1, 1993Jun 13, 1995C. R. Bard, Inc.Implantable medical device characterization system
US5448110 *Sep 14, 1993Sep 5, 1995Micron Communications, Inc.Sticker
US5469170 *Oct 20, 1994Nov 21, 1995The United States Of America As Represented By The Secretary Of The ArmyPassive SAW-ID tags using a chirp transducer
US5497140 *Dec 17, 1993Mar 5, 1996Micron Technology, Inc.Electrically powered postage stamp or mailing or shipping label operative with radio frequency (RF) communication
US5776278 *Jan 9, 1997Jul 7, 1998Micron Communications, Inc.Method of manufacturing an enclosed transceiver
US5779839 *Sep 26, 1997Jul 14, 1998Micron Communications, Inc.Method of manufacturing an enclosed transceiver
US5952937 *Mar 12, 1997Sep 14, 1999Ut Automotive Dearborn, Inc.System and method of updating communications in a security system
US5986382 *Aug 18, 1997Nov 16, 1999X-Cyte, Inc.Surface acoustic wave transponder configuration
US5988510 *Feb 13, 1997Nov 23, 1999Micron Communications, Inc.Tamper resistant smart card and method of protecting data in a smart card
US6013949 *Sep 22, 1997Jan 11, 2000Micron Technology, Inc.Miniature Radio Frequency Transceiver
US6060815 *Aug 18, 1997May 9, 2000X-Cyte, Inc.Frequency mixing passive transponder
US6068192 *Aug 30, 1999May 30, 2000Micron Technology, Inc.Tamper resistant smart card and method of protecting data in a smart card
US6075463 *Jun 1, 1998Jun 13, 2000Ako-Werke Gmbh & Co. KgApparatus for wirelessly transmitting the temperature and an identifying characteristic of a cooking pot to a stove
US6078791 *Aug 6, 1997Jun 20, 2000Micron Communications, Inc.Radio frequency identification transceiver and antenna
US6107910 *Aug 18, 1997Aug 22, 2000X-Cyte, Inc.Dual mode transmitter/receiver and decoder for RF transponder tags
US6114971 *Aug 18, 1997Sep 5, 2000X-Cyte, Inc.Frequency hopping spread spectrum passive acoustic wave identification device
US6150921 *Oct 17, 1997Nov 21, 2000Pinpoint CorporationArticle tracking system
US6208062Feb 10, 1999Mar 27, 2001X-Cyte, Inc.Surface acoustic wave transponder configuration
US6220516Jan 16, 1998Apr 24, 2001Micron Technology, Inc.Method of manufacturing an enclosed transceiver
US6259991Feb 10, 1999Jul 10, 2001X-Cyte Inc.Environmental location system
US6273339Apr 19, 2000Aug 14, 2001Micron Technology, Inc.Tamper resistant smart card and method of protecting data in a smart card
US6325294Feb 1, 2001Dec 4, 2001Micron Technology, Inc.Method of manufacturing an enclosed transceiver
US6337659 *Oct 25, 1999Jan 8, 2002Gamma Nu, Inc.Phased array base station antenna system having distributed low power amplifiers
US6483427Mar 9, 2000Nov 19, 2002Rf Technologies, Inc.Article tracking system
US6531957 *May 17, 2002Mar 11, 2003X-Cyte, Inc.Dual mode transmitter-receiver and decoder for RF transponder tags
US6611224 *May 14, 2002Aug 26, 2003X-Cyte, Inc.Backscatter transponder interrogation device
US6633226Feb 10, 1999Oct 14, 2003X-Cyte, Inc.Frequency hopping spread spectrum passive acoustic wave identification device
US6775616Aug 20, 2003Aug 10, 2004X-Cyte, Inc.Environmental location system
US6788204 *Mar 2, 2000Sep 7, 2004Nanotron Gesellschaft Fur Mikrotechnik MbhSurface-wave transducer device and identification system with such device
US6812824Mar 2, 2000Nov 2, 2004Rf Technologies, Inc.Method and apparatus combining a tracking system and a wireless communication system
US6825766Dec 21, 2001Nov 30, 2004Genei Industries, Inc.Industrial data capture system including a choke point portal and tracking software for radio frequency identification of cargo
US6950009Jun 17, 2003Sep 27, 2005X-Cyte, Inc.Dual mode transmitter/receiver and decoder for RF transponder units
US6995654Dec 15, 2000Feb 7, 2006X-Cyte, Inc.Apparatus and method for locating a tagged item
US7023323Oct 14, 2003Apr 4, 2006X-Cyte, Inc.Frequency hopping spread spectrum passive acoustic wave identification device
US7129828 *Jul 20, 2004Oct 31, 2006Honeywell International Inc.Encapsulated surface acoustic wave sensor
US7132778Aug 20, 2003Nov 7, 2006X-Cyte, Inc.Surface acoustic wave modulator
US7158031Nov 10, 2003Jan 2, 2007Micron Technology, Inc.Thin, flexible, RFID label and system for use
US7265674Aug 18, 2005Sep 4, 2007Micron Technology, Inc.Thin flexible, RFID labels, and method and apparatus for use
US7388488Sep 30, 2004Jun 17, 2008Peter LupoliMethod and system for storing, retrieving, and managing data for tags
US7583192 *Dec 11, 2006Sep 1, 2009Keystone Technology Solutions, LlcRadio frequency identification device and method
US7587050 *Apr 28, 2004Sep 8, 2009Nxp B.V.Method, system, base station and data carrier for clash-free transmission between a base station and a number of mobile data carriers
US7649463Aug 30, 2007Jan 19, 2010Keystone Technology Solutions, LlcRadio frequency identification device and method
US7677439Mar 16, 2006Mar 16, 2010Marathon Oil CompanyProcess and assembly for identifying and tracking assets
US7714741Jul 15, 2008May 11, 2010Marathon Oil CompanyMethod and system for performing operations and for improving production in wells
US7741956Jul 28, 2004Jun 22, 2010X-Cyte, Inc.Dual mode transmitter-receiver and decoder for RF transponder tags
US7746230 *Aug 30, 2007Jun 29, 2010Round Rock Research, LlcRadio frequency identification device and method
US7839285Aug 29, 2007Nov 23, 2010Round Rock Resarch, LLCElectronic communication devices, methods of forming electrical communication devices, and communications methods
US7948382Sep 11, 2006May 24, 2011Round Rock Research, LlcElectronic communication devices, methods of forming electrical communication devices, and communications methods
US7956742Jan 24, 2007Jun 7, 2011Motedata Inc.Method and system for storing, retrieving, and managing data for tags
US8018340Oct 24, 2006Sep 13, 2011Round Rock Research, LlcSystem and method to track articles at a point of origin and at a point of destination using RFID
US8044820May 11, 2010Oct 25, 2011Marathon Oil CompanyMethod and system for performing operations and for improving production in wells
US8091775Mar 16, 2010Jan 10, 2012Marathon Oil CompanyProcess and assembly for identifying and tracking assets
US8558668May 23, 2008Oct 15, 2013Motedata Inc.Method and system for storing, retrieving, and managing data for tags
USRE40137Dec 10, 2003Mar 4, 2008Micron Technology, Inc.Methods for forming integrated circuits within substrates
USRE42773Dec 4, 2003Oct 4, 2011Round Rock Research, LlcMethod of manufacturing an enclosed transceiver
DE3102334A1 *Jan 24, 1981Dec 10, 1981Unisearch LtdTemperatur-fernmessvorrichtung
DE3438052A1 *Oct 17, 1984Apr 24, 1986X Cyte IncSystem zum abfragen eines passiven, phasenkodierte informationen aufweisenden transponders
EP0002595A1 *Dec 8, 1978Jun 27, 1979Lintech Instruments LimitedTransponders
EP0005534A1 *May 15, 1979Nov 28, 1979Siemens AktiengesellschaftDevice for identifying objects and persons
EP0240761A1 *Jun 20, 1984Oct 14, 1987M & FC HOLDING COMPANY, INC.Meter data gathering and transmission system
EP0413634A2 *Aug 14, 1990Feb 20, 1991Mitsubishi Jukogyo Kabushiki KaishaID card
EP0883327A2 *May 28, 1998Dec 9, 1998AKO-Werke GmbH & Co. KGArrangement for wirelessly transmitting the temperature and for detecting the presence of cookware on a cooktop
EP2444820A1 *Jun 16, 2010Apr 25, 2012Panasonic CorporationMoving object detection device
WO1990004794A1 *Apr 24, 1989May 3, 1990Micro Design AsMethod for processing transmitted and reflected signals for removing unwanted signals and noise from wanted signals
WO1994023981A1 *Mar 28, 1994Oct 27, 1994Josef HoffmannObstacle-detection device
WO2002015115A1 *Aug 11, 2001Feb 21, 2002Kahl Elektrotechnik GmbhDevice for automatically identifying luggage provided with electronic tags
Classifications
U.S. Classification342/44, 310/313.00D, 342/51, 310/313.00R
International ClassificationG08B13/24, G01S13/75
Cooperative ClassificationG08B13/2437, G08B13/2471, G08B13/2477, G01S13/755, G08B13/2422, G08B13/2431
European ClassificationG08B13/24B1M, G08B13/24B7A3, G08B13/24B7A1, G08B13/24B3C, G08B13/24B3M, G01S13/75C4