Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3708798 A
Publication typeGrant
Publication dateJan 2, 1973
Filing dateDec 23, 1971
Priority dateDec 23, 1971
Also published asCA1001220A1, DE2262107A1
Publication numberUS 3708798 A, US 3708798A, US-A-3708798, US3708798 A, US3708798A
InventorsHildenbrand W, Levine W, Manning S, Stroms K
Original AssigneeIbm
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Ink distribution for non-impact printing recorder
US 3708798 A
Abstract
A collapsible ink bag supplies ink at constant pressure through a manifold containing an air bubble trap, capable of venting, which manifold is connected in common to plural lines to a multiple orifice - multiple transducer fluid wave printing head of a recorder. Constant static pressure in the ink supply is provided to avoid inadvertent ejection of ink through orifices of the nozzles. The manifold contains an air bubble and the manifold inlet line has a sufficiently low resistance to flow. Its source of ink supply is free to expand and contract, and the hydraulic resistance to fluid flow in the lines to the head is sufficiently high to eliminate cross talk of waves between separate orifices. Alternatively, a built in reservoir in the head has a single low resistance connection to the source of ink supply and high resistance lines connect it to the orifices.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1 Hildenbrand et al.

[54] INK DISTRIBUTION FOR NON-IMPACT PRINTING RECORDER Falls, all of N.Y. [73] Assignee: International Business Machines Corporation, Armonk, NY.

221 Filed: Dec. 23, 1971 [21] Appl. No.: 211,232

[52] U.S.Cl ..346/140, 346/75 [51] Int. Cl. ..G0ld 15/16 [58] Field of Search ..346/75, 140

[5 6] References Cited UNITED STATES PATENTS 2,512,743 6/1950 Hansel] ..346/75X 3,054,109- 9/1962 Brown ..346/140X 4e sq 'Jan. 2,1973

3,211,088 10/1965 Naiman ..-.346/ l40 X Primary Examiner-Joseph W. l-lartary Attorney-Graham S. Jones, 11 et al.v

[5 7 ABSTRACT A collapsible ink bag supplies ink at constant pressure through a manifold containing an air bubble trap, capable of venting, which manifold is connected in common to plural lines to a multiple orifice multiple transducer fluid wave printing head of a recorder. Constant static pressure in the ink supply is provided to avoid inadvertent ejection of ink through orifices of cross talk of waves between separate orifices. Altema-' tively, a built inv reservoir in the head has-a single low resistance connection to the source of ink supply and high resistance lines connect it to the orifices.

4 Claims, 4 Drawing Figures mtmznm 21m 7 3.708.798

SHEET 1 OF 2 INVENTORS WALTER W. HILDENBRAND WILBUR J. LEVINE STANLEY A. MANNING KARL F. STRONS BY Maw/M ATTORNEY PATENTEDJM 2 ms 3108.798 sum 2 or 2 FIG.2

INK DISTRIBUTION FOR NON-IMPACT PRINTING RECORDER BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to recorders and more particularly to markers having an ink supply to the markers. More particularly, this invention relates to provision of a common ink supply for plural fluid wave markers with tapered cavities leading to their nozzles.

2. Description of the Prior Art Prior matrix printers employing fluid pressure or shock waves to eject ink from selected ones of plural orifices in response to mechanical vibration of a diaphragm have employed central sources of ink with transducers located within the ink supply reservoir and with the orifices formed in the upper wall of the reservoir. Ejection of ink from a selected orifice is accomplishedv by placement of a transducer closely aligned with the corresponding orifice. Alternatively a separate ink supply is provided for a single orifice.

Patents considered include Hansell, U.S. Pat. No.

2,512,743; Welsh, US. Pat. No. 3,177,800; Naiman,

US. Pat. No. 3,179,042; and Naiman, US. Pat. No. 3,211,088.

SUMMARY OF THE INVENTION In accordance with this invention, a multiple orifice, fluid wave ink ejection recorder is provided. A printing head contains a plurality of tapered printing cavities. Each cavity has an orifice at the small end and a diaphragm actuator at the opposite end. A reservoir of ink is connected to each of said orifices by a passageway having a small diameter and a high impedance to fluid waves. The reservoir includes means for maintaining substantially constant fluid pressure in response to transmission of fluid waves through the passageways.

Preferably, the reservoir is connected to a substantially constant pressure source of ink.

Further, the means for maintaining substantially constant fluid pressure comprises a bubble chamber providing an air trap for absorbing pressure waves to reduce pressure fluctuations on the constant pressure source of ink.

In another aspect of this invention, the writing head includes a plurality of piezoelectric transducers secured to diaphragms and a plurality of tapered orifices having a diaphragm at one end and at the opposite end having a nozzle for writing. The head: includes a plurality of high fluid-impedance passageways with each connected at one end to one of the orifices and coupled at the opposite end to the reservoir.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a plural orifice head recorder with a collapsible ink supply and manifold with additional elements omitted for convenience of illustration.

FIG. 2 is a partially sectional elevation of the recorder of FIG. 1, with elements sectioned along lines 2-2 in FIG. 1.

FIG. 3 is a sectional elevation of an alternative form of head with an internal manifold or reservoir.

FIG. 4 shows a sectional elevation of an alternative form of coupling between the ink cartridge and the ink supply line.

DESCRIPTION OF THE PREFERRED EMBODIMENT In FIG. 1 an ink cartridge 10 is coupled through inksupply line Il-to ink supply manifold 12 comprising a reservoir of ink for several nozzles 13 of a printing head 14. a I

PRINTING HEAD The printing head 14 includes several piezoelectric crystal transducers 15, chambers 18, and passageways l9. Transducers 15 include ceramic crystals 20, diaphragms l7 and electrical leads 16 broken away for simplicity of illustration. Each crystal transducer 15, composed of a ceramic material, is affixed by cement to a brass disc diaphragm 17 to provide means 'for reducing the volume of chambers 18 in head 14 in response to application of direct current electrical energization pulses upon lines 16.

Each chamber 18 is part of a cavity 21 which tapers into apassageway 19 which terminates in a nozzle 13 with the nozzle 13 having the smallest inner diameter (I.D. Preferably, about seven to 13 nozzles 13 spaced vertically and possibly staggered horizontally can be spaced within a 0.1 inch vertical spacing with slight lateral displacement and diameters of 0.001 0.006 inches.

The chambers 18 are supplied with ink via tubes 22 communicating from inside the head to the outside, connecting with lines 23 to the manifold 12. Lines 23 and manifold 12 provide clean, bubble free ink to the head 14.

The cavities 21 comprising chambers 18, passageways l9, and nozzles 13 are filled with ink of appropriate viscosity, and surface tension which when maintained at. such a constant low fluid pressure that when the transducers 15 are inactive, no ink will escape from nozzles 13. On the other hand, when a transducer 15 is energized electrically, it generates a fluid wave which is propagated through the cavitys chamber 18,

its passagewayv 19, and its nozzle 13 as well. as the tube 1 22 connected to the cavity 21. As a result, when a short electrical square wave signal energizes the transducer theresultant fluid wave ejects some ink from the nozzle 13. The ink is pushed against the printing mediumwhich is in this case paper 25, thereby wetting the paper 25. Preferably, the paper is about 0.002 and 0.008 inches from the nozzles 113. When the energizing voltage pulse is removed from the crystal 20, the diaphragm l7 retracts to its normal shape, thereby increasing the volume of chamber 18 to its normal volume and sucking ink back towards chamber 18 from tube 22, passageway 19, and nozzle 13. The suction in nozzle 13 causes the ink droplet in contact with paper 25 to break off while the remainder of the ink retracts towards passageway 19. This droplet leaves a dot of ink deposited on paper 25. An array of such dots (e.g. seven nozzles) can be used for matrix dot printing. Alternatively, the ink can be propelled from the nozzle 13 to paper spaced farther away. In the latter case, higher momentum of the fluid must be provided.

Supply tube 22 replenishes the depleted supply of ink to cavity 21. Note that the passageways 19 are curved to converge in order to allow space for the transducers 15 at one end of the passageways 19 and to maintain a small distance between the nozzles 13.

INK DISTRIBUTION SYSTEM While head 14 includes only two cavities 21 in the drawings, for simplicity and clarity of illustration, it is intended to be representative of a practical application in which seven or eight, more or less, cavities 21 are provided. In such case an ink distribution system which is shared by all of the cavities becomes a practical necessity.

However, we have found that a common ink supply for a fluid wave printer poses problems because the waves generated by transducers 15 are transmitted through tubes 22, lines 23 and tubes 24 into manifold 12. A straightforward ink supply system would serve to couple such waves occasionally through the lines 23, etc. to other cavities, which can cause ink to be ejected from a nozzle 13 whose transducer 15 is not actuated. Such undesirable or spurious operation is referred to herein as cross talk.

The system of FIGS. 1 and 2 includes long, thin I.D. lines 23, e.g. I.D. 0.020 or 0.060 inches, which inhibit the flow of significant volumes of ink through lines 23 to a small volume and tend to minimize the amount of wave energy transmitted into manifold 12. Tubes 24 have an ID. of only about 0.012 to 0.030 inches which adds resistance to flow.

In addition, manifold 12 includes an air bubble trap 26 at the top which operates to regulate pressure fluctuations within manifold 12. Thus, incompressible liquid pressure waves can be absorbed by the compression of the volume of the air in trap 26. In addition line 45 has a relatively large ID. of 0.125 and is connected to a relatively low impedance constant pressure source of ink in an expandable or collapsible plastic ink bag 30. Additional ink in bag 30 will not reflect waves back, but will simply expand its volume temporarily. Thus the liquid wave will be diminished in its intensity or amplitude upon reflection from the air bubble in trap 26 and upon flow of ink up into bag 30 so that less energy will flow back to the lines 23. In general, if the manifold 12 includes means providing space or freedom for excess ink to move up away from lines 23 without admitting air, waves will not cause cross talk.

As a result cross talk is effectively prevented without use of any check valves.

Another function of air trap 26 is to accumulate and trap bubbles of air and to prevent air bubbles in the ink or the lines and manifold from passing through the system and into the head 14. Air accumulated in the trap, when excessive can be vented manually by par tially unscrewing the cap 27 threadably coupled at the trap end of manifold 12 and sealed by ring 28 to close trap 26, normally. Alternatively a float valve could be employed to control the volume of air in the air bubble.

FIG. 3 shows an alternative form of ink distribution system in which a manifold 30 is contained within the head 114. The manifold 30 is connected through very thin 0.005 inches diameter tubes 160, which are 0.125 long or as long as convenient. Preferably, the diameter to length relationship should be k (Diameter),/(

Length). Tubes connect to chambers 118 of cavities 121 each of which includes an orifice 119 and a nozzle 113. At the large end of each chamber 118 is included a transducer 115. In addition the large 0.125 inch diameter, short tube 122 is to be connected from manifold 30 to a constant pressure ink supply cartridge 10 (not shown) which will provide pressure regulation. What is important is that the resistance to flow of lines 160 be relatively much greater than the resistance of tube 122.

The head 14 or 114 can move (i.e. traverse across the paper 25 in order to print) where the paper platen or roller does not reciprocate in front of the print head. Head 114 requires only one hose to be connected to tube 122 rather than several hoses 23 connected to several tubes 22 as in FIGS. 1 and 2.

DISPOSABLE INK RESERVOIR In the above system it is necessary that the static ink supply pressure be maintained close to a constant value in spite of the variation in the quantity of ink available from the source of supply so that the static pressure at nozzle 13 will be independent of the quantity of ink available. y

In FIGS. 1 and 2, a disposable cartridge 10 includes a flexible ink bag 30 completely filled with ink hermetically sealed to protect the ink from air and dirt.

A central core or support 31 is contained within bag 30 and includes, extending below, its base 32, a threaded coupling 33 passing through the bag 30. The base 32 of the support 31 comprises an annular flange which cooperates with gasket 34, below bag 30 and plate 35 below gasket 34, as well as cap 36 which threads onto coupling 33 and presses plate 35 up against base 32 to seal the flange, bag, gasket, and plate together. Coupling 33 extends through a hole in bag 30. The support 31 is generally cylindrical and hollow at 40 to provide a passageway for ink and needle 41. Vertical slots 37 permit ink between bag 30 and support 31 to reach hollow 40, even after bag 30 has emptied substantially and has collapsed upon the external walls of support 31.

The support 31 is provided I for the purpose of preventing the bag 30 from collapsing vertically, in order to maintain a constant head of pressure of the ink in the manifold 12 as well as the rest of the system.

Between cap 36 and the bottom edge of coupling 33 is a medical or pharmaceutical elastomeric sealing membrane 42 adapted for self-sealing use with a hypodermic type of cannular needle 41 which is carried inbase 38 'upon which the cartridge is supported, with cap 36 inserted into receptacle hole 43 in base 38. Needle 41 extends through cylindrical coupling tube 44. A tubular line 45 is connected over the end of coupling tube 44 in sealed relationship therewith. Tubular line 45 is connected at its opposite end with its inner surface extending over the outer surface of the inlet tube 46 of manifold 12.

The upper end 47 of cannular needle 41 extends up into receptacle hole 43, but it is recessed sufficiently to minimize the probability of inadvertent injury to fingers of operatives employing these instrumentalities, when installing or removing a cartridge 10 or when a cartridge is absent from base 38 during machine maintenance, etc.

Manifestly, with this system, maintaining constant static ink supply pressure requires use of no moving parts other than the replaceable bag, subsequent to installation of the cartridge 10.

A transparent case 48 (with an air vent 49for pressure equalization within the case) permits visual determination of the necessity for replacement of the cartridge l0.

A filter material can be placed over the support 31 or cage 31 to provide filtration before ink enters the hollow 40. Alternatively, the support 31 can be replaced by a filter material. Y

A cap is placed over the needle 47 when the cartridge is removed for more than a short time to prevent air or dirt from entering the needle.

FIG. 4 shows an alternative way of providing coupling. Support 131 carries needle 14] with it base 50 within the hollow 140 of coupling 133 and the needles point extending down for insertion within the flexible, self-sealing connector on the end of flexible tubing 145.

Preferably a water base ink is employed, which is of medium surface tension, about 30-35 dynes/cm. The viscosity is low, in the order of 1-2 centipoise.

' Example The case 48 is rigid, plexiglass. Bag 30 is thin mylar of low permeability and high flexibility. The needle is stainless steel. The manifold and cap are plastic. The flexible hoses 23 are plasticized polyvinyl fluoride. The top of the ink bag 30 is about 1 15 inches higher than the nozzle.

What is claimed is:

l. A multiple orifice, multiple transducer, fluid wave ink ejection recorder including a printing head with a plurality of tapered printing cavities,

each of said cavities having an orifice at the smaller end and a diaphragm actuator at the opposite end,

a reservoir of ink,

said reservoir being connected to each of said orifices by a passageway having a small diameter and a high impedance to fluid waves, said reservoir including means for maintaining substantially constant fluid pressure in response to transmission of fluid waves through said passageways.

2. Apparatus in accordance with claim l'jwherein said reservoir isconnected to a substantially constant pressure source of ink.

3. Apparatus in accordance with claim 1 wherein said means for maintaining substantially constant fluid pressure comprises a bubble chamber providing an air trap for absorbing pressure waves to reduce pressure fluctuations.

4. A multiple orifice, multiple transducer, fluid wave ink ejection recorder including a source of ink at a substantially constant pressure,

a reservoir of ink connected to said source of ink and including an air chamber providing pneumatic pressure regulation,

a writing head including a plurality of piezoelectric transducers secured to diaphragms, a plurality of tapered orifices having a said diaphragm at one end and at the opposite end having a nozzle for g said head including a plurality of high fluid-impedance passageways each connected at one end to one of said orifices and coupled at the opposite end to said reservoir whereby cross talk of waves between orifices is substantially eliminated.

I l I!

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2512743 *Apr 1, 1946Jun 27, 1950Rca CorpJet sprayer actuated by supersonic waves
US3054109 *Mar 20, 1961Sep 11, 1962Clevite CorpBalanced hydrostatic inking system
US3211088 *May 4, 1962Oct 12, 1965Sperry Rand CorpExponential horn printer
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3805276 *Dec 18, 1972Apr 16, 1974Casio Computer Co LtdInk jet recording apparatus
US3831727 *Nov 21, 1972Aug 27, 1974IbmPressurizing system for ink jet printing apparatus
US3832579 *Feb 7, 1973Aug 27, 1974Gould IncPulsed droplet ejecting system
US3950762 *Jun 18, 1975Apr 13, 1976Koh-I-Noor Rapidograph, Inc.Drawing method and drawing instrument
US3965376 *Jul 12, 1974Jun 22, 1976Gould Inc.Pulsed droplet ejecting system
US3967286 *Dec 26, 1974Jun 29, 1976Facit AktiebolagInk supply arrangement for ink jet printers
US4015272 *Aug 7, 1975Mar 29, 1977Matsushita Electric Industrial Co., Ltd.Ink ejection type writing unit
US4074284 *Jun 7, 1976Feb 14, 1978Silonics, Inc.Ink supply system and print head
US4084165 *Nov 29, 1976Apr 11, 1978Siemens AktiengesellschaftFluid-jet writing system
US4095237 *Mar 19, 1976Jun 13, 1978Aktiebolaget ElectroluxInk jet printing head
US4119034 *Feb 1, 1978Oct 10, 1978Siemens AktiengesellschaftLeakproof ink supply reservoir
US4124853 *Sep 27, 1976Nov 7, 1978Siemens AktiengesellschaftHydraulic dampening device in an ink supply system of an ink operated mosaic printer unit
US4126868 *Sep 10, 1976Nov 21, 1978Siemens AktiengesellschaftAir venting device for ink supply systems of ink mosaic printers
US4152710 *Oct 6, 1977May 1, 1979Nippon Telegraph & Telephone Public CorporationInk liquid supply system for an ink jet system printer
US4156244 *Sep 6, 1977May 22, 1979Bell & Howell CompanyInk jet printer ink cartridge
US4158847 *Apr 5, 1978Jun 19, 1979Siemens AktiengesellschaftPiezoelectric operated printer head for ink-operated mosaic printer units
US4162501 *Aug 8, 1977Jul 24, 1979Silonics, Inc.Ink supply system for an ink jet printer
US4183031 *Jun 16, 1977Jan 8, 1980Silonics, Inc.Ink supply system
US4186020 *Jun 1, 1976Jan 29, 1980A. B. Dick CompanySolvent, fluorescent dye, resinous binder, brightener, organic phosphor, evaporation retarder
US4202267 *Apr 21, 1977May 13, 1980Siemens AktiengesellschaftDevice for monitoring the ink supply in ink-operated printers
US4209794 *Jun 23, 1978Jun 24, 1980Siemens AktiengesellschaftNozzle plate for an ink recording device
US4253103 *Oct 31, 1978Feb 24, 1981Siemens AktiengesellschaftInk supply container for ink writing systems
US4272773 *May 24, 1979Jun 9, 1981Gould Inc.Ink supply and filter for ink jet printing systems
US4277791 *Mar 20, 1979Jul 7, 1981Siemens AktiengesellschaftInk controlling device for ink printing equipment in office machines and the like
US4282536 *Feb 13, 1980Aug 4, 1981Koh-I-Noor Rapidgoraph, Inc.Process and apparatus for automatic drafting devices
US4303929 *Jun 4, 1980Dec 1, 1981International Business Machines CorporationAir purging pump for ink jet printers
US4339763 *Nov 26, 1980Jul 13, 1982System Industries, Inc.Apparatus for recording with writing fluids and drop projection means therefor
US4347524 *Aug 7, 1980Aug 31, 1982Hewlett-Packard CompanyApparatus for absorbing shocks to the ink supply of an ink jet printer
US4368478 *Jun 4, 1981Jan 11, 1983Shinshu Seiki Kabushiki KaishaInk supply system for ink jet printers
US4376284 *Jan 22, 1982Mar 8, 1983Leonhard BaderInk jet print head
US4413267 *Dec 18, 1981Nov 1, 1983Centronics Data Computer Corp.Ink supply system for ink jet printing apparatus
US4415909 *Oct 26, 1981Nov 15, 1983Ncr CorporationMultiple nozzle ink jet print head
US4419677 *Nov 24, 1982Dec 6, 1983Canon Kabushiki KaishaInk jet recording apparatus
US4419678 *Oct 9, 1980Dec 6, 1983Canon Kabushiki KaishaInk jet recording apparatus
US4420764 *Sep 4, 1981Dec 13, 1983Epson CorporationInk jet printer head
US4506276 *Oct 23, 1978Mar 19, 1985System Industries, Inc.Ink supply system
US4551734 *Dec 6, 1984Nov 5, 1985Tektronix, Inc.Ink cartridge with ink level sensor
US4571599 *Dec 3, 1984Feb 18, 1986Xerox CorporationInk cartridge for an ink jet printer
US4586058 *Aug 13, 1984Apr 29, 1986Ricoh Company, Ltd.Ink jet printing apparatus
US4959667 *Feb 14, 1989Sep 25, 1990Hewlett-Packard CompanyRefillable ink bag
US5079570 *Oct 18, 1989Jan 7, 1992Hewlett-Packard CompanyCapillary reservoir binary ink level sensor
US5126767 *Jan 16, 1990Jun 30, 1992Canon Kabushiki KaishaInk tank with dual-member sealing closure
US5187498 *Jul 24, 1991Feb 16, 1993Xerox CorporationInk supply container and system
US5369429 *Oct 20, 1993Nov 29, 1994Lasermaster CorporationContinuous ink refill system for disposable ink jet cartridges having a predetermined ink capacity
US5430471 *Aug 25, 1992Jul 4, 1995Canon Kabushiki KaishaLiquid container, recording head using same and recording apparatus using same
US5440333 *Dec 23, 1992Aug 8, 1995Hewlett-Packard CompanyCollapsible ink reservoir and ink-jet cartridge with protective bonding layer for the pressure regulator
US5453772 *Mar 3, 1995Sep 26, 1995Canon Kabushiki KaishaLiquid container with bladder-like member and liquid path along an interior container wall
US5572241 *Mar 23, 1995Nov 5, 1996Sharp Kabushiki KaishaInk jet printer capable of detecting lack of ink
US5574489 *Mar 30, 1994Nov 12, 1996Hewlett-Packard CompanyInk cartridge system for ink-jet printer
US5732751 *Dec 4, 1995Mar 31, 1998Hewlett-Packard CompanyFilling ink supply containers
US5751321 *Dec 11, 1996May 12, 1998Colorspan CorporationContinuous ink refill system for disposable ink jet cartridges having a predetermined ink capacity
US5771053 *Dec 4, 1995Jun 23, 1998Hewlett-Packard CompanyAssembly for controlling ink release from a container
US5815182 *Dec 4, 1995Sep 29, 1998Hewlett-Packard CompanyFluid interconnect for ink-jet pen
US5818484 *Sep 13, 1995Oct 6, 1998Minnesota Mining And Manufacturing CompanyPrinting fluid supply system having an apparatus for maintaining constant static pressure
US5825387 *Apr 27, 1995Oct 20, 1998Hewlett-Packard CompanyInk supply for an ink-jet printer
US5847734 *Dec 4, 1995Dec 8, 1998Pawlowski, Jr.; Norman E.Air purge system for an ink-jet printer
US5856839 *Dec 4, 1995Jan 5, 1999Hewlett-Packard CompanyInk supply having an integral pump
US5856840 *Dec 4, 1995Jan 5, 1999Hewlett-Packard CompanyMethod of manufacturing a replaceable ink supply for an ink-jet printer
US5877793 *Nov 18, 1997Mar 2, 1999Colorspan CorporationAutomatic ink refill system for disposable ink jet cartridges
US5900895 *Dec 4, 1995May 4, 1999Hewlett-Packard CompanyMethod for refilling an ink supply for an ink-jet printer
US6007190 *Dec 29, 1994Dec 28, 1999Encad, Inc.Ink supply system for an ink jet printer having large volume ink containers
US6164766 *Feb 25, 1999Dec 26, 2000Colorspan CorporationAutomatic ink refill system for disposable ink jet cartridges
US6283588 *Dec 19, 2000Sep 4, 2001Lexmark International, Inc.Print head cartridge made with jointless one-piece frame consisting of a single material throughout
US6550899Jul 19, 1999Apr 22, 2003Hewlett-Packard CompanyInk supply for an ink-jet printer
US6565197Nov 10, 1997May 20, 2003Encad, Inc.Ink jet printer incorporating high volume ink reservoirs
US6824258 *Feb 7, 2002Nov 30, 2004Canon Kabushiki KaishaLiquid container, liquid supply system and ink jet recording apparatus utilizing the same, and method of mounting liquid container on recording apparatus
US6991326 *Sep 16, 2003Jan 31, 2006Sharp Kabushiki KaishaInk cartridge and image forming apparatus
US7311389Feb 9, 2005Dec 25, 2007Tarry PidgeonInk maintenance system for ink jet cartridges
US7331662Sep 13, 2005Feb 19, 2008Sharp Kabushiki KaishaInk cartridge and image forming apparatus
US7458677 *Jun 20, 2006Dec 2, 2008Eastman Kodak CompanyReduction of turbulence within printing region of inkjet printer heads
US7798619 *Apr 14, 2004Sep 21, 2010Stork Digital Imaging B.V.Printing device, flexible reservoir and working container and feed system
US7976124 *Aug 9, 2007Jul 12, 2011Oce-Technologies B.V.Ink jet device and method of manufacturing the same
US20110262622 *Oct 16, 2009Oct 27, 2011Frank HerreCoating device and associated coating method
DE2833660A1 *Aug 1, 1978Feb 15, 1979SilonicsAustauschbare vorratspatrone und fluessigkeitsversorgungssystem
EP0082719A2 *Dec 21, 1982Jun 29, 1983Ing. C. Olivetti & C., S.p.A.Serial ink jet printing head
EP0841171A2 *Oct 28, 1997May 13, 1998Laser Care Modul Recycling GmbHRefillable ink-jet cartridge for ink-jet printer
EP2527888A1Jan 28, 2002Nov 28, 2012Rolic AGOptical device and method for manufacturing same
Classifications
U.S. Classification347/86, 347/92
International ClassificationB41J2/175, H04N1/034, H04N1/032, B41J2/055, B41J2/045
Cooperative ClassificationB41J2/175
European ClassificationB41J2/175