US3709222A - Method and apparatus for automatic peritoneal dialysis - Google Patents

Method and apparatus for automatic peritoneal dialysis Download PDF

Info

Publication number
US3709222A
US3709222A US00101636A US3709222DA US3709222A US 3709222 A US3709222 A US 3709222A US 00101636 A US00101636 A US 00101636A US 3709222D A US3709222D A US 3709222DA US 3709222 A US3709222 A US 3709222A
Authority
US
United States
Prior art keywords
chamber
dialysate
patient
container
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00101636A
Inventor
Vries J De
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Sarns Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sarns Inc filed Critical Sarns Inc
Application granted granted Critical
Publication of US3709222A publication Critical patent/US3709222A/en
Assigned to MINNESOTA MINING AND MANUFACTURING COMPANY, A CORP. OF DE. reassignment MINNESOTA MINING AND MANUFACTURING COMPANY, A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SARNS, INC.,
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/28Peritoneal dialysis ; Other peritoneal treatment, e.g. oxygenation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/15Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with a cassette forming partially or totally the flow circuit for the treating fluid, e.g. the dialysate fluid circuit or the treating gas circuit
    • A61M1/159Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with a cassette forming partially or totally the flow circuit for the treating fluid, e.g. the dialysate fluid circuit or the treating gas circuit specially adapted for peritoneal dialysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1621Constructional aspects thereof
    • A61M1/1635Constructional aspects thereof with volume chamber balancing devices between used and fresh dialysis fluid
    • A61M1/1639Constructional aspects thereof with volume chamber balancing devices between used and fresh dialysis fluid linked by membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/28Peritoneal dialysis ; Other peritoneal treatment, e.g. oxygenation
    • A61M1/282Operational modes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/72Cassettes forming partially or totally the fluid circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/15Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with a cassette forming partially or totally the flow circuit for the treating fluid, e.g. the dialysate fluid circuit or the treating gas circuit
    • A61M1/152Details related to the interface between cassette and machine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/15Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with a cassette forming partially or totally the flow circuit for the treating fluid, e.g. the dialysate fluid circuit or the treating gas circuit
    • A61M1/155Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with a cassette forming partially or totally the flow circuit for the treating fluid, e.g. the dialysate fluid circuit or the treating gas circuit with treatment-fluid pumping means or components thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/15Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with a cassette forming partially or totally the flow circuit for the treating fluid, e.g. the dialysate fluid circuit or the treating gas circuit
    • A61M1/156Constructional details of the cassette, e.g. specific details on material or shape
    • A61M1/1562Details of incorporated reservoirs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/15Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with a cassette forming partially or totally the flow circuit for the treating fluid, e.g. the dialysate fluid circuit or the treating gas circuit
    • A61M1/156Constructional details of the cassette, e.g. specific details on material or shape
    • A61M1/1565Details of valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/74Suction control
    • A61M1/741Suction control with means for varying suction manually
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/77Suction-irrigation systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/12General characteristics of the apparatus with interchangeable cassettes forming partially or totally the fluid circuit

Definitions

  • ABSTRACT A method and apparatus for automatic peritoneal dialysis which includes a series of steps for the exchange of dialysate which'proportions the in-fiow to the outflow and provides for the elimination of any distressing in-flow or out-flow pressures on the patient and any abnormal build-up of fluid quantity in the patient.
  • the apparatus includes a portable bed-side unit which carries the necessary pumps and valves for the automatic cycle and includes a disposable plastic sheet unit supported on the apparatus which is positioned such that pumps and valves in the apparatus can operate on this unit when in place.
  • the invention also contemplates the use of a disposable bag element in cooperation with a support apparatus which is relatively inexpensive compared to the overall apparatus and which permits a fresh series of chambers to be used for each patient.
  • Another object of the invention is a mounting apparatus for the various elements of the system which adapts itself to and cooperates with the disposable elements.
  • FIG. I a perspective view of the-system showing the I apparatus and the relationship to the patient.
  • FIG. 2 a sectional view taken on line 2-2 of FIG. 4 of thesupport cabinet showing the manner in which the mechanically operated valves are related to the system.
  • FIG. 3 a rear elevation of the valve mechanism.
  • FIG. 4 a view of the support apparatus cabinet with the door in open position.
  • FIG. 5 a view of certain disposable portions'of the apparatus separated from the supporting cabinet.
  • FIGS. 6, 7, 8, and 9, partial sectional views taken on lines 6-6, 7-7, 8-8, and 9-9 of FIG. 5.
  • FIG. 10 a view of a waste bag element for the system. 7
  • FIG. 11 a sectional view on line I 1-1 1 of FIG. 10.
  • FIG. 12 a view of the opening of the neck portion of the waste bag in closed position.
  • FIG. 13 a sectional view on line 13-13 of FIG. 12.
  • FIG. 14 a sectional view of the apparatus showing the return chamber of the system and associated control elements.
  • FIG. 15 a sectional view of the proportioning chamber of the system in relation to the controlling portions of the support apparatus.
  • FIG. 16 a sectional view taken on line 16-16 of FIG. 4 of a portion of the apparatus showing a sensor control switch.
  • FIG. 17 a sectional view on line 17-17 of FIG. 4 of a second sensing switch and response portion of the apparatus.
  • FIG. 18 an elevation of a peristaltic pump utilized in the system.
  • FIGS. 19, 20, and 21 sectional views taken on lines 19-19, 20-20, and 21-21 of FIG. 18.
  • FIG. 22 a diagrammatic view illustrating the system disposed for flow of fluid to the patient.
  • FIG. 23 another diagrammatic view showing the condition of fluid return from the patient.
  • FIG. 24 a view of a float valve with an orifice leak by-pass.
  • FIG. 25 an electrical diagram showing various control elements of the system.
  • FIG. 1 the apparatus is shown adjacent a hospital 'bed 30 on which is resting a patient 32 who has received the insertion of, an abdominal catheter 34 leading from the apparatus.
  • the apparatus consists of a main cabinet 36 having a door 38 which is hinged to be moved to an open position.
  • FIG. 1 Cross-wise of the cabinet 36 on one end is an open topped case 40.
  • a frame formed by cross members 41 and axles 42 and 44 is supported on wheels or castors 46 and 48.
  • a control panel50 is mounted on the top of the cabinet.
  • a stanchion tube 52 which extends upwardly to hold two horizontal cross bars 54 and 56 which can support a supply of sterile dialysate in vessels 58 and 60.
  • a slide bracket 61 which supports a vertical rod 62 shiftable from the solid line position shown in FIG. 1 to a dotted line position also shown wherein a horizontal portion 64 of the rod can support a plastic relief chamber bag 66 forming part of the system.
  • Valves which open and close certain tubes of the system are shown in crosssection in FIG. 2. These are mounted on a panel 70 lying behind the door 38 of the cabinet on a bracket 72 (see FIG. 3), this bracket having a horizontal plate 74 which supports a motor 76 which drives a reduction gear 78 leading to an eccentric driven crank 80. This crank moves a plunger 82 forward and aft, the plunger being sealed by a grommet 84 in the wall of the plate 70. The plunger has a chamfered nose portion 86 which can drive forward against the door plate 38 to close off a particular tube in the system. Suitable control elements for the motor will actuate these valves in response to the general system. There are four such valve control units-mounted on plate '70 and viewing FIG. 4 these are referenced as V-l, V-2, V-4 and V-5. The functions of these valves in connection with the system will be described relative to certain tubes in the system at the appropriate time.
  • FIG. 14 Other hardware on the cabinet includes, as illustrated in FIG. 4, two rotating peristaltic pumps indicated generally at 90 and 92. Except as will be later described, these are of standard construction and are driven by suitable motors mounted in the cabinet 36 behind the panel 70. Additional structure is shown in the sectional view of FIG. 14 where it will be seen that at the bottom portion of the plate 70 is a recess 94 which is closed by a swinging panel 96 hinged at 98. Behind this panel is a micro-switch actuator roller 100 on arm 102 connectedwith micro-switch 104.
  • the door 38 has an opening 106 (see FIGS. 4 and 14) which also is closed by a swinging panel 108 hinged at 110.
  • the position of the plate 108 can be adjustably regulated by an adjustment screw 112 on bracket 114. The purpose of this compartment between plates 96 and 108'will be described later.
  • FIG. 15 Another compartment that is formed in the system by a portion of plate 70 and the cover 38 is shown in cross-section in FIG. 15.
  • Plate 70 is again apertured and this aperture is provided with a shaped panel member 116 which is dished as shown in the drawing.
  • a small electric heater 118 On the back of this dished member is a small electric heater 118 which will be used to maintain a temperature level of liquid in the system.
  • the door panel 38 is also provided with a recess which is filled by a dished member 120 essentially symmetrical with the member 116 to provide anelongate substantially rectangular, rigid-walled compartment.
  • bracket plate 132 Positioned at the opening 130 on bracket plate 132 is a micro-switch arm 136 which controls a micro-switch 138. The purpose of this microswitch in conjunction with the fluid system will be described later.
  • the upper left-hand corner of the plate 70 is an opening 140 (FIG. 16) below which is mounted a bracket plate 142 supporting a micro-switch 144 operatedby a switch arm 146.
  • This switch arm is influenced by the pocket 224 (FIGS. and 7) toreflect absence of hydraulic head in the supply line from containers 58, 60.
  • the door has an opening 150 which overlies the pumps 90 and 92 so that the operation ,of these pumps may be observed from outside the cabinet when the door is closed.
  • the door has a latch handle 152 which cooperates with a latch 154 on a wall of the cabinet 36.
  • the plate 70 also carries a plurality of projectingpins 156 positioned at the top and bottom and atother points on the left-hand side of the plate for the supporting of a plastic container andconduit sheet 160.
  • This sheet is shown in F IG.- 4 illustrated in greater detail in FIG. 5 where it is shown apart from the supporting panel. A detailed description follows.
  • the pumps 90 and 92 are relatively standard peristaltic pumps, FIGS. 18-21, having a rotor 170 mounted on a drive shaft 172 and carrying guide'wheels 174, which rotate on pins 175 within a housing wall 176, and pressure rollers 178 on pins 179 which exert rolling pressure on a tube lying against the inside of the wall.
  • the pump 92 differs from the normal pump in that one pressureroller at the roller mount 180 is omitted to permit a periodic pressure equalization as will be later described.
  • This container sheet is intended to be disposable to avoid the sterilization problems incident to the use of reusable containers.
  • The'sheet is made from a plastic which is preferably transparent, or at least translucent, and heat scalable. Chambers are formed, in the double or folded-over sheet, by heat sealing the peripheries, and plastic tubes are heat sealed into these chambers, FIG. 6, to provide the necessary ingress and egress. I
  • a return chamber 200 is formed in the lower area by a heat sealed periphery 202 with an outlet 202 with an outlet tube 203 sealed at 204, this tube having an arched portion with a top air vent 205.
  • a bottom tube 206 leads to a float valve entry unit 207 within the chamber and to a collapsible sensor pocket 208 (FIG. 17 is cross-section) and thence through a pump tube 209, 209a, 2091; to a sealed entrance to one side of a proportioning chamber 210 again formed by a heat sealed periphery.
  • the float valve 207 is designed to close outlet tube 206 when chamber 200 is depleted, FIG. 24.
  • a small orifice 207a permits a bleeding action to relieve negative pressure.
  • a lower outlet tube 212 leads out of one side of the proportioning chamber 210 in the sheet to a connector 213 which will join to a waste chamber connector 214 on a plastic waste chamber bag 216 lying in compartment 40 (FIGS. 1 and 10).
  • the vented tube 203 from the return chamber also connects at 218 to the waste chamber bag 216.
  • At the top of the proportioning chamber 210 one side of the chamber is connected through a sealed tube 220 to a point near the top of the elevatable pressure relief chamber bag 66 (FIG. 1).
  • a second tube 222 at the top of the proportioning chamber 210 leads through a small pocket chamber 224 (FIG. 7 in cross-section) to a tube 226 which has a bifurcate connector 228 which joins tubes leading to supply containers 58 and 60 (FIG. 1
  • the pressure relief chamber 66 also has a connector tube 230 into the bottom which leads to a bifurcate connector 232, the single outletof which leads to patient tube 234 and body chamber catheter 34.
  • the other branch of the connector 232 leads through a pressure relief pocket 236 (FIG. 9 in section) and then to a tube 238 entering the plastic container sheet 160 to a bacterial trap 240 recessed into the sheet 160 and having a connector tube 242 leading to a pump tube 242a and a connection to a re-entry tube 242k in sheet 160 sealed into the top of return chamber 200.
  • the proportioning chamber 210 actually consists of two side-by-side chambers which are created by sandwiching a diaphragm or separation wall 250 between the walls 252 and 254 formed from the double sheets. (See FIGS. 8 and 15).
  • This forms two chambers 260 and 270 the chamber 260 on the right, as viewed in FIG. 15, serves to receive return dialysate fluid through tube 209(b) and, under some circumstances, to discharge it to tube 212 and the waste chamber.
  • the chamber 270 on the left, a s viewed in FIG. 15, serves to receive fresh dialysate fluid from tube 222 through pocket 224 and can introducethisfresh fluid into relief chamber 66 through tube 220.
  • These two chambers 260 and 270 have a volumetric effect on each other as will be described.
  • the return chamber 200 lies in the compartment formed by the plate 96 and the plate 108 shown in FIG. 14 so that the volume of the chamber 200 can serve as a control by reason of pressure against the movable plate 96 which will influence the micro-switch arm 102.
  • the pocket 208 at the lower right-hand portion of the chamber sheet, supported on bracket 134, as shown in FIG. 17, has a possible influence on theswitch arm 136, and the pocket 224 shown in section in FIG. 16 is a collapsible pocket which will reflect a reduction in pressure in the return flow line and thus influence a micro-switch arm 146.
  • V-l controls tube 222; V-2 control tube 220; V-4 controls tube 242; and V-5 controls tube 212.
  • the waste bag 216 is formed of a double sheet ofplastic with holes 280 and 282 for suspending the bag in the-compartment 40, this bag being sealed around its edges as illustrated in FIG. 11.
  • the two top connector tubes are also sealed into the bag at 284.
  • the bag has an outlet neck portion 286 which has a flap assembly 288 containing a malleable metallic stiffener 290.
  • this closure neck can be sealed by folding over the tab portion 290 and bending the ends to a locking position as shown in FIGS. 12 and 13.
  • the function of the apparatus above described is to administer dialysate to a patient over long periods of time in a manner to reduce the need for constant supervision by a nurse or technical attendant.
  • the machine must maintain fluid balance, i.e., monitor the amount of fluid administered to the patient to avoid the danger and discomfort of fluid build-up in the peritoneal chamber of the patient; it must also automatically cycle the flow of dialysate and warm the dialysate which will enter the peritoneal chamber.
  • the machine must be safe and simple to operate and maintain sterility of the system.
  • the machine has, first, an electrical cycling unit with a suitable Power On switch 292 which controls inflow pump 90 and return pump 92 and the four clamp valves V-l, V-2, V-4, V-S.
  • Other functional elements in the electrical system are a starting switch 294, the micro-switches 104 (FIGS. 4, I4), 138 (FIGS. 4, l7) and 144 (FIGS. 4, '16), and timers T1, T2 and T3.
  • An electronic circuit system system is shown in FIG. 25 illustrating the controlling circuitelements and sequence of operation.
  • the second basic element of the machine is the replaceable or disposable, flexible, plastic sheet and tube fabrication 160 which can be initially pre-sterilized.
  • a third basic element of the apparatus isthe proportioning reservoir or chamber (FIGS. 4, 15) which consists essentially of the side-by-side chambers 260 and 270 formed by the lamination of the three sheets 250, 252, 254 confined between rigid dished walls 116 and 120.
  • One of the chambers can be filled to the total volume of the rigid housing. If fluid is then subsequently forced into the second chamber, it will force an equal volume out of the first chamber through movement of the intermediate wall 250 which acts as a diaphragm piston. Fluid balance in the patient is achieved by filling one chamber 270 with fresh sterile dialysate prior to the inflow cycle. During inflow, the fluid returned from the previous cycle is pumped into the second compartment 260, thus forcing an equal volume of fresh sterile dialysate into the patient.
  • the proportioning chamber serves the function of a pump.
  • FIGS. 22 and 23 a schematic presentation of the apparatus is illustrated.
  • the pressure relief chamber 66 is raised on rod support 64 above the source bottle 58 before the pumps are started. With the clamp valves open, sterile fluid will flow into proportioning chamber 270 through tube 226 until chamber 270 completely fills the rigid chamber 116, 120.
  • the pressure'relief chamber is then lowered below the fluid sources 58, 60 to allow fluid to flow to it through valve V-2 and line 220 and then to the line 230 and line 234 which will be connected to the patient. After this catheter line v is filled, it is manually clamped.
  • the return pump 92 will pump fluid from the connector 232 to the return chamber 200 where fluid will accumulate until switch arm 102 tripsmicro-switch 104 to stop the motor of the return pump 92. At this time the fluid supply line 226 is manually .clamped. At the same time the inflow pump is automatically turned on and clamp valve V-4 is closed electrically. The inflow pump moves the contents of the return chamber 200 into the waste chamber .216, thereby priming all the lines. The depletion of the liquid in chamber 200 causes pump 90 to create a negative pressure in collapsible pocket 208, thus triggering micro-switch 138 through arm I36 bearing against the pocket to automatically stop inflow pump 90.
  • the float valve 207 closes when liquid leaves the bottom of chamber 200 causing the negative pressure in pocket 208 but an orifices 207a (FIG. 24) permits enough fluid to leak by to allow pocket 208 to return to its normal configuration which will reset switch 138.
  • the adjustable plate 108 (FIG. 14) can be moved to a position which allows the return chamber to hold a maximum volume equal to'the desired exchange volume for a particular patient. This affects the action of plate 96 and micro-switch 104.
  • the body catheter 34 can be connected to the patient.
  • the manual clamp is now removed from inflow tube 226 and from the catheter tube 234 and a measured amount of fresh fluid is allowed to run through the lowered pressure relief chamber into the patient.
  • This relief chamber is now moved to its upper position above the fluid source to prevent additional fluid from flowing into the patient.
  • a suitable start switch 294 on a control unit connected in the electric control circuit is manually actuated to initiate the outflow phase. This opens valve clamps V-l, V-4 and V-5 while V-2 remains closed.
  • Timer T1 controls the length of the outflow bination prevents the machine from automatically advancing if the return from the patient is less than the desirable rate and indicates a corrective action by the nurse such as catheter manipulation.
  • Valve clamp V-2 is opened and the return pump 92 is stopped and an optional add cycle is started. The amount of return is observed by the operator. If it is less than desirable, the pressure relief chamber 66 is again lowered and the return pump is manually turned on until the volume in the return chamber is increased to the desired level. The pressure relief chamber is again raised. Once the volumehas been determined to be adequate, a start switch 294 (FIG. 25) is closed and the inflow cycle begins.
  • valve clamps V-1, V-4 and V-5 are. closed and V-2 is open. See FIG. 22.
  • Inflow pump 90 is turned on to pump the fluid from the return chamber 200 into the, proportioning chamber 260 through tubes 209, 209a, 209b, thus forcing fresh dialysate from charged chamber 270 into the pressure relief chamber 66 from whence it flows into thepatient.
  • the pressure relief chamber is constructed of flexible plastic and has a greater volume than that of the rigid housing 116-120 of the proportioning chamber. Also,
  • the switch 138 closes (by closing of float valve and collapsing of pocket 208) and the next phase of the cycle, namely, the equilibration phase, is started.
  • valve clamps V-2 and V-4 are closed and V-l and V-5 are open. Both pumps are off.
  • a timer T3 is energized which controls the length of this phase. Sterile fluid flows from the source 58, 60 into the proportioning chamber 270. This forces the fluid in chamber 260 into the .waste chamber 216 through tube 212 and connector 2l3. Also the heater 1l8transmits heat to the fresh dialysate.
  • timer T3 times out, the unit is automatically switched back to the outflow cycle which has previously been described.
  • switch 144 is triggered by a collapse of flexible pocket 224 (FIG. 16) indicating no hydrostatic head from thesupply line 226, the cycle will be interrupted, and, after replenishment, the restart switch must be actuated.
  • the cycle can also be altered by actuating an increase switch 300 (FIG. to replenish fluid when pump 92 is on. Otherwise, the device will continue to cycle: inflow, return, equilibration, inflow return and so
  • FIG. 25 an electronic control system is illustrated for the purpose of accomplishing the cycling previously described.
  • the electronic control unit has seven control banks or columns A, B, C, D, E, F, and G and an input signal to any particular column or bank cancels the output-of any previous column. When a column receives an input, all actions indicated must take place prior to an output signal which may lead to another bank.
  • the circuit also shows the location of a start switch 294 and control switch 104, 138 and 144 as well as timers T1, T2 and T3.
  • a power-on switch is shown at 292 and a starting switch 294 is indicated at three points in the circuit.
  • the designation 0 is for open along the horizontal lines leading to each controlled valve orpump and the designation C means ing off pump 92, and turning on the inflow' pump 90.
  • Return pump 92 acts as a positive displacement pump during most of its cycle but one roller at roller pin 180 (FIG. 18) is removed so that at a certainpoint in the rotation, the pump tube 242a is open and unrestricted, thus relieving the negative pressure on the catheter.
  • a collapsible chamber 236 in tube 238 (FIG. 9) normally returns to its expanded maximum volume shape if there is no negative pressure within it. The maximum volume of this chamber 236 is greater than the stroke volume of the pump and should the inflow tube 234 be blocked, the pump will collapse chamber 236 during the positive displacement cycle and prevent transmission of any undue negative force to the catheter.
  • the maximum negative force created by the walls of the chamber 236 can readily be calibrated and controlled by the geometrical configuration and the selected material. During the balance of the pump cycle, the open tube 242a will permit retrograde flow and relief of negative pressure and the collapse chamber 236 can return to its normal expanded configuration.
  • one function of the pressure relief chamber is to prevent flow into the patient if clamp valves V-l and V-2 should fail since the height of the chamber is above the fluid source 58 and 60.
  • the relation of the tubes 220 and 230 prevent positive pump pressure reaching the patient tube 234 during a regular cycle or when liquid is flowing from the supply bottles. lf the patient tube 234 should become blocked, there can be no great build-up of pressure, positive or negative, which would cause discomfort of the patient.
  • switch l38 should fail, the maximum volume pumped is determined by the maximum volume of the proportion ing chamber which is established at a safe level. Also, of course, the adjustment of panel 108 determines maximum volume. The normal volume returned to the patient is equal to the return volume of the previous cycle.
  • a method of automatic cycling of peritoneal dialysis which comprises:
  • a method as defined in claim I which includes interposing a third expansible-contractiblecontainer between the first container and the patient, and positioning the third container relative to the patient to cause gravity flow of dialysate from the third container to the patient.
  • a method as defined in claim 1 which includes interposing a return chamber between the patient and the second chamber, moving dialysate from the patient to the return chamber, and subsequently moving dialysate from the return chamber to the second chamber.
  • a method as defined in claim 2 which includesinterposing a return chamber between the patient and the second chamber, moving dialysate from the patient'to the return chamber, and subsequently moving dialysate from the return chamber to the second chamber.
  • method as defined in'claim 1 which includes providing a waste receptacle, and intermittently discharging returned dialysate to said waste chamber from said second chamber subsequent to introduction of the said dialysate into the second chamber.
  • An apparatus for automatic cycling of peritoneal dialysis which comprises:
  • second means selectively operable to connect said first means'to said second container to permit flow from a patient to said second container, and to permit flow from said first container to a patient.
  • said second means includes a pressure relief chamber positionable above the patient having an inlet connected to said first chamber and an outlet connectable to a patient.
  • said second means includes a return chamber to receive return flow to dialysate from said first means
  • third means to move return dialysate from said return chamber to said second chamber to force fresh dialysate from said first chamber to said first means.
  • a hydrostatically expanded pocket is provided in a line between the supply of fresh dialysate and said first container to respond to exhaustion of supply of fresh dialysate to interrupt the function of said second means.
  • An apparatus as defined in claim 13 in which a plurality of collapsible connector lines are heat sealed into said plastic sheets to provide flow lines for said apparatus.
  • said second means includes a return chamber to receive return flow of dialysate from said first means, i b. third means to move return dialysate from said return chamber to said second chamber to force fresh dialysate from said first chamber to said first means, c. a cover panel is mounted on said support movable to a fixed position relative to said first panel, and d. a movable section 'is provided on said cover panel overlying said return chamber shiftable relative to said first panel to regulate the expansion of said return chamber as a control means in the cycling.

Abstract

A method and apparatus for automatic peritoneal dialysis which includes a series of steps for the exchange of dialysate which proportions the in-flow to the out-flow and provides for the elimination of any distressing in-flow or out-flow pressures on the patient and any abnormal build-up of fluid quantity in the patient. The apparatus includes a portable bed-side unit which carries the necessary pumps and valves for the automatic cycle and includes a disposable plastic sheet unit supported on the apparatus which is positioned such that pumps and valves in the apparatus can operate on this unit when in place.

Description

United States Patent [1 1 DeVries [54] METHOD AND APPARATUS FOR AUTOMATIC PERITONEAL DIALYSIS [75] Inventor: James H. DeVries, Ann Arbor,
Mich.
[73] Assignee: Sarns, Inc., Ann Arbor, Mich.
[22] Filed: Dec. 28, 1970 [21] App]. No.: 101,636
[52] US. Cl. ..l28/213, 128/230, 417/395 [51] Int. Cl. ..A6lm 5/00 [58] FieldofSearch...l28/213,214R,2143,2141,
[5 6] References Cited UNITED STATES PATENTS 3,054,401 9/1962 Gewecke....-.' ..128/214 F 3,256,883 6/1966 2,625,933 1/1953 11/1971 Tysk et a1. ..l28/213 MANUAL CLAMP PROFORTIONING CHAMBER 51 Jan. 9, 1973 12/1970 DeVries "128/213 3,291,151 12/1966 LokenW. ....128/2l4B 3,328,255 6/1967 11g..... ..23/258.5 2,865,388 12/1958 Sternbergh.. ...l37/564.5 2,950,396 8/1960 Schneider ..4 l 7/ 349 Primary Examiner-Dalton Truluck Attorney-Barnes, Kisselle, Raisch & Choate [57] ABSTRACT A method and apparatus for automatic peritoneal dialysis which includes a series of steps for the exchange of dialysate which'proportions the in-fiow to the outflow and provides for the elimination of any distressing in-flow or out-flow pressures on the patient and any abnormal build-up of fluid quantity in the patient. The apparatus includes a portable bed-side unit which carries the necessary pumps and valves for the automatic cycle and includes a disposable plastic sheet unit supported on the apparatus which is positioned such that pumps and valves in the apparatus can operate on this unit when in place.
21 Claims, 25 Drawing Figures ,Paessuas' RELIEF cam/week PATENTED JAN 9 I973 FIG.
TUBE
INVENTOR. JAMES H. DEVRIES ATTORNEYS SHEET 2 BF 8 PATENTEU JAN 9 I973 INVENTOR, JAMES H. DE VRIES ATTORNEYS PATENTEDJAH 9m: 3.709.222
SHEET 3 OF 8 RELIEF CHAMBER 66 MANUAL CLAM P PROPORTIONING I CHAMBER TO WA$TE CHAMBER 2/? m |RETURN CHAMBER INVENTOR. Y JAMES H. DEVR\E5 BY Fae. S M M 44011? ATTORNEYS PATENTEDJAH 91975 SHEET []F 8 A T TORNEYS PATENTED JAN 9 I973 SHEET S 0F 8 6 x m o J WV H A m m m E iiii B u WHHIIIHM. 2 5 P m F PATENTEDJAN sum 3,709 222 SHEET 6 OF 8 INVENTOR. JAMES H. DEVRIES ATTORNEYS PATENIEBJAN 9 I975 3. 709.222
sum 7 [IF 8 I 58 ,Paassusz: RELIEF AL CLAMP MANUAL. CLAMP PROPORTIONSNYG CHAMBER 2/2 m o FLUID TO PATIENT FIG; 22
INFLOW PUMP SOURCE OF FRESH DlALYSATE PROPORTIOMNG 2/0 p CHAMBER RETURN PuM 205 7 2 2 FLUID QETURN 90 FIG.
INFLOW PUMP NVENTOR.
JAMES H. bsvracas BY W M M 2 M A TTOENE'YS METHOD AND APPARATUS FOR AUTOMATIC PERITONEAL DIALYSIS This invention relates to a Method and Apparatus for Automatic Peritoneal Dialysis.
It is an object of the present invention to provide a system and apparatus for use in peritoneal dialysis which requires a minimum of attention by skilled hospital personnel and which has a number of safety features relative to the elimination of infection and discomfort.
It is an object of the invention to provide a system and apparatus which will maintain fluid balance to monitor the amount of fluid administered to the patient, thus preventing a build-up of the fluid quantity over a period of operation.
It is a further object to provide a system which can be automatically cycled and which will warm the dialysate to maintain a certain temperature range when additional dialysate is added to the quantity in use.
It is a further object to provide a system which prevents continuing operation in the event of a negative pressure build-up in the outflow and also a system which will control maximum volume in the cycle and interrupt the cycle if a fluidsource is exhausted.
The invention also contemplates the use of a disposable bag element in cooperation with a support apparatus which is relatively inexpensive compared to the overall apparatus and which permits a fresh series of chambers to be used for each patient.
Another object of the invention is a mounting apparatus for the various elements of the system which adapts itself to and cooperates with the disposable elements.
Other objects and features of the invention relating to details of construction and operation will be apparent in the following description and claims in which the principles of the invention are set forth in connection .with the best mode presently contemplated for the invention.
DRAWINGS accompany the disclosure and the various views thereof may be briefly described as:
FIG. I, a perspective view of the-system showing the I apparatus and the relationship to the patient.
FIG. 2, a sectional view taken on line 2-2 of FIG. 4 of thesupport cabinet showing the manner in which the mechanically operated valves are related to the system.
FIG. 3, a rear elevation of the valve mechanism.
FIG. 4, a view of the support apparatus cabinet with the door in open position.
FIG. 5, a view of certain disposable portions'of the apparatus separated from the supporting cabinet.
FIGS. 6, 7, 8, and 9, partial sectional views taken on lines 6-6, 7-7, 8-8, and 9-9 of FIG. 5.
FIG. 10, a view of a waste bag element for the system. 7
FIG. 11, a sectional view on line I 1-1 1 of FIG. 10.
FIG. 12, a view of the opening of the neck portion of the waste bag in closed position.
FIG. 13, a sectional view on line 13-13 of FIG. 12.
FIG. 14, a sectional view of the apparatus showing the return chamber of the system and associated control elements.
FIG. 15, a sectional view of the proportioning chamber of the system in relation to the controlling portions of the support apparatus.
FIG. 16, a sectional view taken on line 16-16 of FIG. 4 of a portion of the apparatus showing a sensor control switch.
FIG. 17, a sectional view on line 17-17 of FIG. 4 of a second sensing switch and response portion of the apparatus.
FIG. 18, an elevation of a peristaltic pump utilized in the system.
FIGS. 19, 20, and 21, sectional views taken on lines 19-19, 20-20, and 21-21 of FIG. 18.
FIG. 22, a diagrammatic view illustrating the system disposed for flow of fluid to the patient.
FIG. 23, another diagrammatic view showing the condition of fluid return from the patient.
' FIG. 24, a view of a float valve with an orifice leak by-pass.
FIG. 25, an electrical diagram showing various control elements of the system.
REFERRING TO THE DRAWINGS In FIG. 1, the apparatus is shown adjacent a hospital 'bed 30 on which is resting a patient 32 who has received the insertion of, an abdominal catheter 34 leading from the apparatus. The apparatus consists of a main cabinet 36 having a door 38 which is hinged to be moved to an open position.
Cross-wise of the cabinet 36 on one end is an open topped case 40. A frame formed by cross members 41 and axles 42 and 44 is supported on wheels or castors 46 and 48. A control panel50 is mounted on the top of the cabinet. On the side of the cabinet 36 mounted in suitable brackets 51 is a stanchion tube 52 which extends upwardly to hold two horizontal cross bars 54 and 56 which can support a supply of sterile dialysate in vessels 58 and 60. Mounted on the stanchion tube 52 is a slide bracket 61 which supports a vertical rod 62 shiftable from the solid line position shown in FIG. 1 to a dotted line position also shown wherein a horizontal portion 64 of the rod can support a plastic relief chamber bag 66 forming part of the system.
Valves which open and close certain tubes of the system, as will be later described, are shown in crosssection in FIG. 2. These are mounted on a panel 70 lying behind the door 38 of the cabinet on a bracket 72 (see FIG. 3), this bracket having a horizontal plate 74 which supports a motor 76 which drives a reduction gear 78 leading to an eccentric driven crank 80. This crank moves a plunger 82 forward and aft, the plunger being sealed by a grommet 84 in the wall of the plate 70. The plunger has a chamfered nose portion 86 which can drive forward against the door plate 38 to close off a particular tube in the system. Suitable control elements for the motor will actuate these valves in response to the general system. There are four such valve control units-mounted on plate '70 and viewing FIG. 4 these are referenced as V-l, V-2, V-4 and V-5. The functions of these valves in connection with the system will be described relative to certain tubes in the system at the appropriate time.
Other hardware on the cabinet includes, as illustrated in FIG. 4, two rotating peristaltic pumps indicated generally at 90 and 92. Except as will be later described, these are of standard construction and are driven by suitable motors mounted in the cabinet 36 behind the panel 70. Additional structure is shown in the sectional view of FIG. 14 where it will be seen that at the bottom portion of the plate 70 is a recess 94 which is closed by a swinging panel 96 hinged at 98. Behind this panel is a micro-switch actuator roller 100 on arm 102 connectedwith micro-switch 104. The door 38 has an opening 106 (see FIGS. 4 and 14) which also is closed by a swinging panel 108 hinged at 110. The position of the plate 108 can be adjustably regulated by an adjustment screw 112 on bracket 114. The purpose of this compartment between plates 96 and 108'will be described later.
Another compartment that is formed in the system by a portion of plate 70 and the cover 38 is shown in cross-section in FIG. 15. Plate 70 is again apertured and this aperture is provided with a shaped panel member 116 which is dished as shown in the drawing. On the back of this dished member is a small electric heater 118 which will be used to maintain a temperature level of liquid in the system. The door panel 38 is also provided with a recess which is filled by a dished member 120 essentially symmetrical with the member 116 to provide anelongate substantially rectangular, rigid-walled compartment. At the lower central portion of the plate 70, as viewed in FIG. 4, is an opening 130 shown in FIG. 17 below which is a bracket having a horizontal plate 132 on'the left side and a horizontal plate 134 at a slightly higher level on the right side as viewed in FIG. 17. Positioned at the opening 130 on bracket plate 132 is a micro-switch arm 136 which controls a micro-switch 138. The purpose of this microswitch in conjunction with the fluid system will be described later.
'At the upper left-hand corner of the plate 70 is an opening 140 (FIG. 16) below which is mounted a bracket plate 142 supporting a micro-switch 144 operatedby a switch arm 146. This switch arm is influenced by the pocket 224 (FIGS. and 7) toreflect absence of hydraulic head in the supply line from containers 58, 60. It will be notedalso that the door has an opening 150 which overlies the pumps 90 and 92 so that the operation ,of these pumps may be observed from outside the cabinet when the door is closed. The door has a latch handle 152 which cooperates with a latch 154 on a wall of the cabinet 36. The plate 70 also carries a plurality of projectingpins 156 positioned at the top and bottom and atother points on the left-hand side of the plate for the supporting of a plastic container andconduit sheet 160. This sheet is shown in F IG.- 4 illustrated in greater detail in FIG. 5 where it is shown apart from the supporting panel. A detailed description follows.
The pumps 90 and 92 are relatively standard peristaltic pumps, FIGS. 18-21, having a rotor 170 mounted on a drive shaft 172 and carrying guide'wheels 174, which rotate on pins 175 within a housing wall 176, and pressure rollers 178 on pins 179 which exert rolling pressure on a tube lying against the inside of the wall.
The pump 92 differs from the normal pump in that one pressureroller at the roller mount 180 is omitted to permit a periodic pressure equalization as will be later described.
Referring now to FIG. 5 and related sectional views in FIGS. 6 to 9, there is shown the plastic container and conduit sheet 160. This container sheet is intended to be disposable to avoid the sterilization problems incident to the use of reusable containers. The'sheet is made from a plastic which is preferably transparent, or at least translucent, and heat scalable. Chambers are formed, in the double or folded-over sheet, by heat sealing the peripheries, and plastic tubes are heat sealed into these chambers, FIG. 6, to provide the necessary ingress and egress. I
Specifically with reference to FIG. 5, a return chamber 200 is formed in the lower area by a heat sealed periphery 202 with an outlet 202 with an outlet tube 203 sealed at 204, this tube having an arched portion with a top air vent 205. A bottom tube 206 leads to a float valve entry unit 207 within the chamber and to a collapsible sensor pocket 208 (FIG. 17 is cross-section) and thence through a pump tube 209, 209a, 2091; to a sealed entrance to one side of a proportioning chamber 210 again formed by a heat sealed periphery. The float valve 207 is designed to close outlet tube 206 when chamber 200 is depleted, FIG. 24. A small orifice 207a permits a bleeding action to relieve negative pressure.
A lower outlet tube 212 leads out of one side of the proportioning chamber 210 in the sheet to a connector 213 which will join to a waste chamber connector 214 on a plastic waste chamber bag 216 lying in compartment 40 (FIGS. 1 and 10). The vented tube 203 from the return chamber also connects at 218 to the waste chamber bag 216. At the top of the proportioning chamber 210 one side of the chamber is connected through a sealed tube 220 to a point near the top of the elevatable pressure relief chamber bag 66 (FIG. 1). A second tube 222 at the top of the proportioning chamber 210 leads through a small pocket chamber 224 (FIG. 7 in cross-section) to a tube 226 which has a bifurcate connector 228 which joins tubes leading to supply containers 58 and 60 (FIG. 1
The pressure relief chamber 66 also has a connector tube 230 into the bottom which leads to a bifurcate connector 232, the single outletof which leads to patient tube 234 and body chamber catheter 34. The other branch of the connector 232 leads through a pressure relief pocket 236 (FIG. 9 in section) and then to a tube 238 entering the plastic container sheet 160 to a bacterial trap 240 recessed into the sheet 160 and having a connector tube 242 leading to a pump tube 242a and a connection to a re-entry tube 242k in sheet 160 sealed into the top of return chamber 200.
The proportioning chamber 210 actually consists of two side-by-side chambers which are created by sandwiching a diaphragm or separation wall 250 between the walls 252 and 254 formed from the double sheets. (See FIGS. 8 and 15). This forms two chambers 260 and 270, the chamber 260 on the right, as viewed in FIG. 15, serves to receive return dialysate fluid through tube 209(b) and, under some circumstances, to discharge it to tube 212 and the waste chamber. The chamber 270 on the left, a s viewed in FIG. 15, serves to receive fresh dialysate fluid from tube 222 through pocket 224 and can introducethisfresh fluid into relief chamber 66 through tube 220. These two chambers 260 and 270 have a volumetric effect on each other as will be described. It will be noted that these two chambers 260 and 270 are encased between the rigid dished plates 116 and 120 of the cabinetwall and cover 38 as shown in the sectional view of FIG. 15. Thus, the expansion of one chamber will cause ensmalling of the other and vice versa. There can then be a volumetric proportioning or balancing occur by reason of this arrangement.
The return chamber 200 lies in the compartment formed by the plate 96 and the plate 108 shown in FIG. 14 so that the volume of the chamber 200 can serve as a control by reason of pressure against the movable plate 96 which will influence the micro-switch arm 102. The pocket 208 at the lower right-hand portion of the chamber sheet, supported on bracket 134, as shown in FIG. 17, has a possible influence on theswitch arm 136, and the pocket 224 shown in section in FIG. 16 is a collapsible pocket which will reflect a reduction in pressure in the return flow line and thus influence a micro-switch arm 146.
The previously described close-off valves V-l, V-2, V-4 and V-5, which may be referred to as clamp valves, are shown in phantom on FIG. 5 to indicate the particular tubes that they are controlling. V-l, for example, controls tube 222; V-2 control tube 220; V-4 controls tube 242; and V-5 controls tube 212.
Referring to FIGS. to 13 the waste bag 216 is formed of a double sheet ofplastic with holes 280 and 282 for suspending the bag in the-compartment 40, this bag being sealed around its edges as illustrated in FIG. 11. The two top connector tubes are also sealed into the bag at 284. The bag has an outlet neck portion 286 which has a flap assembly 288 containing a malleable metallic stiffener 290. When thebag is to be used, this closure neck can be sealed by folding over the tab portion 290 and bending the ends to a locking position as shown in FIGS. 12 and 13.
Function and Operation The function of the apparatus above described is to administer dialysate to a patient over long periods of time in a manner to reduce the need for constant supervision by a nurse or technical attendant. The machine must maintain fluid balance, i.e., monitor the amount of fluid administered to the patient to avoid the danger and discomfort of fluid build-up in the peritoneal chamber of the patient; it must also automatically cycle the flow of dialysate and warm the dialysate which will enter the peritoneal chamber. In addition, the machine must be safe and simple to operate and maintain sterility of the system.
It will be recognized that the machine has, first, an electrical cycling unit with a suitable Power On switch 292 which controls inflow pump 90 and return pump 92 and the four clamp valves V-l, V-2, V-4, V-S. Other functional elements in the electrical system are a starting switch 294, the micro-switches 104 (FIGS. 4, I4), 138 (FIGS. 4, l7) and 144 (FIGS. 4, '16), and timers T1, T2 and T3. An electronic circuit system system is shown in FIG. 25 illustrating the controlling circuitelements and sequence of operation.
The second basic element of the machine is the replaceable or disposable, flexible, plastic sheet and tube fabrication 160 which can be initially pre-sterilized.
A third basic element of the apparatus isthe proportioning reservoir or chamber (FIGS. 4, 15) which consists essentially of the side-by- side chambers 260 and 270 formed by the lamination of the three sheets 250, 252, 254 confined between rigid dished walls 116 and 120. One of the chambers can be filled to the total volume of the rigid housing. If fluid is then subsequently forced into the second chamber, it will force an equal volume out of the first chamber through movement of the intermediate wall 250 which acts as a diaphragm piston. Fluid balance in the patient is achieved by filling one chamber 270 with fresh sterile dialysate prior to the inflow cycle. During inflow, the fluid returned from the previous cycle is pumped into the second compartment 260, thus forcing an equal volume of fresh sterile dialysate into the patient. Thus, the proportioning chamber serves the function of a pump.
In FIGS. 22 and 23, a schematic presentation of the apparatus is illustrated. With reference to these views and the previously described detailed views, to start the cycle, the pressure relief chamber 66 is raised on rod support 64 above the source bottle 58 before the pumps are started. With the clamp valves open, sterile fluid will flow into proportioning chamber 270 through tube 226 until chamber 270 completely fills the rigid chamber 116, 120. The pressure'relief chamber is then lowered below the fluid sources 58, 60 to allow fluid to flow to it through valve V-2 and line 220 and then to the line 230 and line 234 which will be connected to the patient. After this catheter line v is filled, it is manually clamped. The return pump 92 will pump fluid from the connector 232 to the return chamber 200 where fluid will accumulate until switch arm 102 tripsmicro-switch 104 to stop the motor of the return pump 92. At this time the fluid supply line 226 is manually .clamped. At the same time the inflow pump is automatically turned on and clamp valve V-4 is closed electrically. The inflow pump moves the contents of the return chamber 200 into the waste chamber .216, thereby priming all the lines. The depletion of the liquid in chamber 200 causes pump 90 to create a negative pressure in collapsible pocket 208, thus triggering micro-switch 138 through arm I36 bearing against the pocket to automatically stop inflow pump 90. The float valve 207 closes when liquid leaves the bottom of chamber 200 causing the negative pressure in pocket 208 but an orifices 207a (FIG. 24) permits enough fluid to leak by to allow pocket 208 to return to its normal configuration which will reset switch 138.
At this time the adjustable plate 108 (FIG. 14) can be moved to a position which allows the return chamber to hold a maximum volume equal to'the desired exchange volume for a particular patient. This affects the action of plate 96 and micro-switch 104. Now the body catheter 34 can be connected to the patient. The manual clamp is now removed from inflow tube 226 and from the catheter tube 234 and a measured amount of fresh fluid is allowed to run through the lowered pressure relief chamber into the patient. This relief chamber is now moved to its upper position above the fluid source to prevent additional fluid from flowing into the patient.
The machine is now ready for automatic cycling. A suitable start switch 294 on a control unit connected in the electric control circuit is manually actuated to initiate the outflow phase. This opens valve clamps V-l, V-4 and V-5 while V-2 remains closed.
This condition is shown in FIG. 23. The return pump 92 is turned on and two timers T1 and T2 are energized. Timer T1 controls the length of the outflow bination prevents the machine from automatically advancing if the return from the patient is less than the desirable rate and indicates a corrective action by the nurse such as catheter manipulation.
When timer T1 times out, the next phase of operation is initiated. Valve clamp V-2 is opened and the return pump 92 is stopped and an optional add cycle is started. The amount of return is observed by the operator. If it is less than desirable, the pressure relief chamber 66 is again lowered and the return pump is manually turned on until the volume in the return chamber is increased to the desired level. The pressure relief chamber is again raised. Once the volumehas been determined to be adequate, a start switch 294 (FIG. 25) is closed and the inflow cycle begins.
During the inflow cycle, valve clamps V-1, V-4 and V-5 are. closed and V-2 is open. See FIG. 22. Inflow pump 90 is turned on to pump the fluid from the return chamber 200 into the, proportioning chamber 260 through tubes 209, 209a, 209b, thus forcing fresh dialysate from charged chamber 270 into the pressure relief chamber 66 from whence it flows into thepatient. The pressure relief chamber is constructed of flexible plastic and has a greater volume than that of the rigid housing 116-120 of the proportioning chamber. Also,
- the inlet 220 to the relief chamber is near the top, while the outlet to tube 230 is at the bottom. If the line to the patient is blocked, fluid will accumulate in the pressure relief chamber exerting a maximum hydrostatic force on the patient determined by its height above the patient. I
When thereturn chamber empties, the switch 138 closes (by closing of float valve and collapsing of pocket 208) and the next phase of the cycle, namely, the equilibration phase, is started. In this phase, valve clamps V-2 and V-4 are closed and V-l and V-5 are open. Both pumps are off. A timer T3 is energized which controls the length of this phase. Sterile fluid flows from the source 58, 60 into the proportioning chamber 270. This forces the fluid in chamber 260 into the .waste chamber 216 through tube 212 and connector 2l3. Also the heater 1l8transmits heat to the fresh dialysate. When timer T3 times out, the unit is automatically switched back to the outflow cycle which has previously been described.
There are several control features in the apparatus not touched upon previously. If, for example, the amount of return fluid exceeds the intended volume as regulated bypanels 96 and 108, any excess fluid will flow out of the top of the return chamber through line tube 204.directly into the waste chamber 216. The air vent 205 prevents siphoning once the flow has started.
If switch 144 is triggered by a collapse of flexible pocket 224 (FIG. 16) indicating no hydrostatic head from thesupply line 226, the cycle will be interrupted, and, after replenishment, the restart switch must be actuated. The cycle can also be altered by actuating an increase switch 300 (FIG. to replenish fluid when pump 92 is on. Otherwise, the device will continue to cycle: inflow, return, equilibration, inflow return and so In FIG. 25, an electronic control system is illustrated for the purpose of accomplishing the cycling previously described. The electronic control unit has seven control banks or columns A, B, C, D, E, F, and G and an input signal to any particular column or bank cancels the output-of any previous column. When a column receives an input, all actions indicated must take place prior to an output signal which may lead to another bank.
Each of these banks controls valves V-l, V-2, V4
and V-5, pump 92 and pump 90. The circuit also shows the location of a start switch 294 and control switch 104, 138 and 144 as well as timers T1, T2 and T3. A power-on switch is shown at 292 and a starting switch 294 is indicated at three points in the circuit. On the electronic panel, the designation 0 is for open along the horizontal lines leading to each controlled valve orpump and the designation C means ing off pump 92, and turning on the inflow' pump 90.
Fluid will then flow into thewaste chamber 216 and ultimately cause the triggering of micro-switch 138 which will pass signal current from bank B to bank C. This will leave valve V-4 on and turn off pump 90. At this point, the circuit is ready for cycling and when the start switch 294 is actuated, the electrical signal will then go to bank D, closing valve V-2 and turning on the return pump 92. Signal current out of bank D will ordinarily pass through the normally closed timer switch T2'and pass to T1; and when timer T1 is phased, current will then flow through a normally closed add switch 296 and through normally closed switch 144 to bank E where all valves are open and the pumpsare off. This bank E might function in an add cycle.
Current can also pass then through the start switch 294 to bank F where valves V-l, V4 and V-5 are turned off and inflow pump is turned on. This portion of the cycle will continue until switch 138 is trig gered' by a depletion of the liquid in the chamber 200 when current will flow around to bank G, thus opening valve V-l and closing V-2, leaving V-4 closed, and opening V-5 with both pumps being offnThis circuit then moves to the timer T3 which is normally open and when this timer is phased, the circuit will recycle by starting again at bank D. The timer T3 is controlling what is called the equilibration phase of the cycle which has been previously described. The electronic circuit in FIG. 25 also shows an add switch 296 which can be actuated manually if fluidis to be added and itv also includes an increase switch 300 which can be actuthe first timer T1 is reset'and stops'until switch 104.
closes.
The maximum negative pressureis controlled during the outflow phase by two devices. Return pump 92 acts as a positive displacement pump during most of its cycle but one roller at roller pin 180 (FIG. 18) is removed so that at a certainpoint in the rotation, the pump tube 242a is open and unrestricted, thus relieving the negative pressure on the catheter. Secondly, a collapsible chamber 236 in tube 238 (FIG. 9) normally returns to its expanded maximum volume shape if there is no negative pressure within it. The maximum volume of this chamber 236 is greater than the stroke volume of the pump and should the inflow tube 234 be blocked, the pump will collapse chamber 236 during the positive displacement cycle and prevent transmission of any undue negative force to the catheter. The maximum negative force created by the walls of the chamber 236 can readily be calibrated and controlled by the geometrical configuration and the selected material. During the balance of the pump cycle, the open tube 242a will permit retrograde flow and relief of negative pressure and the collapse chamber 236 can return to its normal expanded configuration.
It will be noted that one function of the pressure relief chamber is to prevent flow into the patient if clamp valves V-l and V-2 should fail since the height of the chamber is above the fluid source 58 and 60. The relation of the tubes 220 and 230 prevent positive pump pressure reaching the patient tube 234 during a regular cycle or when liquid is flowing from the supply bottles. lf the patient tube 234 should become blocked, there can be no great build-up of pressure, positive or negative, which would cause discomfort of the patient. If switch l38should fail, the maximum volume pumped is determined by the maximum volume of the proportion ing chamber which is established at a safe level. Also, of course, the adjustment of panel 108 determines maximum volume. The normal volume returned to the patient is equal to the return volume of the previous cycle.
What is claimed as new is as follows:
1. A method of automatic cycling of peritoneal dialysis which comprises:
a. introducing a metered quantity of dialysate patient,
b. providing a metered quantity of fresh dialysate in a first expansible, contractible, volumetric container,
c. providing a second expansible, contractible, volumetric container adjacent the first container,
d. confining the first and second containers within a non-expansible volumetric housing,
e. transferring a quantity of dialysate from the patient to the second container'to cause ensmalling of said first container, and
f. introducing fresh dialysate thus forced from said first container into the patient.
2. A method as defined in claim I which includes interposing a third expansible-contractiblecontainer between the first container and the patient, and positioning the third container relative to the patient to cause gravity flow of dialysate from the third container to the patient.
3. A method as defined in claim 1 which includes interposing a return chamber between the patient and the second chamber, moving dialysate from the patient to the return chamber, and subsequently moving dialysate from the return chamber to the second chamber.
into a 4; A method as defined in claim 2 which includesinterposing a return chamber between the patient and the second chamber, moving dialysate from the patient'to the return chamber, and subsequently moving dialysate from the return chamber to the second chamber.
5. method as defined in'claim 1 which includes providing a waste receptacle, and intermittently discharging returned dialysate to said waste chamber from said second chamber subsequent to introduction of the said dialysate into the second chamber.
6. An apparatus for automatic cycling of peritoneal dialysis which comprises:
a. a support to be positioned at the bedside of a patient,
b. means on said support for holding a supply of fresh dialysate,
c. a first expansible, contractible container on said support for receiving fresh dialysate from said pp y.
d. a second expansible, contractible container on said support directly adjacent said first container,
e. a fixed volumetric chamberon said support confining the expansion of said first and second containers,
f. first means to flow dialysate to and froma patient,
and
g. second means selectively operable to connect said first means'to said second container to permit flow from a patient to said second container, and to permit flow from said first container to a patient.
. An apparatus as defined in claim 6 in which:
a. said second means includes a pressure relief chamber positionable above the patient having an inlet connected to said first chamber and an outlet connectable to a patient.
. An apparatus as defined in claim 6 in which:
a. said second means includes a return chamber to receive return flow to dialysate from said first means, and
b. third means to move return dialysate from said return chamber to said second chamber to force fresh dialysate from said first chamber to said first means.
9. An apparatus as defined in claim 8 in which said third means includes:
a. a pump'connected in a line leading from said return chamber, I b. a float valve in said line at the bottom of said return chamber to momentarily close said line when the return chamber is empty, and c. a vacuum responsive envelope in said line operable to stop said pump upon emptying of said return chamber. 10. An apparatus as defined in claim 6 in which said second means includes:
a. apump connected in a line leading from said first means, and b. a pressure relief means in said line to limit negative pressure in said first means. I I 11. An apparatus as defined in claim 10 in which said pump is 'aperistaltic pump having a positive displacement and a negative displacement cycle sequentially, and said pressure relief means comprises a collapsible envelope in said line leading from said first means. 12. An apparatus as defined in claim 6 in which:
a. a hydrostatically expanded pocket is provided in a line between the supply of fresh dialysate and said first container to respond to exhaustion of supply of fresh dialysate to interrupt the function of said second means.
13. An, apparatus as defined in claim 6 in which said support includes afirst panel, and said containers are formed from overlaid sheets of plastic supported on said panel and heat sealed in defined areas to form said containers. y
14. An apparatus as defined in claim 13 in which a plurality of collapsible connector lines are heat sealed into said plastic sheets to provide flow lines for said apparatus.
15. An apparatus as defined in claim 14 in which a plurality of valve means are supported on said panel operable to squeeze said connector lines to a close-off position.
16. An apparatus as defined in claim 15 in which a 7 18. An'apparatus asdefined in claim 7 in which said 12 relief, chamber is mounted on vertically adjustable means on said support to permit regulation of hydrostatic position relative to a supply of fresh dialysate.
19. An apparatus as defined in claim 8 in which said 7 support comprises adjustable panel means for confining the walls of said return-chamber to regulate its expansion as a control means in the cycling.
20. An apparatus as defined in claim 13in which: a. said second means includes a return chamber to receive return flow of dialysate from said first means, i b. third means to move return dialysate from said return chamber to said second chamber to force fresh dialysate from said first chamber to said first means, c. a cover panel is mounted on said support movable to a fixed position relative to said first panel, and d. a movable section 'is provided on said cover panel overlying said return chamber shiftable relative to said first panel to regulate the expansion of said return chamber as a control means in the cycling.
21. An apparatus as defined in claim 1 l in which said pump has a plurality of rollers spaced circumferentiall y to provide a positive displacement cycle, duringonly a portion of the rotative cycle of said purnp.
i a: v

Claims (21)

1. A method of automatic cycling of peritoneal dialysis which comprises: a. introducing a metered quantity of dialysate into a patient, b. providing a metered quantity of fresh dialysate in a first expansible, contractible, volumetric container, c. providing a second expansible, contractible, volumetric container adjacent the first container, d. confining the first and second containers within a nonexpansible volumetric housing, e. transferring a quantity of dialysate from the patient to the second container to cause ensmalling of said first container, and f. introducing fresh dialysate thus forced from said first container into the patient.
2. A method as defined in claim 1 which includes interposing a third expansible-contractible container between the first container and the patient, and positioning the third container relative to the patient to cause gravity flow of dialysate from the third container to the patient.
3. A method as defined in claim 1 which includes interposing a return chamber between the patient and the second chamber, moving dialysate from the patient to the return chamber, and subsequently moving dialysate from the return chamber to the second chamber.
4. A method as defined in claim 2 which includes interposing a return chamber between the patient and the second chamber, moving dialysate from the patient to the return chamber, and subsequently moving dialysate from the return chamber to the second chamber.
5. A method as defined in claim 1 which includes providing a waste receptacle, and intermittently discharging returned dialysate to said waste chamber from said second chamber subsequent to introduction of the said dialysate into the second chamber.
6. An apparatus for automatic cycling of peritoneal dialysis which comprisEs: a. a support to be positioned at the bedside of a patient, b. means on said support for holding a supply of fresh dialysate, c. a first expansible, contractible container on said support for receiving fresh dialysate from said supply, d. a second expansible, contractible container on said support directly adjacent said first container, e. a fixed volumetric chamber on said support confining the expansion of said first and second containers, f. first means to flow dialysate to and from a patient, and g. second means selectively operable to connect said first means to said second container to permit flow from a patient to said second container, and to permit flow from said first container to a patient.
7. An apparatus as defined in claim 6 in which: a. said second means includes a pressure relief chamber positionable above the patient having an inlet connected to said first chamber and an outlet connectable to a patient.
8. An apparatus as defined in claim 6 in which: a. said second means includes a return chamber to receive return flow to dialysate from said first means, and b. third means to move return dialysate from said return chamber to said second chamber to force fresh dialysate from said first chamber to said first means.
9. An apparatus as defined in claim 8 in which said third means includes: a. a pump connected in a line leading from said return chamber, b. a float valve in said line at the bottom of said return chamber to momentarily close said line when the return chamber is empty, and c. a vacuum responsive envelope in said line operable to stop said pump upon emptying of said return chamber.
10. An apparatus as defined in claim 6 in which said second means includes: a. a pump connected in a line leading from said first means, and b. a pressure relief means in said line to limit negative pressure in said first means.
11. An apparatus as defined in claim 10 in which said pump is a peristaltic pump having a positive displacement and a negative displacement cycle sequentially, and said pressure relief means comprises a collapsible envelope in said line leading from said first means.
12. An apparatus as defined in claim 6 in which: a. a hydrostatically expanded pocket is provided in a line between the supply of fresh dialysate and said first container to respond to exhaustion of supply of fresh dialysate to interrupt the function of said second means.
13. An apparatus as defined in claim 6 in which said support includes a first panel, and said containers are formed from overlaid sheets of plastic supported on said panel and heat sealed in defined areas to form said containers.
14. An apparatus as defined in claim 13 in which a plurality of collapsible connector lines are heat sealed into said plastic sheets to provide flow lines for said apparatus.
15. An apparatus as defined in claim 14 in which a plurality of valve means are supported on said panel operable to squeeze said connector lines to a close-off position.
16. An apparatus as defined in claim 15 in which a cover panel overlies said panel, and said valves operate to squeeze said connector lines against said cover panel to achieve a close-off of said connector lines.
17. An apparatus as defined in claim 13 in which said fixed volumetric chamber is formed by a predetermined area of said panel, and a relatively rigid cover portion overlying said area.
18. An apparatus as defined in claim 7 in which said relief chamber is mounted on vertically adjustable means on said support to permit regulation of hydrostatic position relative to a supply of fresh dialysate.
19. An apparatus as defined in claim 8 in which said support comprises adjustable panel means for confining the walls of said return chamber to regulate its expansion as a control means in the cycling.
20. An apparatus as defined in claim 13 in which: a. said second means includes a return chamber to receive return flow Of dialysate from said first means, b. third means to move return dialysate from said return chamber to said second chamber to force fresh dialysate from said first chamber to said first means, c. a cover panel is mounted on said support movable to a fixed position relative to said first panel, and d. a movable section is provided on said cover panel overlying said return chamber shiftable relative to said first panel to regulate the expansion of said return chamber as a control means in the cycling.
21. An apparatus as defined in claim 11 in which said pump has a plurality of rollers spaced circumferentially to provide a positive displacement cycle during only a portion of the rotative cycle of said pump.
US00101636A 1970-12-28 1970-12-28 Method and apparatus for automatic peritoneal dialysis Expired - Lifetime US3709222A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10163670A 1970-12-28 1970-12-28

Publications (1)

Publication Number Publication Date
US3709222A true US3709222A (en) 1973-01-09

Family

ID=22285671

Family Applications (1)

Application Number Title Priority Date Filing Date
US00101636A Expired - Lifetime US3709222A (en) 1970-12-28 1970-12-28 Method and apparatus for automatic peritoneal dialysis

Country Status (1)

Country Link
US (1) US3709222A (en)

Cited By (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858572A (en) * 1972-10-27 1975-01-07 Kendall & Co Insufflation device
US3860000A (en) * 1973-07-12 1975-01-14 Lear Siegler Inc Medical apparatus and method for feeding and aspirating
US3872863A (en) * 1973-07-31 1975-03-25 American Med Prod Peritoneal dialysis apparatus
US3890969A (en) * 1974-01-21 1975-06-24 Baxter Laboratories Inc Cardiopulmonary bypass system
US3946731A (en) * 1971-01-20 1976-03-30 Lichtenstein Eric Stefan Apparatus for extracorporeal treatment of blood
US3955574A (en) * 1974-12-09 1976-05-11 Rubinstein Morton K Pumping system for catheter suction units
US4096859A (en) * 1977-04-04 1978-06-27 Agarwal Mahesh C Apparatus for peritoneal dialysis
FR2411015A1 (en) * 1977-12-10 1979-07-06 Fresenius Chem Pharm Ind PERITONEAL DIALYSIS DEVICE
EP0004600A2 (en) * 1978-03-22 1979-10-17 Hoechst Aktiengesellschaft Peristaltic pump for a dialysis solution
US4252115A (en) * 1977-12-09 1981-02-24 Dr. Eduard Fresenius, Chemisch-Pharmazeutische Industrie Kg. Apparatebau Kg. Apparatus for periodically rinsing body cavities, particularly the abdominal cavity
US4275726A (en) * 1977-12-09 1981-06-30 Dr. Eduard Fresenius, Chemisch-Pharmazeutische Industrie Kg Apparatebau Kg Apparatus for fluid balancing under sterile conditions
US4306976A (en) * 1979-05-25 1981-12-22 Bieffe S.P.A. Method and device for ambulatory peritoneal dialysis
US4352374A (en) * 1976-11-29 1982-10-05 Gambro Ab Apparatus for diluting a concentrated solution
US4379452A (en) * 1977-10-18 1983-04-12 Baxter Travenol Laboratories, Inc. Prepackaged, self-contained fluid circuit module
EP0084512A1 (en) * 1982-01-08 1983-07-27 MACO-PHARMA, Société Anonyme Sterile Siamese bag
US4413988A (en) * 1982-04-28 1983-11-08 Handt Alan E Short-tubing set gravity powered peritoneal cycler
WO1984002473A1 (en) * 1982-12-28 1984-07-05 Baxter Travenol Lab Prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4475900A (en) * 1981-06-05 1984-10-09 Popovich Robert P Method of peritoneal dialysis involving ultraviolet radiation of dialysis apparatus
US4479760A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4479761A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to externally applied pressures
US4479762A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
EP0157024A1 (en) * 1983-12-19 1985-10-09 SIS TER Spa Improved automatic apparatus for peritoneal dialysis
US4560472A (en) * 1982-12-10 1985-12-24 Baxter Travenol Laboratories, Inc. Peritoneal dialysis apparatus
US4586920A (en) * 1984-07-09 1986-05-06 Peabody Alan M Continuous flow peritoneal dialysis system and method
USRE32303E (en) * 1973-07-31 1986-12-09 American Medical Products Corp. Peritoneal dialysis apparatus
EP0243547A1 (en) * 1986-05-01 1987-11-04 Alan M. Peabody Continuous flow peritoneal dialysis apparatus
US4718890A (en) * 1984-07-09 1988-01-12 Peabody Alan M Continuous flow peritoneal dialysis system and method
US4747822A (en) * 1984-07-09 1988-05-31 Peabody Alan M Continuous flow peritoneal dialysis system and method
US4770769A (en) * 1978-09-02 1988-09-13 Fresenius Aktiengesellschaft Hemodialysis apparatus with degassing means for the dialysis solution
EP0402505A1 (en) * 1989-06-15 1990-12-19 Alan M. Peabody Continuous cyclic peritoneal dialysis system
US5115682A (en) * 1990-05-21 1992-05-26 Feiler Ernest M Coronary artery graft flow-meter
US5324422A (en) * 1993-03-03 1994-06-28 Baxter International Inc. User interface for automated peritoneal dialysis systems
US5334139A (en) * 1991-02-18 1994-08-02 Gambro Ab Method of peritoneal dialysis using a tube set
US5350357A (en) * 1993-03-03 1994-09-27 Deka Products Limited Partnership Peritoneal dialysis systems employing a liquid distribution and pumping cassette that emulates gravity flow
US5427509A (en) * 1993-12-22 1995-06-27 Baxter International Inc. Peristaltic pump tube cassette with angle pump tube connectors
US5431626A (en) * 1993-03-03 1995-07-11 Deka Products Limited Partnership Liquid pumping mechanisms for peritoneal dialysis systems employing fluid pressure
US5438510A (en) * 1993-03-03 1995-08-01 Deka Products Limited Partnership User interface and monitoring functions for automated peritoneal dialysis systems
US5441636A (en) * 1993-02-12 1995-08-15 Cobe Laboratories, Inc. Integrated blood treatment fluid module
US5443447A (en) * 1992-09-24 1995-08-22 Amin I. Kassis Intracavitary delivery or withdrawal device
US5445506A (en) * 1993-12-22 1995-08-29 Baxter International Inc. Self loading peristaltic pump tube cassette
US5474683A (en) * 1993-03-03 1995-12-12 Deka Products Limited Partnership Peritoneal dialysis systems and methods employing pneumatic pressure and temperature-corrected liquid volume measurements
EP0687474A1 (en) 1994-06-16 1995-12-20 Fresenius AG Apparatus for peritoneal dialysis
US5480294A (en) * 1993-12-22 1996-01-02 Baxter International Inc. Peristaltic pump module having jaws for gripping a peristaltic pump tube cassett
US5482440A (en) * 1993-12-22 1996-01-09 Baxter Int Blood processing systems using a peristaltic pump module with valve and sensing station for operating a peristaltic pump tube cassette
US5484239A (en) * 1993-12-22 1996-01-16 Baxter International Inc. Peristaltic pump and valve assembly for fluid processing systems
US5628908A (en) * 1993-03-03 1997-05-13 Deka Products Limited Partnership Peritoneal dialysis systems and methods employing a liquid distribution and pump cassette with self-contained air isolation and removal
EP0778033A3 (en) * 1995-12-09 1997-11-05 Fresenius Medical Care Deutschland GmbH Blood treatment device with balanced flow
US5746708A (en) * 1993-12-22 1998-05-05 Baxter International Inc. Peristaltic pump tube holder with pump tube shield and cover
US5870805A (en) * 1997-01-06 1999-02-16 Baxter International Inc. Disposable tubing set and organizer frame for holding flexible tubing
US5906598A (en) * 1993-12-22 1999-05-25 Baxter International Inc. Self-priming drip chamber with extended field of vision
US5938634A (en) * 1995-09-08 1999-08-17 Baxter International Inc. Peritoneal dialysis system with variable pressure drive
WO2000016825A3 (en) * 1998-09-18 2000-08-24 Baxter Int Support devices for surgical systems
US6186752B1 (en) 1993-11-17 2001-02-13 Baxter International Inc. Peristaltic pumping apparatus with tubing organizer
US6488647B1 (en) 1999-06-29 2002-12-03 Hiromu Miura Automated solution injection-discharge system and automated peritoneal dialysis system (APDS)
US6491658B1 (en) 1999-06-29 2002-12-10 Jms Co., Ltd. Automated solution injection-discharge system and automated peritoneal dialysis system
US6554789B1 (en) 1997-02-14 2003-04-29 Nxstage Medical, Inc. Layered fluid circuit assemblies and methods for making them
US6579253B1 (en) 1997-02-14 2003-06-17 Nxstage Medical, Inc. Fluid processing systems and methods using extracorporeal fluid flow panels oriented within a cartridge
US6595943B1 (en) 1997-02-14 2003-07-22 Nxstage Medical, Inc. Systems and methods for controlling blood flow and waste fluid removal during hemofiltration
US6638477B1 (en) 1997-02-14 2003-10-28 Nxstage Medical, Inc. Fluid replacement systems and methods for use in hemofiltration
US6638478B1 (en) 1997-02-14 2003-10-28 Nxstage Medical, Inc. Synchronized volumetric fluid balancing systems and methods
US20030220598A1 (en) * 2002-05-24 2003-11-27 Don Busby Automated dialysis system
US20030220607A1 (en) * 2002-05-24 2003-11-27 Don Busby Peritoneal dialysis apparatus
US6673314B1 (en) 1997-02-14 2004-01-06 Nxstage Medical, Inc. Interactive systems and methods for supporting hemofiltration therapies
US20040243048A1 (en) * 1997-02-14 2004-12-02 Brugger James M. Registration of fluid circuit components in a blood treatment device
US20040243047A1 (en) * 1997-02-14 2004-12-02 Brugger James M. Single step fluid circuit engagement device and method
US6830553B1 (en) 1997-02-14 2004-12-14 Nxstage Medical, Inc. Blood treatment systems and methods that maintain sterile extracorporeal processing conditions
US20050045548A1 (en) * 1997-02-14 2005-03-03 James Brugger Hemofiltration systems and methods that maintain sterile extracorporeal processing conditions
US20050082210A1 (en) * 2001-11-26 2005-04-21 Favre Olivier C. Device for intracorporeal and and extracorporeal purification
US6899691B2 (en) 1999-12-22 2005-05-31 Gambro Inc. Extracorporeal blood processing methods and apparatus
US20050209563A1 (en) * 2004-03-19 2005-09-22 Peter Hopping Cassette-based dialysis medical fluid therapy systems, apparatuses and methods
US20070004997A1 (en) * 1999-12-22 2007-01-04 Gambro, Inc. Extracorporeal Blood Processing Methods With Multiple Alarm Levels
US20070078368A1 (en) * 2000-01-10 2007-04-05 Gambro, Inc. Extracorporeal Blood Processing Methods With Return-Flow Alarm
US20070135758A1 (en) * 2000-02-10 2007-06-14 Baxter International Inc. Method and apparatus for monitoring and controlling peritoneal dialysis therapy
EP1829569A2 (en) * 2000-02-28 2007-09-05 Gambro Lundia AB Method and device for PD cyclers
US20080015493A1 (en) * 2003-11-05 2008-01-17 Baxter International Inc. Medical fluid pumping system having real time volume determination
US20080033346A1 (en) * 2002-12-31 2008-02-07 Baxter International Inc. Pumping systems for cassette-based dialysis
US20080149551A1 (en) * 1999-11-29 2008-06-26 Nxstage Medical, Inc. Blood treatment apparatus
US20090012457A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Dialysis system having disposable cassette and interface therefore
US20090012451A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Peritoneal dialysis patient connection system
US20090012459A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Peritoneal dialysis patient connection system using ultraviolet light emitting diodes
US20090012458A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Dialysis system having dual patient line connection and prime
US20090012461A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Dialysis system having disposable cassette and heated cassette interface
US20090012455A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Dialysis system having supply container autoconnection
US20090012460A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Dialysis cassette having multiple outlet valve
US20090043237A1 (en) * 2003-10-08 2009-02-12 Caridianbct, Inc. Methods and devices for processing blood
US20090112151A1 (en) * 2007-10-30 2009-04-30 Baxter International Inc. Dialysis system having integrated pneumatic manifold
US7559913B1 (en) 2000-02-28 2009-07-14 Gambro Lundia Ab Method and device for PD cyclers
US20090187138A1 (en) * 2008-01-18 2009-07-23 Baxter International Inc. Reusable effluent drain container for dialysis and other medical fluid therapies
US20090281484A1 (en) * 2003-10-28 2009-11-12 Baxter International Inc. Peritoneal dialysis machine
US20100130920A1 (en) * 2008-11-21 2010-05-27 Baxter International Inc. Dialysis machine having auto-connection system with roller occluder
US20100140149A1 (en) * 2008-10-30 2010-06-10 Barry Neil Fulkerson Modular, Portable Dialysis System
WO2011082783A1 (en) 2009-12-16 2011-07-14 Fresenius Medical Care Deutschland Gmbh Balancing device, external medical functional device, treatment device, and methods
US20110184339A1 (en) * 2010-01-27 2011-07-28 Ta-Lun Tan Intelligent automatic peritoneal dialysis
CN102671250A (en) * 2011-03-11 2012-09-19 谭大伦 Intelligent full-automatic peritoneal dialysis device and operating method
US20120261341A1 (en) * 2011-04-13 2012-10-18 Fresenius Medical Care Deutschland Gmbh Device and method for conveying a fluid to a filter unit of a medical treatment apparatus
US20130193073A1 (en) * 2007-11-09 2013-08-01 Baxter Healthcare S.A. Balanced flow dialysis machine
US8597505B2 (en) 2007-09-13 2013-12-03 Fresenius Medical Care Holdings, Inc. Portable dialysis machine
US8771511B2 (en) 2007-11-29 2014-07-08 Fresenius Medical Care Holdings, Inc. Disposable apparatus and kit for conducting dialysis
US8992462B2 (en) 2002-07-19 2015-03-31 Baxter International Inc. Systems and methods for performing peritoneal dialysis
US9157786B2 (en) 2012-12-24 2015-10-13 Fresenius Medical Care Holdings, Inc. Load suspension and weighing system for a dialysis machine reservoir
US9199022B2 (en) 2008-09-12 2015-12-01 Fresenius Medical Care Holdings, Inc. Modular reservoir assembly for a hemodialysis and hemofiltration system
US9295772B2 (en) 2007-11-29 2016-03-29 Fresenius Medical Care Holdings, Inc. Priming system and method for dialysis systems
US9308307B2 (en) 2007-09-13 2016-04-12 Fresenius Medical Care Holdings, Inc. Manifold diaphragms
US9354640B2 (en) 2013-11-11 2016-05-31 Fresenius Medical Care Holdings, Inc. Smart actuator for valve
US9352282B2 (en) 2007-09-25 2016-05-31 Fresenius Medical Care Holdings, Inc. Manifolds for use in conducting dialysis
US9358331B2 (en) 2007-09-13 2016-06-07 Fresenius Medical Care Holdings, Inc. Portable dialysis machine with improved reservoir heating system
US9360129B2 (en) 2009-01-12 2016-06-07 Fresenius Medical Care Holdings, Inc. Valve system
US9514283B2 (en) 2008-07-09 2016-12-06 Baxter International Inc. Dialysis system having inventory management including online dextrose mixing
US9582645B2 (en) 2008-07-09 2017-02-28 Baxter International Inc. Networked dialysis system
US9586003B2 (en) 2007-07-05 2017-03-07 Baxter International Inc. Medical fluid machine with supply autoconnection
US9675745B2 (en) 2003-11-05 2017-06-13 Baxter International Inc. Dialysis systems including therapy prescription entries
US9675744B2 (en) 2002-05-24 2017-06-13 Baxter International Inc. Method of operating a disposable pumping unit
US10293091B2 (en) 2007-07-05 2019-05-21 Baxter International Inc. Dialysis system having an autoconnection mechanism
WO2019162188A1 (en) * 2018-02-21 2019-08-29 Fresenius Medical Care Deutschland Gmbh Peritoneal dialysis device
US10625009B2 (en) 2016-02-17 2020-04-21 Baxter International Inc. Airtrap, system and method for removing microbubbles from a fluid stream
US20200121842A1 (en) * 2002-07-19 2020-04-23 Baxter International Inc. Dialysis system having a vented disposable dialysis fluid carrying member
US11179516B2 (en) 2017-06-22 2021-11-23 Baxter International Inc. Systems and methods for incorporating patient pressure into medical fluid delivery
US11525798B2 (en) 2012-12-21 2022-12-13 Fresenius Medical Care Holdings, Inc. Method and system of monitoring electrolyte levels and composition using capacitance or induction

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2625933A (en) * 1949-05-10 1953-01-20 Peter F Salisbury Blood transfer mechanism
US2865388A (en) * 1955-01-13 1958-12-23 West Shore Mfg Company Liquid mixing and proportioning device
US2950396A (en) * 1960-08-23 Colorevietric analyzer
US3054401A (en) * 1959-12-23 1962-09-18 American Sterilizer Co Transfusion set
US3256883A (en) * 1963-08-08 1966-06-21 Wall Richard A De Oxygenator with heat exchanger
US3291151A (en) * 1963-11-06 1966-12-13 Selmer M Loken Fluid exchange system
US3328255A (en) * 1963-12-13 1967-06-27 Elliot Lab Inc Method and apparatus for treating blood
US3545438A (en) * 1968-02-12 1970-12-08 Sarns Inc Intermittent dialysis method and apparatus therefor
US3620215A (en) * 1969-06-04 1971-11-16 Lkb Medical Ab Apparatus for peritoneal dialysis

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2950396A (en) * 1960-08-23 Colorevietric analyzer
US2625933A (en) * 1949-05-10 1953-01-20 Peter F Salisbury Blood transfer mechanism
US2865388A (en) * 1955-01-13 1958-12-23 West Shore Mfg Company Liquid mixing and proportioning device
US3054401A (en) * 1959-12-23 1962-09-18 American Sterilizer Co Transfusion set
US3256883A (en) * 1963-08-08 1966-06-21 Wall Richard A De Oxygenator with heat exchanger
US3291151A (en) * 1963-11-06 1966-12-13 Selmer M Loken Fluid exchange system
US3328255A (en) * 1963-12-13 1967-06-27 Elliot Lab Inc Method and apparatus for treating blood
US3545438A (en) * 1968-02-12 1970-12-08 Sarns Inc Intermittent dialysis method and apparatus therefor
US3620215A (en) * 1969-06-04 1971-11-16 Lkb Medical Ab Apparatus for peritoneal dialysis

Cited By (266)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946731A (en) * 1971-01-20 1976-03-30 Lichtenstein Eric Stefan Apparatus for extracorporeal treatment of blood
US3858572A (en) * 1972-10-27 1975-01-07 Kendall & Co Insufflation device
US3860000A (en) * 1973-07-12 1975-01-14 Lear Siegler Inc Medical apparatus and method for feeding and aspirating
US3872863A (en) * 1973-07-31 1975-03-25 American Med Prod Peritoneal dialysis apparatus
USRE32303E (en) * 1973-07-31 1986-12-09 American Medical Products Corp. Peritoneal dialysis apparatus
US3890969A (en) * 1974-01-21 1975-06-24 Baxter Laboratories Inc Cardiopulmonary bypass system
US3955574A (en) * 1974-12-09 1976-05-11 Rubinstein Morton K Pumping system for catheter suction units
US4352374A (en) * 1976-11-29 1982-10-05 Gambro Ab Apparatus for diluting a concentrated solution
US4096859A (en) * 1977-04-04 1978-06-27 Agarwal Mahesh C Apparatus for peritoneal dialysis
US4379452A (en) * 1977-10-18 1983-04-12 Baxter Travenol Laboratories, Inc. Prepackaged, self-contained fluid circuit module
US4252115A (en) * 1977-12-09 1981-02-24 Dr. Eduard Fresenius, Chemisch-Pharmazeutische Industrie Kg. Apparatebau Kg. Apparatus for periodically rinsing body cavities, particularly the abdominal cavity
US4275726A (en) * 1977-12-09 1981-06-30 Dr. Eduard Fresenius, Chemisch-Pharmazeutische Industrie Kg Apparatebau Kg Apparatus for fluid balancing under sterile conditions
FR2411015A1 (en) * 1977-12-10 1979-07-06 Fresenius Chem Pharm Ind PERITONEAL DIALYSIS DEVICE
EP0004600A3 (en) * 1978-03-22 1980-04-16 Hoechst Aktiengesellschaft Peristaltic pump for a dialysis solution
EP0004600A2 (en) * 1978-03-22 1979-10-17 Hoechst Aktiengesellschaft Peristaltic pump for a dialysis solution
US4770769A (en) * 1978-09-02 1988-09-13 Fresenius Aktiengesellschaft Hemodialysis apparatus with degassing means for the dialysis solution
US4306976A (en) * 1979-05-25 1981-12-22 Bieffe S.P.A. Method and device for ambulatory peritoneal dialysis
US4475900A (en) * 1981-06-05 1984-10-09 Popovich Robert P Method of peritoneal dialysis involving ultraviolet radiation of dialysis apparatus
EP0084512A1 (en) * 1982-01-08 1983-07-27 MACO-PHARMA, Société Anonyme Sterile Siamese bag
US4413988A (en) * 1982-04-28 1983-11-08 Handt Alan E Short-tubing set gravity powered peritoneal cycler
WO1983003765A1 (en) * 1982-04-28 1983-11-10 Handt Alan E Short-tubing set gravity powered peritoneal cycler
US4560472A (en) * 1982-12-10 1985-12-24 Baxter Travenol Laboratories, Inc. Peritoneal dialysis apparatus
US4479762A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
WO1984002473A1 (en) * 1982-12-28 1984-07-05 Baxter Travenol Lab Prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4479760A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to applied pressures
US4479761A (en) * 1982-12-28 1984-10-30 Baxter Travenol Laboratories, Inc. Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to externally applied pressures
EP0157024A1 (en) * 1983-12-19 1985-10-09 SIS TER Spa Improved automatic apparatus for peritoneal dialysis
US4718890A (en) * 1984-07-09 1988-01-12 Peabody Alan M Continuous flow peritoneal dialysis system and method
US4747822A (en) * 1984-07-09 1988-05-31 Peabody Alan M Continuous flow peritoneal dialysis system and method
US4586920A (en) * 1984-07-09 1986-05-06 Peabody Alan M Continuous flow peritoneal dialysis system and method
US5004459A (en) * 1984-07-09 1991-04-02 Peabody Alan M Continuous cyclic peritoneal dialysis system and method
EP0243547A1 (en) * 1986-05-01 1987-11-04 Alan M. Peabody Continuous flow peritoneal dialysis apparatus
EP0402505A1 (en) * 1989-06-15 1990-12-19 Alan M. Peabody Continuous cyclic peritoneal dialysis system
US5115682A (en) * 1990-05-21 1992-05-26 Feiler Ernest M Coronary artery graft flow-meter
US5334139A (en) * 1991-02-18 1994-08-02 Gambro Ab Method of peritoneal dialysis using a tube set
US5443447A (en) * 1992-09-24 1995-08-22 Amin I. Kassis Intracavitary delivery or withdrawal device
US5441636A (en) * 1993-02-12 1995-08-15 Cobe Laboratories, Inc. Integrated blood treatment fluid module
US5350357A (en) * 1993-03-03 1994-09-27 Deka Products Limited Partnership Peritoneal dialysis systems employing a liquid distribution and pumping cassette that emulates gravity flow
US5628908A (en) * 1993-03-03 1997-05-13 Deka Products Limited Partnership Peritoneal dialysis systems and methods employing a liquid distribution and pump cassette with self-contained air isolation and removal
US5431626A (en) * 1993-03-03 1995-07-11 Deka Products Limited Partnership Liquid pumping mechanisms for peritoneal dialysis systems employing fluid pressure
US5438510A (en) * 1993-03-03 1995-08-01 Deka Products Limited Partnership User interface and monitoring functions for automated peritoneal dialysis systems
US5421823A (en) * 1993-03-03 1995-06-06 Deka Products Limited Partnership Peritoneal dialysis methods that emulate gravity flow
US5324422A (en) * 1993-03-03 1994-06-28 Baxter International Inc. User interface for automated peritoneal dialysis systems
US5474683A (en) * 1993-03-03 1995-12-12 Deka Products Limited Partnership Peritoneal dialysis systems and methods employing pneumatic pressure and temperature-corrected liquid volume measurements
US5989423A (en) * 1993-03-03 1999-11-23 Deka Products Limited Partnership Disposable cassette, delivery set and system for peritoneal dialysis
US6186752B1 (en) 1993-11-17 2001-02-13 Baxter International Inc. Peristaltic pumping apparatus with tubing organizer
US5868696A (en) * 1993-12-22 1999-02-09 Baxter International Inc. Peristaltic pump tube holder with pump tube shield and cover
US5427509A (en) * 1993-12-22 1995-06-27 Baxter International Inc. Peristaltic pump tube cassette with angle pump tube connectors
US5482440A (en) * 1993-12-22 1996-01-09 Baxter Int Blood processing systems using a peristaltic pump module with valve and sensing station for operating a peristaltic pump tube cassette
US5484239A (en) * 1993-12-22 1996-01-16 Baxter International Inc. Peristaltic pump and valve assembly for fluid processing systems
US5445506A (en) * 1993-12-22 1995-08-29 Baxter International Inc. Self loading peristaltic pump tube cassette
US5480294A (en) * 1993-12-22 1996-01-02 Baxter International Inc. Peristaltic pump module having jaws for gripping a peristaltic pump tube cassett
US5906598A (en) * 1993-12-22 1999-05-25 Baxter International Inc. Self-priming drip chamber with extended field of vision
US5746708A (en) * 1993-12-22 1998-05-05 Baxter International Inc. Peristaltic pump tube holder with pump tube shield and cover
US5542919A (en) * 1994-06-06 1996-08-06 Fresenius Ag Peritoneal dialysis device
EP0687474A1 (en) 1994-06-16 1995-12-20 Fresenius AG Apparatus for peritoneal dialysis
DE4421126A1 (en) * 1994-06-16 1995-12-21 Fresenius Ag Peritoneal dialysis machine
US5938634A (en) * 1995-09-08 1999-08-17 Baxter International Inc. Peritoneal dialysis system with variable pressure drive
US5836908A (en) * 1995-12-09 1998-11-17 Fresenius Aktiengesellschaft Disposable balancing unit for balancing fluids, and related medical treatment device
EP0778033A3 (en) * 1995-12-09 1997-11-05 Fresenius Medical Care Deutschland GmbH Blood treatment device with balanced flow
US5870805A (en) * 1997-01-06 1999-02-16 Baxter International Inc. Disposable tubing set and organizer frame for holding flexible tubing
US6579253B1 (en) 1997-02-14 2003-06-17 Nxstage Medical, Inc. Fluid processing systems and methods using extracorporeal fluid flow panels oriented within a cartridge
US7776001B2 (en) 1997-02-14 2010-08-17 Nxstage Medical Inc. Registration of fluid circuit components in a blood treatment device
US7473238B2 (en) 1997-02-14 2009-01-06 Nxstage Medical, Inc. Hemofiltration systems and methods that maintain sterile extracorporeal processing conditions
US6554789B1 (en) 1997-02-14 2003-04-29 Nxstage Medical, Inc. Layered fluid circuit assemblies and methods for making them
US7147613B2 (en) 1997-02-14 2006-12-12 Nxstage Medical, Inc. Measurement of fluid pressure in a blood treatment device
US6589482B1 (en) 1997-02-14 2003-07-08 Nxstage Medical, Inc. Extracorporeal circuits for performing hemofiltration employing pressure sensing without an air interface
US6595943B1 (en) 1997-02-14 2003-07-22 Nxstage Medical, Inc. Systems and methods for controlling blood flow and waste fluid removal during hemofiltration
US20050113735A1 (en) * 1997-02-14 2005-05-26 Brugger James M. Blood flow control in a blood treatment device
US6638477B1 (en) 1997-02-14 2003-10-28 Nxstage Medical, Inc. Fluid replacement systems and methods for use in hemofiltration
US6638478B1 (en) 1997-02-14 2003-10-28 Nxstage Medical, Inc. Synchronized volumetric fluid balancing systems and methods
US20080306426A9 (en) * 1997-02-14 2008-12-11 Brugger James M Blood flow control in a blood treatment device
US20050113734A1 (en) * 1997-02-14 2005-05-26 Brugger James M. Network-based extracorporeal blood treatment information system
US6673314B1 (en) 1997-02-14 2004-01-06 Nxstage Medical, Inc. Interactive systems and methods for supporting hemofiltration therapies
US20040243048A1 (en) * 1997-02-14 2004-12-02 Brugger James M. Registration of fluid circuit components in a blood treatment device
US20040243047A1 (en) * 1997-02-14 2004-12-02 Brugger James M. Single step fluid circuit engagement device and method
US20040243049A1 (en) * 1997-02-14 2004-12-02 Brugger James M. Blood-contactless measurement of arterial pressure
US6830553B1 (en) 1997-02-14 2004-12-14 Nxstage Medical, Inc. Blood treatment systems and methods that maintain sterile extracorporeal processing conditions
US20040267184A1 (en) * 1997-02-14 2004-12-30 Burbank Jeffrey H. Measurement of fluid pressure in a blood treatment device
US20050045548A1 (en) * 1997-02-14 2005-03-03 James Brugger Hemofiltration systems and methods that maintain sterile extracorporeal processing conditions
US20090012442A9 (en) * 1997-02-14 2009-01-08 Brugger James M Registration of fluid circuit components in a blood treatment device
WO2000016825A3 (en) * 1998-09-18 2000-08-24 Baxter Int Support devices for surgical systems
US6632189B1 (en) 1998-09-18 2003-10-14 Edwards Lifesciences Corporation Support device for surgical systems
US6488647B1 (en) 1999-06-29 2002-12-03 Hiromu Miura Automated solution injection-discharge system and automated peritoneal dialysis system (APDS)
US6491658B1 (en) 1999-06-29 2002-12-10 Jms Co., Ltd. Automated solution injection-discharge system and automated peritoneal dialysis system
US7780619B2 (en) 1999-11-29 2010-08-24 Nxstage Medical, Inc. Blood treatment apparatus
US20080149551A1 (en) * 1999-11-29 2008-06-26 Nxstage Medical, Inc. Blood treatment apparatus
US7169352B1 (en) 1999-12-22 2007-01-30 Gambro, Inc. Extracorporeal blood processing methods and apparatus
US7780618B2 (en) 1999-12-22 2010-08-24 Caridian Bct, Inc. Extracorporeal blood processing apparatus and methods with pressure sensing
US20070004997A1 (en) * 1999-12-22 2007-01-04 Gambro, Inc. Extracorporeal Blood Processing Methods With Multiple Alarm Levels
US7513882B2 (en) 1999-12-22 2009-04-07 Caridianbct, Inc. Extracorporeal blood processing methods with multiple alarm levels
US8088090B2 (en) 1999-12-22 2012-01-03 Caridianbct, Inc. Extracorporeal blood processing methods with multiple alarm levels
US20070232980A1 (en) * 1999-12-22 2007-10-04 Gambro Bct, Inc. Extracorporeal Blood Processing Apparatus And Methods With Pressure Sensing
US6899691B2 (en) 1999-12-22 2005-05-31 Gambro Inc. Extracorporeal blood processing methods and apparatus
US7608053B2 (en) 2000-01-10 2009-10-27 Caridianbct, Inc. Extracorporeal blood processing methods with return-flow alarm
US20070078368A1 (en) * 2000-01-10 2007-04-05 Gambro, Inc. Extracorporeal Blood Processing Methods With Return-Flow Alarm
US10322224B2 (en) 2000-02-10 2019-06-18 Baxter International Inc. Apparatus and method for monitoring and controlling a peritoneal dialysis therapy
US8172789B2 (en) 2000-02-10 2012-05-08 Baxter International Inc. Peritoneal dialysis system having cassette-based-pressure-controlled pumping
US20110028892A1 (en) * 2000-02-10 2011-02-03 Baxter International Inc. Peritoneal dialysis system having cassette-based-pressure-controlled pumping
US20070135758A1 (en) * 2000-02-10 2007-06-14 Baxter International Inc. Method and apparatus for monitoring and controlling peritoneal dialysis therapy
US8323231B2 (en) 2000-02-10 2012-12-04 Baxter International, Inc. Method and apparatus for monitoring and controlling peritoneal dialysis therapy
US20090198174A1 (en) * 2000-02-10 2009-08-06 Baxter International Inc. System for monitoring and controlling peritoneal dialysis
US9474842B2 (en) 2000-02-10 2016-10-25 Baxter International Inc. Method and apparatus for monitoring and controlling peritoneal dialysis therapy
US8206339B2 (en) 2000-02-10 2012-06-26 Baxter International Inc. System for monitoring and controlling peritoneal dialysis
EP1829569A3 (en) * 2000-02-28 2008-02-20 Gambro Lundia AB Method and device for PD cyclers
EP1829569A2 (en) * 2000-02-28 2007-09-05 Gambro Lundia AB Method and device for PD cyclers
US7559913B1 (en) 2000-02-28 2009-07-14 Gambro Lundia Ab Method and device for PD cyclers
US20050082210A1 (en) * 2001-11-26 2005-04-21 Favre Olivier C. Device for intracorporeal and and extracorporeal purification
US20030220598A1 (en) * 2002-05-24 2003-11-27 Don Busby Automated dialysis system
US20110144569A1 (en) * 2002-05-24 2011-06-16 Baxter International Inc. Peritoneal dialysis machine touch screen user interface
US9675744B2 (en) 2002-05-24 2017-06-13 Baxter International Inc. Method of operating a disposable pumping unit
US9511180B2 (en) 2002-05-24 2016-12-06 Baxter International Inc. Stepper motor driven peritoneal dialysis machine
US9775939B2 (en) 2002-05-24 2017-10-03 Baxter International Inc. Peritoneal dialysis systems and methods having graphical user interface
US9504778B2 (en) 2002-05-24 2016-11-29 Baxter International Inc. Dialysis machine with electrical insulation for variable voltage input
US8075526B2 (en) 2002-05-24 2011-12-13 Baxter International Inc. Automated dialysis system including a piston and vacuum source
US10137235B2 (en) 2002-05-24 2018-11-27 Baxter International Inc. Automated peritoneal dialysis system using stepper motor
US8066671B2 (en) 2002-05-24 2011-11-29 Baxter International Inc. Automated dialysis system including a piston and stepper motor
US20030220607A1 (en) * 2002-05-24 2003-11-27 Don Busby Peritoneal dialysis apparatus
US9744283B2 (en) 2002-05-24 2017-08-29 Baxter International Inc. Automated dialysis system using piston and negative pressure
US7815595B2 (en) 2002-05-24 2010-10-19 Baxter International Inc. Automated dialysis pumping system
US8376999B2 (en) 2002-05-24 2013-02-19 Baxter International Inc. Automated dialysis system including touch screen controlled mechanically and pneumatically actuated pumping
US20100087777A1 (en) * 2002-05-24 2010-04-08 Baxter International Inc. Peritoneal dialysis machine with variable voltage input control scheme
US20110040244A1 (en) * 2002-05-24 2011-02-17 Baxter International Inc. Automated dialysis system including a piston and stepper motor
US8684971B2 (en) 2002-05-24 2014-04-01 Baxter International Inc. Automated dialysis system using piston and negative pressure
US10751457B2 (en) 2002-05-24 2020-08-25 Baxter International Inc. Systems with disposable pumping unit
US8529496B2 (en) 2002-05-24 2013-09-10 Baxter International Inc. Peritoneal dialysis machine touch screen user interface
US8506522B2 (en) 2002-05-24 2013-08-13 Baxter International Inc. Peritoneal dialysis machine touch screen user interface
US7153286B2 (en) 2002-05-24 2006-12-26 Baxter International Inc. Automated dialysis system
US20070213651A1 (en) * 2002-05-24 2007-09-13 Don Busby Automated dialysis pumping system using stepper motor
US20070149913A1 (en) * 2002-05-24 2007-06-28 Don Busby Automated dialysis pumping system
US7789849B2 (en) 2002-05-24 2010-09-07 Baxter International Inc. Automated dialysis pumping system using stepper motor
US8403880B2 (en) 2002-05-24 2013-03-26 Baxter International Inc. Peritoneal dialysis machine with variable voltage input control scheme
US8992462B2 (en) 2002-07-19 2015-03-31 Baxter International Inc. Systems and methods for performing peritoneal dialysis
US20200121842A1 (en) * 2002-07-19 2020-04-23 Baxter International Inc. Dialysis system having a vented disposable dialysis fluid carrying member
US8679054B2 (en) 2002-07-19 2014-03-25 Baxter International Inc. Pumping systems for cassette-based dialysis
US8740836B2 (en) 2002-07-19 2014-06-03 Baxter International Inc. Pumping systems for cassette-based dialysis
US8740837B2 (en) 2002-07-19 2014-06-03 Baxter International Inc. Pumping systems for cassette-based dialysis
US11020519B2 (en) 2002-07-19 2021-06-01 Baxter International Inc. Systems and methods for performing peritoneal dialysis
US20110106003A1 (en) * 2002-07-19 2011-05-05 Baxter International Inc. Dialysis system and method for cassette-based pumping and valving
US11273245B2 (en) * 2002-07-19 2022-03-15 Baxter International Inc. Dialysis system having a vented disposable dialysis fluid carrying member
US10525184B2 (en) 2002-07-19 2020-01-07 Baxter International Inc. Dialysis system and method for pumping and valving according to flow schedule
US9283312B2 (en) 2002-07-19 2016-03-15 Baxter International Inc. Dialysis system and method for cassette-based pumping and valving
US9795729B2 (en) 2002-07-19 2017-10-24 Baxter International Inc. Pumping systems for cassette-based dialysis
US8206338B2 (en) 2002-12-31 2012-06-26 Baxter International Inc. Pumping systems for cassette-based dialysis
US20080033346A1 (en) * 2002-12-31 2008-02-07 Baxter International Inc. Pumping systems for cassette-based dialysis
US7824355B2 (en) 2003-10-08 2010-11-02 Caridianbct, Inc. Methods and devices for processing blood
US20090043237A1 (en) * 2003-10-08 2009-02-12 Caridianbct, Inc. Methods and devices for processing blood
US7704454B1 (en) 2003-10-08 2010-04-27 Caridianbct, Inc. Methods and devices for processing blood
US8070709B2 (en) 2003-10-28 2011-12-06 Baxter International Inc. Peritoneal dialysis machine
US10117986B2 (en) 2003-10-28 2018-11-06 Baxter International Inc. Peritoneal dialysis machine
US8900174B2 (en) 2003-10-28 2014-12-02 Baxter International Inc. Peritoneal dialysis machine
US20090281484A1 (en) * 2003-10-28 2009-11-12 Baxter International Inc. Peritoneal dialysis machine
US9675745B2 (en) 2003-11-05 2017-06-13 Baxter International Inc. Dialysis systems including therapy prescription entries
US20080015493A1 (en) * 2003-11-05 2008-01-17 Baxter International Inc. Medical fluid pumping system having real time volume determination
US7776006B2 (en) 2003-11-05 2010-08-17 Baxter International Inc. Medical fluid pumping system having real time volume determination
WO2005089832A2 (en) * 2004-03-19 2005-09-29 Baxter International Inc. Cassette-based dialysis medical fluid therapy systems, apparatuses and methods
WO2005089832A3 (en) * 2004-03-19 2005-12-01 Baxter Int Cassette-based dialysis medical fluid therapy systems, apparatuses and methods
US20050209563A1 (en) * 2004-03-19 2005-09-22 Peter Hopping Cassette-based dialysis medical fluid therapy systems, apparatuses and methods
US20090012459A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Peritoneal dialysis patient connection system using ultraviolet light emitting diodes
US20090012458A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Dialysis system having dual patient line connection and prime
US8328758B2 (en) 2007-07-05 2012-12-11 Baxter International Inc. Dialysis systems and methods having disposable cassette and interface therefore
US7901376B2 (en) 2007-07-05 2011-03-08 Baxter International Inc. Dialysis cassette having multiple outlet valve
US20100229366A1 (en) * 2007-07-05 2010-09-16 Baxter International Inc. Dialysis method having supply container autoconnection
US9586003B2 (en) 2007-07-05 2017-03-07 Baxter International Inc. Medical fluid machine with supply autoconnection
US8469545B2 (en) 2007-07-05 2013-06-25 Baxter Healthcare Inc. Peritoneal dialysis connection system and method for using ultraviolet light emitting diodes
US11931497B2 (en) 2007-07-05 2024-03-19 Baxter International Inc. System and method for preparing peritoneal dialysis fluid at the time of use
US11311657B2 (en) 2007-07-05 2022-04-26 Baxter International Inc. Dialysis system for mixing treatment fluid at time of use
US7736328B2 (en) 2007-07-05 2010-06-15 Baxter International Inc. Dialysis system having supply container autoconnection
US8257299B2 (en) 2007-07-05 2012-09-04 Baxter International Dialysis methods and systems having autoconnection and autoidentification
US8597230B2 (en) 2007-07-05 2013-12-03 Baxter International Inc. Dialysis system having supply container autoconnection
US8083709B2 (en) 2007-07-05 2011-12-27 Baxter International Inc. Dialysis method having supply container autoconnection
US7909795B2 (en) 2007-07-05 2011-03-22 Baxter International Inc. Dialysis system having disposable cassette and interface therefore
US20090012460A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Dialysis cassette having multiple outlet valve
US8715235B2 (en) 2007-07-05 2014-05-06 Baxter International Inc. Dialysis system having disposable cassette and heated cassette interface
US20110166507A1 (en) * 2007-07-05 2011-07-07 Baxter International Inc. Dialysis systems and methods having disposable cassette and interface therefore
US8197087B2 (en) 2007-07-05 2012-06-12 Baxter International Inc. Peritoneal dialysis patient connection system using ultraviolet light emitting diodes
US8764702B2 (en) 2007-07-05 2014-07-01 Baxter International Inc. Dialysis system having dual patient line connection and prime
US20090012457A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Dialysis system having disposable cassette and interface therefore
US20090012455A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Dialysis system having supply container autoconnection
US20090012461A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Dialysis system having disposable cassette and heated cassette interface
US8911109B2 (en) 2007-07-05 2014-12-16 Baxter Healthcare Inc. Peritoneal dialysis connection system and method for using ultraviolet light emitting diodes
US10335532B2 (en) 2007-07-05 2019-07-02 Baxter International Inc. Dialysis system having autoidentification mechanism
US20090012451A1 (en) * 2007-07-05 2009-01-08 Baxter International Inc. Peritoneal dialysis patient connection system
US8986243B2 (en) 2007-07-05 2015-03-24 Baxter International Inc. Peritoneal dialysis patient connection system
US10293091B2 (en) 2007-07-05 2019-05-21 Baxter International Inc. Dialysis system having an autoconnection mechanism
US11730868B2 (en) 2007-07-05 2023-08-22 Baxter International Inc. Dialysis system having an autoconnection mechanism
US8157761B2 (en) 2007-07-05 2012-04-17 Baxter International Inc. Peritoneal dialysis patient connection system
US9308307B2 (en) 2007-09-13 2016-04-12 Fresenius Medical Care Holdings, Inc. Manifold diaphragms
US10258731B2 (en) 2007-09-13 2019-04-16 Fresenius Medical Care Holdings, Inc. Manifold diaphragms
US11071811B2 (en) 2007-09-13 2021-07-27 Fresenius Medical Care Holdings, Inc. Portable dialysis machine
US11318248B2 (en) 2007-09-13 2022-05-03 Fresenius Medical Care Holdings, Inc. Methods for heating a reservoir unit in a dialysis system
US10383993B2 (en) 2007-09-13 2019-08-20 Fresenius Medical Care Holdings, Inc. Pump shoe for use in a pumping system of a dialysis machine
US20170232177A1 (en) * 2007-09-13 2017-08-17 Fresenius Medical Care Holdings, Inc. Portable Dialysis Machine
US9517296B2 (en) 2007-09-13 2016-12-13 Fresenius Medical Care Holdings, Inc. Portable dialysis machine
US10596310B2 (en) * 2007-09-13 2020-03-24 Fresenius Medical Care Holdings, Inc. Portable dialysis machine
US8597505B2 (en) 2007-09-13 2013-12-03 Fresenius Medical Care Holdings, Inc. Portable dialysis machine
US9358331B2 (en) 2007-09-13 2016-06-07 Fresenius Medical Care Holdings, Inc. Portable dialysis machine with improved reservoir heating system
US10857281B2 (en) 2007-09-13 2020-12-08 Fresenius Medical Care Holdings, Inc. Disposable kits adapted for use in a dialysis machine
US9352282B2 (en) 2007-09-25 2016-05-31 Fresenius Medical Care Holdings, Inc. Manifolds for use in conducting dialysis
US11224841B2 (en) 2007-09-25 2022-01-18 Fresenius Medical Care Holdings, Inc. Integrated disposable component system for use in dialysis systems
US10022673B2 (en) 2007-09-25 2018-07-17 Fresenius Medical Care Holdings, Inc. Manifolds for use in conducting dialysis
US9623168B2 (en) 2007-10-30 2017-04-18 Baxter International Inc. Pressure manifold system for dialysis
US8998836B2 (en) 2007-10-30 2015-04-07 Baxter International Inc. Noise-reducing dialysis systems and methods of reducing noise in dialysis systems
US20090112151A1 (en) * 2007-10-30 2009-04-30 Baxter International Inc. Dialysis system having integrated pneumatic manifold
US11491321B2 (en) 2007-10-30 2022-11-08 Baxter International Inc. Pneumatic system having noise reduction features for a medical fluid machine
US20110163033A1 (en) * 2007-10-30 2011-07-07 Baxter International Inc. Noise-reducing dialysis systems and methods of reducing noise in dialysis systems
US7905853B2 (en) 2007-10-30 2011-03-15 Baxter International Inc. Dialysis system having integrated pneumatic manifold
US8465446B2 (en) 2007-10-30 2013-06-18 Baxter International Inc. Noise-reducing dialysis systems and methods of reducing noise in dialysis systems
US10471192B2 (en) 2007-10-30 2019-11-12 Baxter International Inc. Pressure manifold system for dialysis
US8961444B2 (en) 2007-10-30 2015-02-24 Baxter International Inc. Pressure manifold system for dialysis
US11931492B2 (en) 2007-11-09 2024-03-19 Baxter International Inc. Balanced flow dialysis machine
US11052180B2 (en) 2007-11-09 2021-07-06 Baxter International Inc. Balanced flow dialysis machine
US20130193073A1 (en) * 2007-11-09 2013-08-01 Baxter Healthcare S.A. Balanced flow dialysis machine
US8992463B2 (en) * 2007-11-09 2015-03-31 Baxter International Inc. Balanced flow dialysis machine
US8771511B2 (en) 2007-11-29 2014-07-08 Fresenius Medical Care Holdings, Inc. Disposable apparatus and kit for conducting dialysis
US9295772B2 (en) 2007-11-29 2016-03-29 Fresenius Medical Care Holdings, Inc. Priming system and method for dialysis systems
US10758661B2 (en) 2007-11-29 2020-09-01 Fresenius Medical Care Holdings, Inc. Disposable apparatus and kit for conducting dialysis
US10758662B2 (en) 2007-11-29 2020-09-01 Fresenius Medical Care Holdings, Inc. Priming system and method for dialysis systems
US10034973B2 (en) 2007-11-29 2018-07-31 Fresenius Medical Care Holdings, Inc. Disposable apparatus and kit for conducting dialysis
US9415152B2 (en) 2007-11-29 2016-08-16 Fresenius Medical Care Holdings, Inc. Disposable apparatus and kit for conducting dialysis
US11439738B2 (en) 2007-11-29 2022-09-13 Fresenius Medical Care Holdings, Inc. Methods and Systems for fluid balancing in a dialysis system
WO2009091706A3 (en) * 2008-01-18 2009-09-11 Baxter International Inc. Reusable effluent drain container for dialysis and other medical fluid therapies
US8545425B2 (en) * 2008-01-18 2013-10-01 Baxter International Reusable effluent drain container for dialysis and other medical fluid therapies
WO2009091706A2 (en) 2008-01-18 2009-07-23 Baxter International Inc. Reusable effluent drain container for dialysis and other medical fluid therapies
US20090187138A1 (en) * 2008-01-18 2009-07-23 Baxter International Inc. Reusable effluent drain container for dialysis and other medical fluid therapies
US9697334B2 (en) 2008-07-09 2017-07-04 Baxter International Inc. Dialysis system having approved therapy prescriptions presented for selection
US10561780B2 (en) 2008-07-09 2020-02-18 Baxter International Inc. Dialysis system having inventory management including online dextrose mixing
US9514283B2 (en) 2008-07-09 2016-12-06 Baxter International Inc. Dialysis system having inventory management including online dextrose mixing
US9690905B2 (en) 2008-07-09 2017-06-27 Baxter International Inc. Dialysis treatment prescription system and method
US9582645B2 (en) 2008-07-09 2017-02-28 Baxter International Inc. Networked dialysis system
US9759710B2 (en) 2008-09-12 2017-09-12 Fresenius Medical Care Holdings, Inc. Modular reservoir assembly for a hemodialysis and hemofiltration system
US9199022B2 (en) 2008-09-12 2015-12-01 Fresenius Medical Care Holdings, Inc. Modular reservoir assembly for a hemodialysis and hemofiltration system
US10670577B2 (en) 2008-10-30 2020-06-02 Fresenius Medical Care Holdings, Inc. Modular reservoir assembly for a hemodialysis and hemofiltration system
US11169137B2 (en) 2008-10-30 2021-11-09 Fresenius Medical Care Holdings, Inc. Modular reservoir assembly for a hemodialysis and hemofiltration system
US20100140149A1 (en) * 2008-10-30 2010-06-10 Barry Neil Fulkerson Modular, Portable Dialysis System
US10035103B2 (en) 2008-10-30 2018-07-31 Fresenius Medical Care Holdings, Inc. Modular, portable dialysis system
US10758868B2 (en) 2008-10-30 2020-09-01 Fresenius Medical Care Holdings, Inc. Methods and systems for leak detection in a dialysis system
US9044544B2 (en) 2008-11-21 2015-06-02 Baxter International Inc. Dialysis machine having auto-connection system with roller occluder
US9931454B2 (en) 2008-11-21 2018-04-03 Baxter International Inc. Dialysis machine having auto-connection system with roller occluder
US20100130920A1 (en) * 2008-11-21 2010-05-27 Baxter International Inc. Dialysis machine having auto-connection system with roller occluder
US10197180B2 (en) 2009-01-12 2019-02-05 Fresenius Medical Care Holdings, Inc. Valve system
US10808861B2 (en) 2009-01-12 2020-10-20 Fresenius Medical Care Holdings, Inc. Valve system
US9360129B2 (en) 2009-01-12 2016-06-07 Fresenius Medical Care Holdings, Inc. Valve system
US9919090B2 (en) 2009-12-16 2018-03-20 Fresenius Medical Care Deutschland Gmbh Balancing unit, external medical functional unit, treatment apparatus and methods
CN102655894A (en) * 2009-12-16 2012-09-05 弗雷塞尼斯医疗保健德国有限责任公司 Balancing device, external medical functional device, treatment device, and methods
AU2010341195B2 (en) * 2009-12-16 2015-02-26 Fresenius Medical Care Deutschland Gmbh Balancing device, external medical functional device, treatment device, and methods
EA026790B1 (en) * 2009-12-16 2017-05-31 Фресениус Медикал Каре Деутчланд Гмбх Balancing device for medical fluids and apparatus for treating medical fluids based thereon
CN102655894B (en) * 2009-12-16 2016-03-02 弗雷塞尼斯医疗保健德国有限责任公司 Balancing equipment, external medical function device, therapy equipment and method
WO2011082783A1 (en) 2009-12-16 2011-07-14 Fresenius Medical Care Deutschland Gmbh Balancing device, external medical functional device, treatment device, and methods
US20110184339A1 (en) * 2010-01-27 2011-07-28 Ta-Lun Tan Intelligent automatic peritoneal dialysis
US8784358B2 (en) * 2010-01-27 2014-07-22 Ta-Lun Tan Intelligent automatic peritoneal dialysis
CN102671250A (en) * 2011-03-11 2012-09-19 谭大伦 Intelligent full-automatic peritoneal dialysis device and operating method
US9662430B2 (en) * 2011-04-13 2017-05-30 Fresenius Medical Care Deutschland Gmbh Device and method for conveying a fluid to a filter unit of a medical treatment apparatus
US20120261341A1 (en) * 2011-04-13 2012-10-18 Fresenius Medical Care Deutschland Gmbh Device and method for conveying a fluid to a filter unit of a medical treatment apparatus
US11525798B2 (en) 2012-12-21 2022-12-13 Fresenius Medical Care Holdings, Inc. Method and system of monitoring electrolyte levels and composition using capacitance or induction
US10539450B2 (en) 2012-12-24 2020-01-21 Fresenius Medical Care Holdings, Inc. Load suspension and weighing system for a dialysis machine reservoir
US9157786B2 (en) 2012-12-24 2015-10-13 Fresenius Medical Care Holdings, Inc. Load suspension and weighing system for a dialysis machine reservoir
US11187572B2 (en) 2012-12-24 2021-11-30 Fresenius Medical Care Holdings, Inc. Dialysis systems with a suspended reservoir
US10817004B2 (en) * 2013-11-11 2020-10-27 Fresenius Medical Care Holdings, Inc. Valve system with a pressure sensing displacement member
US10019020B2 (en) 2013-11-11 2018-07-10 Fresenius Medical Care Holdings, Inc. Smart actuator for valve
US20190138037A1 (en) * 2013-11-11 2019-05-09 Fresenius Medical Care Holdings, Inc. Smart Actuator For Valve
US9354640B2 (en) 2013-11-11 2016-05-31 Fresenius Medical Care Holdings, Inc. Smart actuator for valve
US10625009B2 (en) 2016-02-17 2020-04-21 Baxter International Inc. Airtrap, system and method for removing microbubbles from a fluid stream
US11179516B2 (en) 2017-06-22 2021-11-23 Baxter International Inc. Systems and methods for incorporating patient pressure into medical fluid delivery
US20210001030A1 (en) * 2018-02-21 2021-01-07 Fresenius Medical Care Deutschland Gmbh Peritoneal dialysis machine
WO2019162188A1 (en) * 2018-02-21 2019-08-29 Fresenius Medical Care Deutschland Gmbh Peritoneal dialysis device

Similar Documents

Publication Publication Date Title
US3709222A (en) Method and apparatus for automatic peritoneal dialysis
CA2385135C (en) Uninterrupted flow pump apparatus and method
US4560472A (en) Peritoneal dialysis apparatus
KR100365575B1 (en) Peritoneal Dialysis Device
EP2044965B1 (en) Apparatus for body fluid flow control in extracorporeal fluid treatments
CN108136098B (en) Apparatus for performing peritoneal ultrafiltration
EP2029192B1 (en) Dynamic weight balancing of flow in kidney failure treatment systems
US7540958B2 (en) Device for controlling blood circulation for a single needle circuit
JPH07506523A (en) Automated peritoneal dialysis system with empty supply container and detector for recognition of tube occlusion
US20240066198A1 (en) Pod pump fluid management system
EP1221991B1 (en) Infusion apparatus for use with an infusion bag
EP0565585B1 (en) Hemodialysis apparatus
JPH11128342A (en) Peritoneal dialysis liquid metabolic device
US8722422B2 (en) Uninterrupted flow pump apparatus and method
EP4035706A1 (en) Apparatus for use in peritoneal dialysis
JP2921857B2 (en) Continuous circulation peritoneal dialysis apparatus and method
US20220054723A1 (en) Peritoneal dialysis system using pressurized chamber and pumping bladder
WO2022192000A2 (en) Automated peritoneal dialysis cycler having gravimetric control
JPH06508042A (en) apheresis device
EP4319834A1 (en) Automated peritoneal dialysis device
WO2022108915A1 (en) Weight-based peritoneal dialysis system including a drain trolley
CN115475295A (en) Peritoneal dialysis system based on variable pressure
CS236780B2 (en) Device for automatic performing of peritoneal dialysis

Legal Events

Date Code Title Description
AS Assignment

Owner name: MINNESOTA MINING AND MANUFACTURING COMPANY, A COR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SARNS, INC.,;REEL/FRAME:003883/0150

Effective date: 19810601

Owner name: MINNESOTA MINING AND MANUFACTURING COMPANY, ST. PA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SARNS, INC.,;REEL/FRAME:003883/0150

Effective date: 19810601

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)