Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3710177 A
Publication typeGrant
Publication dateJan 9, 1973
Filing dateNov 9, 1971
Priority dateNov 14, 1970
Also published asDE2155205A1
Publication numberUS 3710177 A, US 3710177A, US-A-3710177, US3710177 A, US3710177A
InventorsR Ward
Original AssigneeDahson Park Ind Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Fluorescent lamp circuit driven initially at lower voltage and higher frequency
US 3710177 A
Abstract
A circuit for fluorescent lamps includes an inverter which incorporates means such as temperature dependent elements or switches whereby the voltage from the inverter is lower but at a higher frequency initially than during normal running. This inverter feeds a plurality of lamps, each having associated circuit elements which are resonant or semi-resonant at the higher frequency, to facilitate the lamps conducting.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

h [i2] Filed:

[75] Inventor: Richard Ward, Worsley, England 1 Assigneer Pith. Ind ies Nottingham, England Nov. 9, 1971 [21] Appl. No.: 196,922

Ltd.

[30] Foreign Application Priority Data Nov. 14, 1970 Great Britain ..54,327/70 [52] US. Cl. ..3l5/106, 315/244, 315/291,

315/309, 315/311, 315/D1G. 2, 315/DIG. 5, 331/108 B, 331/112, 331/113 R, 331/117 R,

[ Jan. 9, 1973 [56] References Cited UNITED STATES PATENTS 2,964,676 12/1960 Davies et al. ..3l5/105 X 3,448,335 6/1969 Gregory et al ..315/D1G. 7

Primary Examiner-Roy Lake Assistant Examiner-Siegfried H. Grimm Attorney-Hyman Berman et a1.

[5 7] ABSTRACT A circuit for fluorescent lamps includes an inverter which incorporates means such as temperature dependent elements or switches whereby the voltage from the inverter is lower but at a higher frequency initially than during normal running. This inverter feeds a plurality of lamps, each having associated circuit elements which are resonant or semi-resonant at the 331/177 R. 331,181 higher frequency, to facilitate the lamps conducting. [51] Int. Cl. ..1105b 41/29 581 Field of Search ..315/D1G'. 2, DIG. 5, m0. 7, 5 4 Drawing F'gms 315/105,106,107,244,291,307-311 1 fi e PATENTEDJAH 9 I975 SHEET 1 BF 2 FIG.3.-

FLUORESCENT LAMP CIRCUIT DRIVEN INITIALLY AT LOWER VOLTAGE AND HIGHER FREQUENCY The present invention relates to circuits including ducts the, or each, filament is subject to ion bombardment which can result in the filament overheating especially if it is fed with heating current, the overheating in combination with the ion bombardment is harmful to the life of the lamp. It is therefore desired to reduce or prevent heating current through the filament when the lamp is conductive. There are many known arrangements and in one of them two filaments are connected in series in a circuit including an inductor and a capacitor which are resonant at a frequency near the supply frequency, the capacitor being shunted by the lamp when the lamp conducts so that the circuit loses its near-resonant property and becomes a greater impedance reducing the current through the filaments. This type of circuit may include an inverter supplying the lamp at a comparatively high frequency say 1,000 c/s so that the capacitor and inductor can be relatively small.

According to the present invention there is provided a circuit comprising an element such as a fluorescent lamp which has to be conditioned to conduct, circuit elements connected, one in series and one in parallel, with the first-mentioned element and designed to resonate at a resonant frequency and an inverter for supplying the lamp and said circuit elements with a voltage at a frequency near the resonant frequency, the improvement residing in that said inverter incorporates means whereby it can deliver a reduced voltage at a frequency nearer the resonant frequency to facilitate conditioning of the first mentioned element.

An embodiment of the present invention will now be described by way of example with reference to the accompanying drawings.

IN THE DRAWINGS FIG. I is a diagrammatic representation of a fluorescent lamp and its associated circuit elements,

FIG. 2 is an exemplary inverter for supplying current to the lamp of FIG. 1 and employing temperature dependent circuit elements,

FIG. 3 is an exemplary inverter for supplying current to the lamp of FIG. I employing switches, and

FIG. 4 is an exemplary high power inverter for supplying current to a plurality of lamps as shown in FIG.

In FIG. 1 cathode filaments ll ofa fluorescent lamp 12 are connected in a series resonant circuit comprising an inductor l3 and a capacitor 14 across a supply which is shunted by a capacitor 15 designed to bring the power factor of the current taken from the supply to near unity when the lamp is running normally. The lamp (i.e. the ion conduction path thereof) is connected across the capacitor 14.

The value of the inductor 13 is such as to provide the desired ballast after the lamp is conductive and the value of the capacitor 14 is chosen so the capacitor and the inductor resonate at a frequency above the designed supply frequency.

At switch-on, a heavy current is drawn through the inductor l3 and heats the filaments 11. Due to the near resonance of the inductor l3 and the capacitor 14, a voltage higher than the supply voltage appears across the capacitor 14 and the lamp l2 and a higher current than normal heats the filaments. These are ideal conditions for the lamp to conduct. If the circuitwere at" resonance, the current and voltage magnification effects would be too large (unless the circuit was heavily damped leading to operational'inefficiency) and the lamp would be prone to damage. When thelar'np conducts the effective resistance across the lamp between the filaments 11 drops to a low value, damping the circuit so that its resonant properties become negligible and the circuit behaves substantially as if the inductor 13 was in series with the lamp and has a low power factor. The capacitor 15 takes a leading current to increase the power factor and is chosen to bring the power factor when the lamp is conducting to any chosen value, normally as near unity as is economical.

An inverter shown in FIGS. 2 and 3 can be used to supply a plurality of lamps which would each have its own near resonant circuit. The main advantage of the invention is in fact when the inverter is used to supply a A plurality of lamps. For example, before a fluorescent lamp conducts, the lamp and its associated circuit elements take a much heavier current than in the running condition. When a semi-conductor inverter starts to conducting current represents a heavy temporary load on the inverter, and the inverter has to be uneconomically designed to cope with this temporary load.

This current is reduced to about normal running current in the practice of the present invention by having the inverter initially delivering a voltage reduced to below that at which the lamp would start to conduct at operational frequency, but at a frequency nearer resonance so that the lamp will strike even at the reduced supply voltage because the voltage across the lamp is increased by the voltage magnification effects of the semi-resonance.

When sufficient time has elapsed for the lamps to strike, the voltage and frequency are adjusted to their running values either abruptly or gradually.

A switch can be used to modify the performance of the inverter for example by introducing or removing circuit elements such as capacitors, resistors or inductors or by altering tappings on transformers and can be operated manually, or automatically in response to time, temperature of a component or current. Instead of switches, temperature dependent circuit elements can be used so that the inverter, before it reaches its normal running frequency, is made to sweep through a range of frequencies at progressively increasing voltages. By suitable use of temperature dependent elements, it can be more or less guaranteed that random manufacturing differences between the lamps will cause them to fire one after another and they will then run fe'ebly until the inverter runs at its normal frequency and voltage.

FIG. 2 shows a phase-shift inverter relying on temperature dependent circuit elements which can be normal resistors associated with bi-metallic switches using the heat developed by a resistorwhich is permanently in circuit and shunting another resistor either when they are hot or are cold to give the desired resistance temperature dependency. The collector of a transistor is connected to a supply line through a load resistor 21 and to the base of the same transistor through three phase shifting stages, each comprising a capacitor 22 and a temperature dependent resistor 23. The temperature dependent resistors 23 have an initially low resistance (so the frequency of the inverter is high) which increases when the resistors warm up so the frequency is reduced. The voltage applied to the base is a smaller proportion of the collector voltage when the resistance is low than'when the resistance increases. Thus the collector voltage is smaller as well. Therefore the collector voltage increases as the resistors warmup and the frequency decreases.

The base and the emitter of the transistor are connected to ground by resistors 24 and 25 respectively. The resistor 25 is shunted at least in part by a capacitor 26 to provide the desired bias for the transistor. It is possible for one or both of these resistors 24 and 25 to be temperature dependent, for example if resistor 24 has a large mass and a large positive temperature coeffic'ient it is possible to alter frequency and voltage within different time spans so that the frequency is reduced and then the voltage increased, the voltage increase taking longer than the frequency reduction.

To avoid the inverter frequency being affected by the lamp circuits, it is advisable to use a buffer amplifier 27 with an output transformer 28.

FIG. 3 shows a tuned inverter relying on switches for voltage and frequency changes. A transistor 31 has a tuned collector circuit 32 comprising a tapped inductor 32 and a capacitor 33. The collector can be connected to any one of the tappings of the inductor 32 by a multiposition switch 34. A feed back coil 35 is electromagnetically coupled to the inductor 32. Initially the inductor 32 should have a low inductance. Again a buffer amplifier 36 is provided but this time a tapped transformer 37 is used as the output load. A multi-positioned switch 38 is used to select the voltage output. The switches 34 and 38 are controlled manually or by a temperature, current or time sensitive device represented by a block 39.

FIG. 4 shows a high power inverter. An astable multivibrator 41 having its frequency adjustable by a variable resistor 42 and a switched resistor chain 43 .is used to control a pair of power thyristors 44. The output is fed to a transformer 45 having a variable tapping selector 46. The wave form is improved by an inductor 47 and capacitors 48. Protective diodes or zener diodes 49 are used to eliminate undesired pulses. The tapping selector 46 and the switched resistor chain are operated as before in response to temperature of a component, time, current or manually.

If one lamp fails to fire at reduced voltage (or if a lamp conducting at reduced or full voltage is switched off), it will fire at full voltage when this is re-applied.

The invention is particularly applicable to installations where the cable size is important, such as in coal or other mines, because power factor correction capacitors which then must be positioned near or in the lamp fittings take a heavy leading current and this is uncompensated by any lagging current before-the lamps conduct, giving very unfavorable load conditions to the cables and to the inverter.

The following is an example of a possible sequence of outputs of, say, a l 10 volts-output inverter which normally runs at 1,000 cycles per second and which, feeds a circuit having aresonant frequency of 1,500 cycles per second.

The inverter is switched on and runs at 1,500 cycles,

per second yielding an output voltage of about 30 volts. Due to the resonance of the circuit, a larger current flows and a larger voltageappears across each lamp than would be expected from the small voltage. Not all" frequency regulating circuit elements. After these are fixed, the voltage regulating circuit elements can be de- Cided. 1f the timing is to be automatic rather than manual, due regard is paid to obtaining the desired timing in the selection of all circuit elements.

1 claim:

1. A circuit comprising an element such as a fluorescent lamp which has to be conditioned to conduct, circuit elements connected, one in series and one in parallel, with the first-mentioned element anddesigned to resonate at a resonant frequency and an inverter for supplying the lamp and said circuit elements with a voltage at a frequency less than the resonant frequency, the improvement residing in that said inverter incorporates means whereby it can deliver a reduced voltage at a frequency nearer the resonant frequency to facilitate conditioning of the first-mentioned element. 2. A circuit as claimed in claim 1 wherein said firstmentioned element is a gaseous discharge device having at least one filament and the said circuit elements are a capacitor and an inductor connected inseries with each other and with the said at least one filament with the capacitor being connected across said discharge device so it is shunted by the device when the device conducts.

3. A circuit as claimed in claim 2 in which saidmeans are temperature dependent elements.

4. A circuit as claimed in claim 2 in which said means are switches.

5. A circuit as claimed in claim 2 in which said inverter comprises an astable multivibrator having switched means for varying the pulse repetition frequency, thyristors rendered conductive by said multivibrator, and output means including means for varying the output from said thyristors.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2964676 *Aug 15, 1958Dec 13, 1960Gen Electric Co LtdCircuit arrangements for operating low pressure electric discharge lamps
US3448335 *Jul 22, 1966Jun 3, 1969Trak Microwave CorpHigh frequency ac-dc fluorescent lamp driver circuit
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4042855 *Jun 12, 1975Aug 16, 1977Armstrong Cork CompanyHigh frequency transistor ballast
US4060752 *Mar 1, 1976Nov 29, 1977General Electric CompanyDischarge lamp auxiliary circuit with dI/dt switching control
US4259614 *Jul 20, 1979Mar 31, 1981Kohler Thomas PElectronic ballast-inverter for multiple fluorescent lamps
US4276496 *Jul 18, 1979Jun 30, 1981Arena Ochoa GuidoGas discharge lamp employing a pulse generator with a double stage amplification circuit
US4291254 *Mar 5, 1980Sep 22, 1981Patent-und-Gesellschaft fur elektrische Gluhlampen m.b.H.Discharge lamp energization circuit, particularly for audio and supersonic frequency operation of high-pressure discharge lamps
US4392087 *Nov 26, 1980Jul 5, 1983Honeywell, Inc.Two-wire electronic dimming ballast for gaseous discharge lamps
US4412154 *Jun 25, 1981Oct 25, 1983Compagnie De Signaux Et D'entreprises ElectriquesStart up frequency adjustment in an electronic power device for a discharge lamp
US4453109 *May 27, 1982Jun 5, 1984North American Philips CorporationLeakage reactance transformer
US4511195 *Jun 30, 1983Apr 16, 1985Beckman Instruments, Inc.Device for starting and operating gas discharge tubes
US4553071 *Jul 18, 1983Nov 12, 1985Energies Technologies Corp.Electronic ballast for fluorescent lamp
US4560908 *May 27, 1982Dec 24, 1985North American Philips CorporationHigh-frequency oscillator-inverter ballast circuit for discharge lamps
US4717863 *Feb 18, 1986Jan 5, 1988Zeiler Kenneth TFor a gas discharge lamp
US4798998 *Dec 15, 1986Jan 17, 1989Armstrong World Industries, Inc.Electronically dimmed power limited lighting system
US4890039 *Nov 21, 1988Dec 26, 1989Nilssen Ole KFluorescent lamp resonant ballast
US5049783 *Oct 29, 1990Sep 17, 1991Siemens AktiengesellschaftElectronic ballast device for fluorescent lamps
US5235254 *Mar 26, 1991Aug 10, 1993Pi Electronics Pte. Ltd.Fluorescent lamp supply circuit
US5256939 *Mar 18, 1992Oct 26, 1993Nilssen Ole KMagnetic electronic fluorescent lamp ballast
US5359263 *Nov 20, 1992Oct 25, 1994Remtech CompanyTuned LRC ballasting circuit for compact fluorescent lighting
US5438239 *Oct 19, 1993Aug 1, 1995Nilssen; Ole K.Fluorescent lamp ballast with light output control
US5747941 *Dec 7, 1995May 5, 1998Energy Savings, Inc.Electronic ballast that monitors direct current through lamp filaments
US6188183Jun 11, 1999Feb 13, 2001Simon Richard GreenwoodHigh intensity discharge lamp ballast
US6384544Nov 15, 2000May 7, 2002Hatch Transformers, Inc.High intensity discharge lamp ballast
US6495971Feb 8, 2000Dec 17, 2002Hatch Transformers, Inc.High intensity discharge lamp ballast
US7589480May 26, 2006Sep 15, 2009Greenwood Soar Ip Ltd.High intensity discharge lamp ballast
US7592753Jan 8, 2007Sep 22, 2009Access Business Group International LlcInductively-powered gas discharge lamp circuit
US7821208Jan 8, 2007Oct 26, 2010Access Business Group International LlcInductively-powered gas discharge lamp circuit
US7839098Jun 30, 2008Nov 23, 2010Osram Sylvania Inc.Microcontroller based ignition in high frequency ceramic metal halide lamps
US8378585Jan 20, 2010Feb 19, 2013Osram Sylvania Inc.High frequency integrated HID lamp with run-up current
DE2746838A1 *Oct 15, 1977Jul 13, 1978Kuroi Electric Ind CoLichtsteuereinrichtung fuer hochfrequent beleuchtete leuchtstofflampen
DE2819003A1 *Apr 29, 1978Nov 16, 1978Gte Sylvania IncBallastschaltung mit hohem leistungsfaktor
DE3101568A1 *Jan 20, 1981Aug 5, 1982Wollank GerhardSchaltungsanordnung eines mit gleichstrom gespeisten vorschaltgeraetes fuer eine oder mehrere niederdruck-entladungslampen zum zuenden, stellen und heizen der lampen
EP0075774A2 *Sep 11, 1982Apr 6, 1983TRILUX-LENZE GmbH & Co. KGElectronic ballast for at least one fluorescent lamp
WO2008075389A1 *Dec 21, 2006Jun 26, 2008Osram GmbhA cell arrangement for feeding electrical loads such as light sources, corresponding circuit and design method
WO2009142970A1 *May 13, 2009Nov 26, 2009Osram Sylvania, Inc.Microcontroller based ignition in high frequency ceramic metal halide lamps
Classifications
U.S. Classification315/106, 315/311, 315/309, 331/112, 315/DIG.200, 315/291, 331/177.00R, 331/108.00B, 315/244, 331/117.00R, 331/113.00R, 331/181, 315/DIG.500
International ClassificationH05B41/04
Cooperative ClassificationY10S315/05, Y10S315/02, H05B41/042
European ClassificationH05B41/04B