Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3710933 A
Publication typeGrant
Publication dateJan 16, 1973
Filing dateDec 23, 1971
Priority dateDec 23, 1971
Also published asCA971913A1, DE2261695A1, DE2261695C2
Publication numberUS 3710933 A, US 3710933A, US-A-3710933, US3710933 A, US3710933A
InventorsJ Coulter, M Fulwyler, J Steinkamp
Original AssigneeAtomic Energy Commission
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Multisensor particle sorter
US 3710933 A
An apparatus for rapidly and automatically analyzing and sorting minute particles on the basis of certain preselected characteristics. Particles flow in suspension through a flow chamber having multiple sensing means to detect preselected physical or chemical characteristics of each particle and then are jetted between charging electrodes and deflection plates. Signals from the sensors for each particle are compared with preset standards, and those droplets containing particles having characteristics not meeting those standards are automatically charged by the charging electrodes. The deflection plates provide a constant electric field which deflects charged droplets away from uncharged droplets, thus sorting particles on the basis of their conformance or nonconformance to standards set for the preselected characteristics. This apparatus is particularly applicable to the rapid and automatic sorting of biological cells.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

[ 11 3,710,933 51- Jan. 16, 1973 MULTISENSOR PARTICLE SORTER inventors: MGR]. Fulwyler; John A. Steinka l p; James R. Coulter, all of Los Alamos, N. Mex.

[73] Assignee: The United States of America as represented by the United States Atomic Energy Commission Filed: Dec. 23, 1971 Appl. No.: 211,473

[56] References Cited UNITED STATES PATENTS 7/1972 Gildardo ..209/1 1 1.8 X 4/1968 Fulwyler.... 2/1971 Kamentsky ..209/1 1 1.5

Primary Examiner-Richard Schacher Assistant Examiner-Gene A. Church AttorneyRoland A. Anderson [5 7] ABSTRACT An apparatus for rapidly and automatically analyzing and sorting minute particles on the basis of certain preselected characteristics. Particles flow in suspension through a flow chamber having multiple sensing means to detect preselected physical or chemical characteristics of each particle and then are jetted between charging electrodes and deflection plates. Signals from the sensors for each particle are compared with preset standards, and those droplets containing particles having characteristics not meeting those standards are automatically charged by the chargingelectrodes. The deflection plates provide a constant electric field which deflects charg'ed droplets away from uncharged droplets, thus sorting particles on the basis of their conformance or nonconformance to standards set for the preselected characteristics. This apparatus is particularly applicable to the rapicl and automatic sorting of biological cells.

17 Claims, 7 Drawing Figures PATENTEUJAN is 1915 SHEEI 2 BF 7 PATENTEDJAH 16 ms SHEET 4 0F 7 5 W 4 A m 1 y a a w y K 8 /v%///////////////// H 4 \w v v o a w 4 .9 a m H w \\\\\-\U\ \M\ w /fi////// Q 5 I 3 6 5 W 6 .A



LS-F L LS- FL b cv-Ls4 cv II scnum cm a DELAY CHE mccEA GENERATORS GATED PEAK mm A now 1 GATE!) PEAK mm A HOLD GATE Q scuum mm L H Tm TRIGGER on g H ENABLE mm J mlmm 5 g GATED PEAA mm A now 8 scnnm J A] TEST PT TRIGGER OPERATION AAooE' @vw-i s POLE, a POS. STROBE 0 l (FF) WED smsLE PARAMETER PEAK E SENSE A HOLD PAIENTEDJAN 15 I973 3.710.933

SHEET 7 [IF 7 a c xour Ls 4mm q) i. LS-FL EL, 4mm


LINEAR E GATE smnm. C9 em GEN. nus mu SER SCA' Fig. 7

MULTISENSOR PARTICLE SOR'IER BACKGROUND OF THE INVENTION The -invention described herein was made in the course of, or under, a contract with the U.S. ATOMIC ENERGY COMMISSION. It relates to an apparatus for automatic minute particle analysis and sorting and more particularly to an apparatus wherein the volume, shape, and fluorescence of biological cells in suspension in a continuously flowing fluid are rapidly and automatically measured and analyzed to determine if the cells appear to be normal or abnormal, and cells indicated to be abnormal are physically separated from their normal counterparts.

In cytology there is an increasing demand for automated cell analysis and differentiation. Presently, the screening of cytological material, e.g., for the detection of cancerous or malignant cells, is typically done by a hierarchy of two or more levels of screening. Initially, cell samples are prescreened visually by an observer to search out those that appear to contain abnormal cells. These are then set aside for later examination by a trained cytotechnologist or pathologist who makes the final judgment as to whether the cells are indeed cancerous. Although this method presently works well, it has a number of disadvantages. It is slow, requires considerable technician time, thus making it costly, and is nonquantitative in that the criteria of abnormality used are largely subjective. Because of the time and cost, it is difficult to apply it to very large populations. Moreover, many, perhaps most, of the cellular specimens submitted to the medical laboratory are normal. For example, in cytologic examination for uterine cervical carcinoma, 98 percent of the women examined do not have cancer. The net result of this-as larger populations are examined for canceristo lower the level of alertness and interest of those that must do the prescreening. This, in time, results in a test that becomes less quantitative and more costly as personnel turnover increases.

The art reveals that many of these disadvantages could be overcome by application of flow systems methods of cell analysis to the prescreening process. Flow systems analysis allows observation of individual cells as they flow in suspension sequentially through a small detection volume. Large numbers of cells can be observed in short time periods and rapid automatic prescreening procedures developed. Common parameters used are light absorption, fluorescence, or scatter, or volume of the observed particles. While the literature reveals various claims that these parameters have been observed quantitatively, a primary difficulty is that a single parameter is frequently insufficient to differentiate quantitatively between normal and abnormal cells. Multiparamcter analysis increases the ability to distinguish among different types of cells. Additionally, because the majority of the cells observed are normal, it is highly desirably that means be provided to sort abnormal from normal cells so that the sample provided for later screening consists of a preponderance of cells believed to be abnormal. These various considerations and the present state of the art are set forth in considerable detail in Part A of Automated Cytology: A Symposium by Correspondence, Acta Cytologica, Vol. 15, Nos. 1-3 (1971).

In U.S. Pat. No. 3,380,584, one of the present inventors (Fulwyler) discloses an apparatus for sorting minute particles suspended in a fluid. Sorting is accomplished in accordance with a selected parameter which may be size, volume, presence of radioactivity, color,

fluorescence, light absorption, or any quantity capable of being translated into an electrical quantity. The particle separator disclosed in that patent, however, is based on single rather than multiparameter measurement.

Onlyone apparatus for sorting abnormal cells from large populations of normal cells on the basis of multiparameter analysis is known in the art. Kamentsky and Melamed, in Science, Vol. l56, p. 1364 (1967) reveal a spectrophotometric cell sorter which physically separates cells of predetermined optical properties from large populations of cells in suspension. The sorting is done on the basis of multiple optical measurements, and the separation system depends on fluid switching principles popular about 1964 for computer design. This spectrophotometric cell sorter has the disadvantages of being relatively slow and of being unable to provide a sample consisting primarily of the cells sought to be further screened. For example, the best er:

forts with this cell sorter produce final concentrations of the selected (i.e., abnormal as opposed to certain preset standards of normality) cells of about 1:5 from initial concentrations in the range of l:10,000.

The art teaches that performance of cell volume sensing instruments employing the principle of the Coulter counter in which a cell changes the impedance of a narrow orifice as it passes through an orifice can be improved if the cell suspension is surrounded by a coaxial flow of cell-free liquid as it passes through the orifice. Thus, for example, Merrill et al., in Rev. Sci. ln-

7 stru. Vol. 42, p. 1157 (l97l) reveal an improved cell volume analyzer with a coaxial flow of the cell suspension inside a sheath of cell-free solution through the sensing orifice. This apparatus, however, is not a cell sorter and operates as a single parameter analyzer. Although Merrill et al. suggest that it may be used for multiparameter analysis, the art does not reveal that it has been so used.

SUMMARY OF THE INVENTION Using a high-speed flow system and electronic and optical sensing, we have developed an apparatus for rapidly and automatically analyzing and sorting minute particles on the basis of certain preselected characteristics or combinations of these characteristics. The.

apparatus is an outgrowth of that disclosed in U.S. Pat. No. 3,380,584 and allows particle separation on the basis of multiparameter analysis. It is particularly applicable to the analysis and sorting of biological cells.

In one embodiment of the apparatus useful for sorting abnormal (malignant) cells from normal cells, cellular volume, small-angle light scatter, and fluorescence are measured for each cell and compared with preset standards, and cells failing to meet these standardsare separated from cells conforming to the standards. Cell samples stained with an appropriate fluorescent dye are diluted and suspended in physiological saline solution and introduced into a flow chamber on the axis of a moving stream of saline solution which acts as a sheath to confine the cell stream to the central axis of the system. Within the chamber, cells flow sequentially through an orifice which serves as a Coulter volume sensor wherein cell volume is electronically measured. The cells flowing in suspension in the saline solution next intersect an argon-ion laser beam. The individual cells scatter light and the dye bound to the cell is excited to fluoresce. The scattered light provides quantitative information on cell size and shape, and the fluorescence is a quantitative measure of any cell constituents to which a fluorescent dye is bound, e.g., DNA content. Small-angle light scatter is measured in the forward direction and fluorescence perpendicular to the cell stream and the laser beam. After passing through the laser beam the cell suspension jets out into air through a coaxially aligned nozzle at the exit end of the flow chamber. A piezoelectric crystal mechanically coupled to the flow chamber is used to produce uniform droplets by regularly disturbing the .emerging liquid jet. Most cells are effectively isolated into single droplets although not all droplets contain cells and certain droplets may contain two or more cells. Droplets containing selected cells are electrically charged and then deflected into a separate receptacle by a static electric field. An oscilloscope monitors individual signal pulses while a multichannel pulse-height analyzer, printer, and plotter provide and record pulse amplitude distributions representative of cell volume, light scatter, and fluorescence or combinations of these characteristics. A variable delay pulse generator triggered by a single-channel pulse-height analyzer produces droplet charging pulses which are delayed to allow the cell being sorted to travel from the sensing region to the point of droplet formation and charging.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing the manner in which 'the apparatus of this invention may be used in a cancer screening program.

FIG. 2 is a simplified view of the apparatus showing the flow chamber and the charging and deflection plates used to achieve particle sorting.

FIG. 3 is an enlarged simplified cut-a-way view of the sensing portion of the flow chamber.

FIG. 4 is a detailed cross-sectional view of the flow chamber useful with a preferred embodiment of the invention.

FIG. 5 is a block diagram of the optical and electrical elements of a preferred embodiment of the invention.

FIG. 6 is a portion of a logic and switching block diagram for the multiparameter signal processing unit indicated in FIG. 5.,

FIG. 7 is a continuation of the diagram of FIG. 6.

GENERAL DESCRIPTION The apparatus of this invention may readily be used for rapid and automatic multiparameter analysis and sorting of various types of particles. The size of the. particles analyzed is limited by the size of the Coulter volume sensing orifice. It will be apparent that a limitation on the type of particles that can be analyzed and sorted by this apparatus is that the particles be capable of analysis on the basis of their physical and chemical properties.

The figures within this specification are directed toward an embodiment of this invention useful in the analysis and sorting of abnormal from normal cells in a cytological screening program for the determinationof cervical cancer. The scheme is outlined in FIG. 1. Cell samples are prepared for flow system analysis by appropriate dilution, treatment to avoid clumping, staining with fluorescent dyes, etc., as required for the particular form of automated analysis to be used. In this particular scheme. the cellular parameters measured are cell volume, small-angle light scatter, and fluorescence. The fluorescence measurements depend on the use of biochemically specific stains. Sensors to make these particular measurements are compatible with each other and with electronic sorting of cells. The electronic sorting technique is similar to that described in US Pat. No. 3,380,584. As each cell is analyzed, a signal from each sensor. is transmitted to a multiparameter signal processing unit, processed, and coinpared with predetermined criteria of abnormality. Thus, while the cell is still inthe vicinity of the sensing region, the signals obtained from the sensors and representing measured cell characteristics are processed to yield ratios, overlapping ranges, etc., which most effectively describe abnormal cells. The processed signals are electronically compared with specified standards, and the corresponding cell is designated as normal, abnormal, or ambiguous. Once the signals have been obtained, the time required for signal processing and the sorting decision is on the order of 25 users. Classification of a cell as abnormal or ambiguous produces a signal causing a droplet containing that cell to be deflected away from the droplets containing normal cells. Results of analysis of thiscell may be stored separately from data for normal cells of the sample. Sorted abnormal or ambiguous cells are counterstained and held for visual examination by a cytologist. To aid his evaluation of the sorted cells, distributions of the various measured cellular characteristics or combinations of the characteristics of the entire sample or only the abnormal cells underexamination are available from processed data storage. The apparatus of this invention provides both printouts and an oscilloscope display of the data.

Although the specificembodiment disclosed herein is based on the multiparameter analysis of the volume, fluorescence, and small-angle light scatter of individual cells, it will be readily apparent to one of reasonable skill in the art that the analytical and sorting techniques embodied in this invention are readily applicable to other forms of high-speed sensing, and that the electronic and mechanical components of the embodiment described may readily be altered to allow for the measurement of other parameters. For example, using the flow chamber described herein, the small-angle light scattering sensing may be replaced with sensors capable of detecting light absorption or fluorescence at an additional wavelength.

DESCRIPTION OF THE PREFERRED EMBODIMENT FIGS. 2 and 3 illustrate the basic flow system and sensing region of the apparatus of this invention. An appropriately prepared cell sample is introduced as a continuously flowing suspension into flow chamber 3 through sample entry tube 1 from pressurized reservoir 72. Within chamber 3 tube 1 is centered and extends partially through a larger tube 19 which tapers to a nozzle 22 at its lower end. A continuous flow of cell-free liquid, known as a sheath liquid, is introduced into tube 19 through sheath input tube 18 from pressurized reservoir 70 and flows coaxially 20 around tube. 1. As the cell stream exits from tube 1 it is reduced in diameter 17 as it obtains the velocity of the sheath liquid. Relative velocities and flow rates are determined by a differential pressure regulator system. It is necessary that the coaxial flow of sheath liquid and cells in suspension be essentially laminar in nature to avoidturbulence effects as the sheath liquid and cell suspension pass through volume sensing orifice 21 in nozzle 22. The pressure differential between sheath liquid 20 and the cell stream is adjusted to provide a cell stream 28 through orifice 21 having a diameter such that most cells pass through one at a time. Orifice 21 serves as a Coulter volume sensing orifice in which the impedance is changed in accordance with the volume of the cell passing through. The laminar flowing sheath liquid acts not only to control the size of the cell stream passing through orifice 21 but also to center it within the orifice, thus substantially reducing electric field edge effects affecting the volume sensing. I

After leaving orifice 21, cell stream 28 intersects a beam 4 of intense light. Flow chamber 3 is provided with an entry port 35 through which this beam may be focused on the cell stream. Ports 36 (one not shown in FIG. 2) serve as exits for fluorescence 9 and light scatter 11 produced as the result of the interaction 16 of the light with a single cell as the cells flow sequentially in cell stream 28. Light beam 4 intersects cell stream 28 at an angle of approximately 90. Fluorescence is given off in all directions but is only measured in a cone 9 extending at right angles to the plane ofintersection of cell stream 28 and light beam 4. These 90 angles are critical only insofar as they serve to simplify the optical measurements involved.

Cell stream 28 jets from flow chamber 3 through exit nozzle 26. It is essential that orifice 21 be properly aligned with nozzle 26. Misalignment may result in interference with the optical measurements because of turbulence and will affect the proper timing by which measurements associated with a particular cell are translated into a sorting signal because the cells lose their sequential and equal spacing within cell stream 28. It is also necessary that the cell stream and its surrounding sheath liquid leave flow chamber 3 at a sufficiently high velocity to form a jet 10. Because of the pressure drop associated with orifice 21 an additional source of sheath liquid is required to provide a sufficient pressure in region 30 for an adequate jet to form. This second sheath liquid input 25 occurs through tube 54 which is connected to sheath input tube 12. Tube 12 is in turn connected to pressurized sheath liquid reservoir 71. The input 25 is sufficiently far from cell stream 28 that it does not introduce any effect on the cell flow aside from increasing the velocity through nozzle 26. Sheath liquid input 25 has the additional advantage of allowing the flow chamber to be flushed of accumulated gases. Because the volume sensing involves the use of electrical current there is a tendency for electrolytic dissociation to occur in the liquids present in flow chamber 3. The dimensions of the flow chamber are sufficiently large that the gas bubbles resulting from such dissociation rise to the top of the flow chamber and may be temporarily stored there without disrupting the optical or electrical sensing. However, it is desirable that some means be present to periodically flush any collected, gases from the system. This is readily accomplished by means of input tube 12. When flushing is required, a valve in flushing outlet tube 2 is opened and additional sheath liquid is added to flow chamber 3 through inlet tube 12.

A vibration means 31 is coupled to flow chamber 3 by means of coupling rod 32. Vibrations imparted to flow chamber 3 produce minute disturbances or bunching 29 on jet 10. By producing these disturbances at a proper frequency, determined by the jet diameter and velocity, they are made to grow in amplitude by surface tension until jet 10 is broken into evenly spaced, uniformly sized droplets 13. In this way cells in suspension are isolated into liquid droplets. The manner in which vibration means 31 is coupled to flow chamber 3 is not critical except that the vibration frequency must be kept relatively constant. Typically, a piezoelectric crystal is used as the vibration source, but other means may readily be used.

The droplets 13 thus produced pass between charging electrodes 5 where those droplets determined to contain abnormal cells on the basis of an analysis of the volume, light scatter, and fluorescence of each cell are charged. Droplets indicated to contain normal cells are not charged. This particular sequence is followed on the assumption that most droplets will contain normal cells and hence the simplest approach is to charge only the droplets containing abnormal cells. The reverse procedure can just as readily be adopted, however. The droplets then pass through an electrostatic field between deflection plates 8. Under the influence of this field charged droplets 14 are deflected into separate receptacles 7 than the uncharged particles 15.

FIG. 4 is a detailed cross-sectional view of a flow chamber adapted for use with this invention. Particles in suspension flow into the chamber through tube 1. This tube, which also serves as one electrode for the Coulter volume sensor, may be formed from any suitably conductive material. In the preferred embodiment this tube is formed from platinum-rhodium alloy to avoid corrosion problems resulting from the use of physiological saline solution as both the carrier liquid for biological cells and the sheath liquidsurrounding the carrier liquid. Tube 1 is aligned coaxially within a larger tube 19 by means of a guiding star 46 and is provided with a nozzle 47. This nozzle may be composed of platinum, but there is no requirement that this be so. A noncorrosive material such as an appropriate plastic will serve as well. Additionally, guiding star 46 and nozzle 47 may be combined and formed of the same material. Tube 19 ends in a nozzle 22 in which Coulter volume sensing orifice 21 is emplaced. Tube 19 may be of any nonconductive material such as glass. In the preferred embodiment, volume sensing orifice 21 is in a sapphire insert 34 bonded to a glass tube 19. Sapphire is used because of its ready availability, but insert 34 may consist of any suitable nonconductive material in which an appropriate orifice can be produced.

Sheath liquid is introduced into tube 19 through inlet tube 18. Sheath liquid also enters cuvette 23 through inlet tube 12 and flushing tube 54. Flushing tube 54 also serves as the second electrode for the Coulter volume sensor so that both tube 54 and tube 12 must be of suitably conducting material. In the preferred embodiment, tube 12 is composed of platinum and tube 54 of platinum-rhodium alloy. Flushing outlet tube 2 connecting to the interior region 30 of cuvette 23 is provided for the removal of any gases that may be produced in region 30. In the preferred embodiment, outlet tube 2 is provided with a valve; however, if desired, sheath liquid may be continuously flowed from flushing tube 54 through cuvette 23 and out outlet tube 2.

Cuvette 23 which is open at the top, may be made of any material that is an insulator and is transparent to light at the wavelengths used for light beam 4. In the preferred embodiment, cuvette 23 is composed of quartz, primarily because a quartz cuvette of the desired size is readily available commercially. Centered in the base of cuvette 23 is an opening 58 through which nozzle 26 extends. To minimize wall effects on the velocity of the cells being jetted from nozzle 26, it extends nearly to plane A-A in'which the optical measurements on the individual cellsare made. This extension also allows volume sensing orifice 21 to be more easily aligned with orifice 59 in nozzle 26.

Cuvette 23 is surrounded by a body shell 24 of metal. Shell 24 serves to protect cuvette 23 and also to shield the Coulter volume sensor from outside electronic noise. At the base of shell 24 is sealing end plate 56 and nozzle retaining end plate 57. End plate 56'has a circular opening 60 centered in it through which the extended portion of nozzle 26 is passed. Nozzle 26 is secured by threading it into central opening 61 in end plate 57.

Attached to the upper portion of body shell 24 is draw nut 55. Threaded into draw nut 55 is enclosure cap 52. Cuvette 23 is sealed closed within shell 24 and cap 52 by means of O-ring 48 located in well 62 in end plate 56 and gasket 51 adjacent to cap 52. Enclosure cap 52 extends partially into cuvette 23 to form well 63. At the base of well 63 is centered a circular opening 64 through which tube 19 extends. Angular adjusting seal gland 44 threads into well 63 until it is flush with the top of enclosure cap 52. Gland 44 has centered within it truncated conical shaped well 65 having lip 66 near its top. Well 65 has a circular opening 67 centered in its base through which tube 19 passes.

Around the upper end of tube 19 and attached to it is sealing collar 43. Atop sealing collar 43 and tube 19 is tube connector and positioner 41. Positioner 41 has a channel 68 through it by which tube 1 enters tube 19 and is coaxially aligned in the upper portion of tube 19. Sheath liquid inlet tube 18 also enters positioner 41 and by means of channel 69 passes sheath liquid into tube 49. Inlet tubes 1 and 18 are surrounded by a shielding tube 40 which serves to prevent the introduction of electrical noise into the flow chamber through either tube 1 or tube 18. Shielding tube 40 and positioner 41 are held in place on top of tube 19 by means of connector compression cap 42 which threads onto'sealing collar 43. .O-ring 50 provides a seal between collar 43 and positioner 4]. With tube 19 inserted, wells 65 and 67 sensors, they must therefore somehow be discriminated are sealed from cuvette 23 by O-rings 701 The seal of these O-rings can be adjusted by screwing seal gland 44 further in or out of enclosure cap 52 thus 19 to be moved in or out of cuvette 23 as desired.

Located equidistant around seal gland 44 are four adjusting lock screws 45 (only one of which is shown in 1 FIG. 4). These lock screws 45 provide a ready means by which orifice 21 in the end of tube 19 may be aligned with orifice 59 in nozzle 26. As indicated earlier in this specification, it is essential to the proper functioning of this apparatus that these two orifices by accurately aligned.

A block diagram of the electrical and optical elements of an embodiment of this invention useful in the rapid, automatic analysis and sorting of abnormal from normal cells is given in FIG. 5. A piezoelectric crystal coupled to the flow chamber serves as the source of vibration for producing droplets at the desired frequency. The light source used in this embodiment is an argonion laser which is appropriately focused to intersect the cell stream in the flow chamber. The light beam entering the flow chamber normally has an elliptical cross section to aid in the analysis of the cell structure by means of the resultant light scatter and fluorescence. The laser beam is optically shaped such that it has an elliptical cross section as the laser beamcell stream intersection. The elliptical cross section improves ease in operation (alignment), increases signal strength improving resolution, and allows characterization of cell structure (nuclear-to-cytoplasm ratio) and doublet discrimination. Doublets are two cells passing through the flow chamber in contact with each other. To the volume sensor they appear as one abnormally large cell. To avoid receiving erroneous data from the against.

An argon-ion laser is used as the light source because cancerous cells usually contain substantially more DNA than do normal cells, and the fluorescence of an excited Feulgen dye biochemically bound to the DNA in a cell is a quantitative indication of the DNA present in the cell. The argon-ion laser emits light at a wavelength suitable for exciting this dye to fluoresce. Pulse of fluorescence coming from the flow chamber as the result of the interaction of the light beam with the cells are focused by a lens system on a pinhole and then onto a photomultiplier tube. The signal from this photomultiplier tube is amplified and fed into a multiparameter signal processing unit.

Theory predicts that small angle light scatter (at angles between 0.5 and 2.0")by spherical particles of 5 to 20 microns diameter is nearly proportional to volume. Since most mammalian'cells have diameters in this range, small-angle light scattering is attractive as a means of obtaining size and structural information for single cells at high speed. Thus in the preferred embodiment light scattered between 0.5 and 2.0 by the cells is passed through a collecting lens system and into a photodiode. Light scattered less than 06 is passed to a beam dump. This avoids having the photodiode overwhelmed by light that has not interacted with the cell stream. The photodiode signal is amplified and also fed into the multiparameter signal processing unit.

The signal produced by the passage of individual cells through the Coulter volume sensing orifice has the advantage of already being electrical in nature so that all that is required of it is to amplify it and feed it also into the multiparameter signal processing unit.

As its name indicates, the multiparameter. signal processing unit processes these input signals, compares them with certain preset standards, and then provides three types of output signal. One signal is transmitted to a multichannel pulse height analyzer which in turn provides digital printouts, a pulse height analyzer display, and histograms of the data obtained from the multiparameter signal processing. The signals from the processing unit may also be directly monitored by means of an oscilloscope display. Finally, an output from the processing unit is passed through a single channel analyzer and separation logics and droplet charging generator to provide droplet charging pulses which act to separate selected cells from the cell stream. It is apparent that time delay means are used in conjunction with the multiparameter signal processing unit to coordinate all sensor signals with a particular cell.

The signals received by the multiparameter processing unit can be processed in various ways to modify their dependence on the measured property. For example, a signal proportional to cell volume (r") can be processed to make it linearly proportional to cell radius (r) or to area (r Because only one piece of data is produced by each sensor for each cell, the amount of information to be processed is small, and the requirements placed on the electronics are not great. By using a two-dimensional pulse-height analyzer, a two parameter frequency distribution of cells can be obtained. Threeor more parameter analysis requires the data capacity ofa small computer. As an alternative to storage of all information, logical restrictions can be imposed on the analysis scheme, thus lessening the electronics requirement. For example, in the fluorescence distribution of all cells within a certain volume range is desired, this can be obtained by analyzing the fluorescence of only those cells which produce a volume signal corresponding to the desired range. Likewise, the volume of cells within a certain fluorescence range can be obtained. If biologically useful information is provided, analysis is possible on the basis of three or more such logical requirements.

Alternatively, the processed signals from several sensors can be combined as ratios (or sums, differences, etc.) and the frequency distribution of the combination determined among a population. For example, by using a RNA-specific fluorescent stain and sensors for fluorescence and volume, a ratio of the processed signals can be formed to obtain a distribution of RNA density among a population of cells. Likewise, a type of nuclear-to-cytoplasmic ratio is given by using a.

nucleus-specific fluorescent stain to give a measure of nuclear volume and total cell volume measurement by scattered light or by the Coulter sensor.

A logic and switching block diagram for a multiparameter signal processing unit useful in the analysis and sorting of abnormal from normal cells is given in FIGS. 6 and 7. The multiparameter signal processing unit is the central electronic processing unit for single parameter analysis, ratio computing, serial or sequential analysis and subsequent cell sorting. Basically, the signal processing unit serves as a central analog electronics computing interface between the sensors, the multichannel pulse height analyzer, and the cell separator control (single channel analyzer, separation logics, droplet charging generator). The signal processing unit also provides x and; y outputs for a dual parameter pulse height analyzer. Amplified signal (0.4 to 8.0 V) pulses from the Coulter or cell volume (CV), light scatter (LS), and fluorescence (FL) sensors are fed directly to the processing unit. The unit has separate inputs for the volume, light scatter and fluorescence signals. If desired, asecond wavelength fluorescence signal, such as red, may be substituted for the light scatter input, or wide angle light scatter substituted for the fluorescence input.

peak-sense-and-hold device capable of both single and dual processing of the sensor signals. The processing unit is divided into three sections: input conditions, signal processing, and output routing. The Input Condition section (shown in FIG. 6) consists of Operation Mode and CV-FL/LS Delay selector switches. The eight position operation mode switch allows signal parameter cellular analysis, i.e., CV, LS, and FL, and dual parameter analysis of cells, i.e., CV and FL, CV and no FL, CV and LS, LS and FL, and LS and no FL. Since the Coulter volume signal arrives prior to either the light scatter of fluorescence signals, a variable (0-190 usec in steps of 10 psec) CV-FL/LS Delay switch is used to set the proper CV to FL/LS signal delay. This delay is on the order of psec. The delay need be only used in the dual parameter analysis mode when Coulter volume is to be analyzed.

The Signal Processing section consists 'of Ratio and Serial (Input and Analyze) Analysis selector switches (see FIG. 7). A six position ratio selector switch allows the following ratios to be computed: CV/FL, CV/LS, FL/CV, FL/LS, LS/CV, and LS/FL. It is mandatory that the operation mode and ratio selector switch coincide, e.g., operation mode selector in the LS and FL position and ratio selector in either the LS/FL or FL/LS ratio position. It is also important that the CV to FL/LS signal delay be used if ratios containing C V are to be computed. The serial or sequential analysis section consists of input and analyze selector switches (four positions each). The serial analysis input selector switch selects either CV, FL, LS, or Ratio signals to be inputed to an external single channel pulse height analyzer (Serial SCA). If the signal amplitude falls within a variable width (0.4 to 8.0 V) preset SCA window, and SCA trigger pulse is produced and is returned to the signal processing unit gating on the serial analysis analyze linear gate, thus allowing either the CV, FL, LS, or Ratio signal to be analyzed, as determined by the Serial analysis analyze selector switch. Both the Serial analysis input and analyze selector positions (CV, FL, LS, and Ratio) must correspond to the operation mode, CV-FL/LS delay, and ratio selector switches whenever required, e.g., Serial analysis input CV, Serial analysis analyze FL, Operation mode CV and FL, CV- FL/LS delay z psec, and ratio off.

The Output Routing section (see FIG. 7) consists of pulse height analyzer (PHA) input, separator input, and dual parameter analyzer input selector switches. The FHA input can select single parameters (CV, LS, or FL), ratios, serial analysis input and analyze parame- The signal processing unit serves as a gated-signalters to be routed externally to a multichannel pulse height analyzer, whereas, the separator input selector can route single parameters, ratios, or serial analysis analyze signals to the separator control. The dual parameter pulse height analyzer selector switch provides outputs of CV -FL CV,-LS,, LS,-FL,,, CV,-Ratio',' FL ,Ratio ,and LS Ratio ,where the x and y subscripts refer to the x and y axes of the dual parameter PHA. By interchanging the x and y axis inputs the above can be inverted.

OPERATIONAL SEQUENCE Cell populations to be tested are first stained (Fluorescent Feulgen, etc.) are placed in aqueous suspension, such as normal saline. Fixed or unfixed cells can be measured. Prior to placing the cell suspension in the cell reservoir, it is filtered through a 60-70 micron nylon mesh screen to remove large debris and clumps. The electronics are in a standby condition, system pressurized, the laser turned on. The system is aligned and adjusted prior to cell measurements. If cell sorting is desired, the droplet generator oscillator-amplifier which electrically drives the piezoelectric crystal (or equivalent) transducer must be turned on. Droplet formation is checked by illuminating the emerging liquid jet near the flow chamber with a strobe light or equivalent light source. The strobe light is synchroflashed with respect to the oscillator frequency. Droplet formation can then 'be viewed using a microscope. For a given exit nozzle diameter and flow rate, droplet formation can be adjusted by varying the voltage and frequency applied to the piezoelectric crystal. Typical values are 15 volts RMS (sinusoidal) at 40 to 50 kHz. The droplet charging electrode is placed astride the point of droplet formation (separation) about /16 inch below the flow chamber to ensure maximum droplet charging. Typical charging pulses are 50 volts for 100-200 psec. The electrostatic deflection plates are located 2 to 3 inches below the flow chamber and spaced about V; to 36 inches apart. A differential of kV do. is normally applied to the deflection plates. A sample collection beaker or appropriate collection system is placed 8 to 9 inches from the flow chamber exit side and is slightly offset from the main jet (uncharged) so as to only collect the deflected droplets (charged). If it is not desired to sort out cells, then the above procedure can be omitted.

Suspended cells are placed in a pressurized (23.4 psi) cell reservoir. Pressurized sheath fluid No.-l (24.0 psi) and sheath fluid No. 2 (20.0 psi) are turned on and proper droplet formation achieved if sorting is desired. Sheath fluid No. l with no cell stream has a flow rate of 0.3 ml/min. Sheath fluid No. 2 flow rate is approximately 3.9 ml/min. The total flow rate exiting the 86 p. diameter exit nozzle is thus 4.2 ml/min. For a typical cell stream diameter of about a, the cell reservoir pressure of 23.4 psi corresponds to a cell stream flow rate of about 0.08 ml/min. The cell' stream flow rate can easily be adjusted from O to 0.3 mllmintlOOpercent) by adjusting the cell reservoir pressure relative to sheath No. 2 reservoir pressure 0.2 psi),holding sheath No. l reservoir pressure fixed. Sheath No. 1 pressure relative to sheath No. 2 pressure normally remains fixed, but can be varied if desired. Increasing sheath No. 1 pressure relative to sheath No. 2

decreases the transit time of cells through the-flow chamber. As the sam'ple'on/off valve is turned on, cells pass from the cell reservoir into the flow chamber via the sample inlet tube. The inlet tube serves as the Coulter volume signal electrode. From the inlet tube cells pass through the volume sensing orifice 1. diameter aperture) wherein cell volume is sensed. Orifices of other sizes may readily be substituted. A particle free sheath (sheath No. 1) flows coaxially around the sample inlet tube and serves to centrally align the cell stream as it passes through the volume sensing orifice, thus improving the resolution of cell volume and fluorescence/light scatter measurements. Typical d.c. aperture currents flowing from the volume signal electrode through the orifice can be adjusted from 0.05 to 1.0 mA. The aperture current and amplifier gain can be adjusted to give volume signal pulses (0.4 to 8.0 V) which in turn are fed to the CV input of the multiparameter signal processing unit. Typical volume signal risetime is about 20 usec with pulse widths of 40 usec.

Upon exiting the volume sensing orifice the cells next intersect the laser beam thereby'scattering light and fluorescing. Typical time delays between initiation of the Coulter volume and fluorescence/light scatter pulse are in the order of -180 usec. Fluorescence and light scatter electro-optical pulses are amplified (0.4 to 8.0 V) and fed to their respective inputs on the signal processing unit. Typical risetimes are in the order of l-2 p.sec with pulse widths of about 5 usec. A second particle free sheath liquid (sheath No. 2) of normal saline serves to reduce the effect of the pressure drop created by the Coulter sensing orifice.

Once the properties of the cell have been measured, it exits the flow chamber via the exit nozzle contained in a liquid droplet which can subsequently be separated. The approximate time delay between cell sensing and droplet formation is in the order of 1400 usec.

Signals from volume, light scatter, and fluorescenc sensors and amplifiers are thus fed to the multiparameter signal processing unit for subsequent analysis and routing. The processing unit serves as an interface between the multichannel pulse height analyzer, cell separation logics and droplet charging generator, and

dual parameter pulse height analyzer (not shown in FIG. 5). The signal processing unit must be properly set up as previously discussed, depending upon the requirements for each experimental run.

in a typical experiment where it is desired to analyze and sort out abnormal cells from a given population mixture, a number of different approaches might be meaningful. The multichannel pulse height analyzer would be used first to display frequency distribution histograms of single parameters (volume,.light scatter, and fluorescence)'ratios of parameters, or possibly to serially analyze parameters, e.g., analyze the fluorescence for a given cell volume range, etc. The dual parameter analyzer could also be used to analyze various dual parameter frequency distribution histograms that might be needed. From either or both the multichannel PHA and Dual Parameter PHA displays it isipossible to pick out abnormalities from various histograms, e.g., an abnormally large nuclear-to-cell volume ratio. From this type of information the cell separation logics-droplet charging generator can be set up to physically sort out those cells exhibiting questionable properties for microscopic examination and identification. The lower and upper threshold level of the single channel pulse height analyzer (SCA) is set to accept pulse amplitudes (ratios, etc.) from cells exhibiting abnormal characteristics. The SCA then triggers the droplet charging generator which produces a delayed (1400 usec) droplet charging pulse (50 V peak for 100-200 usec). Once the characteristics of abnormality have been obtained it may not be necessary, to sort out the abnormal cells for screening under the microscope, but only further automate the analysis procedure to aid in rapid disease diagnosis.

It should be noted that the optimum operating condition wouldbe that in which all cells pass singly through the volume sensing orifice and light beam and only one cell is caught in each droplet. As a practical matter, this is most difficult to achieve. The cells are frequently widely spaced in the cell stream such that numerous droplets contain no cells. This presents no particular problem; however, when two cells are in actual contact (thus forming a doublet) or so closely spaced that the sensors cannot discriminate between them, then sensing data are received which indicate abnormal cells and a sort signal goes out. If, as is likely in the usual population of cells, the doublet is composed merely of two normal cells, this serves to dilute the purity of the sorted sample. While very careful attention to sample preparation may substantially reduce the presence of doublets, and the use of discrimination techniques aid in reducing erroneous sort signals caused by the presence of such doublets or very closely spaced cells, this results in an increase in the time and cost of analysis and sorting. Pragma'tically, it is therefore frequently desirable to allow a certain small percentage of doublets and closely spaced normal cells to be sorted with abnormal cells. Although this reduces the purity of the sorted sample, it does not greatly hinder analysis of the sample. Typically, 90 percent or more of the cells are isolated singly into droplets. That is to say, 90 percent or more of the droplets containing cells have only a single cell within them.

What we claim is:

1. An apparatus for rapidly analyzing and sorting minute particles on the basis of preselected characteristics or combinations of preselected characteristics which comprises a. a flow chamber,

b. a high-intensity light source,

c. means for introducing particles in suspension in a fluid into said flow chamber,

d. multiple sensing means for detecting preselected physical and chemical characteristics of said particles in said flow chamber and producing analog electrical quantities related to said characteristics,

e. means for comparing said analog electrical quantities with preselected standards for said characteristics or combination of said characteristics and producing an electrical sort signal when said quantities or combinations of said quantities are outside said preselected standards,

f. means forjetting said fluid from said'flow chamber, 6

g. means for periodically disturbing the jet or produce uniformly sized droplets sufficientlysmall 14- that substantially each particle is isolated in a single droplet, h. electrical charging means adjacent to the jet path at, the droplet separation zone, 1 i. electrical delay means whereby said sorting signal activates said electrical charging means at a time, when'a particle having characteristics outside said preselected standards is in said droplet separation zone, said charging means remaining inactivated unless said sorting signal is received, and

j. electrical deflecting means whereby charged droplets are deflected to a separate receptacle from that for uncharged droplets.

2. The apparatus of claim 1 wherein said preselected chemical and physical characteristics comprise small angle light scatter, fluorescence and volume.

3. The apparatus of claim 1 wherein said flow chamber contains a. means whereby said particles are made to pass along a narrow stream of fluid, said stieam passing through a first region having a Coulter volume sensing orifice wherein the change of impedance produced by the passage of each particle is measured and a second region, termed a viewing region, wherein said stream intersects a beam of light from said high-intensity light source,

b. an access port whereby said beam of light enters said viewing region, and

c. multiple viewing ports whereby optical properties of said particles maybe viewed and measured, and said means for jetting said fluid is a nozzle at the base of said flow chamber.

4. The apparatus of claim 3 wherein said high-intensity light source is a laser.

5. The apparatus of claim 3 having means for delaying the analog electrical signal produced by the passage of each particle through said volume sensing orifice and correlating it with the analog electrical signals produced for that same particle by the optical sensing means.

6. The apparatus of claim 5 wherein the optical sensing means consist of a photodiode and a photomultiplier tube.

7. The apparatus of claim 3 wherein said means for causing said particles to pass along a narrow stream of fluid consists of a. a sample inlet tube for introducing said particles in suspension in said fluid into said flow chamber, said sample inlet tube extending substantially into said flow chamber, and

b. a first sheath liquid inlet tube concentrically surrounding said' sample inlet tube and extending somewhat beyond it into said flow chamber, said first sheath liquid inlet tube having a nozzle at its lower end in which is located said volume sensing orifice, whereby said particles on leaving said sample inlet tube are surrounded by a coaxial laminar flow of sheath liquid, said sheath liquid having a velocity sufficiently high to narrow the flow of particles in suspension to a stream of desired diameter and surround said stream substantially coaxially as it passes through said volume sensing orifice.

8. The apparatus of claim 7 wherein said viewing region is surrounded by a reservoir of sheath liquid, said reservoir extending substantially above said viewing region.

9. The apparatus of claim 8 wherein said reservoir is fed by a second sheath liquid inlet tube.

10. The apparatus of claim 9 wherein said second sheath liquid inlet tube extends to near the base of said reservoir, and said reservoir has a flushing outlet tube as its top whereby gases produced in said reservoir may be periodically or continuously flushed therefrom.

11. The apparatus of claim 10 wherein said sample inlet tube serves as one electrode for said volume sensing orifice and said second sheath liquid inlet tube serves as the second electrode for said orifice.

12. The apparatus of claim 9 wherein means are provided for controlling the pressures of liquids entering said flow chamber through said sample inlet tube, said first sheath liquid inlet tube, and second sheath liquid inlet tube.

13. The apparatus of claim 12 wherein said pressures are controlled differentially.

14. The apparatus of claim 9 wherein said means for periodically disturbing said jet consists of a piezoelectric crystal coupled to said flow chamber and oscillated at a desired frequency.

15. The apparatus of claim 9 wherein said nozzle in the base of said flow chamber extends into said reservoir to near the plane of said viewing region, and means are provided for aligning said volume sensing orifice with the orifice in said nozzle. I

16. The apparatus of claim 15 wherein said alignment means consists of a plurality of adjusting screws uniformly spaced around said first sheath liquid inlet outside said flow chamber whereby said first sheath inlet tube is rotated about an axis located partially within said reservoir.

17. An apparatus for rapidly sorting biological cells failing to meet preset standards of normality from cells meeting such standards by imparting an electrical charge to fluid droplets containing the abnormal cells and passing the charged droplets through a static electrical field whereby the charged droplets are deflected into a separate receptacle from that of uncharged droplets containing normal cells, which comprises in combination a. means for introducing a suspension of cells in fluid meansfor generating a first electrical signal proportional to the volume of each cell as it passes through said first region of said channel in said flow chamber,

d. laser means for illuminating each cell as it passes through said second region of said channel, meansfor measuring the scatter in the laser light as it emerges from said first viewing port and generating a second electrical signal proportional to the amount of scatter,

. means for collecting and measuring the fluorescent light emitted through said second viewing port and generating a third electrical signal proportional to the amount of fluorescent light,

. means for delaying said first electrical signal and correlating said signal for each cell with said second and third signals produced by that same cell,

. means for comparing said signals or combinations of said signals with predetermined value ranges for such signals for cells considered to be normal, and producing a sort electrical signal if any of said first, second, and third signals or combinations of said signals are outside said predetermined value ranges,

. means for periodically disturbing the jet of fluid emerging from said flow chamber to produce uniformly sized droplets sufficiently small that substantially each cell is isolated in a single droplet,

. electrical charging means adjacent to the jet path at the droplet separation zone,

. electrical delay means whereby said sort signal is used to activate the electrical charging means adjacent to the jet path at a time when the cell determined to be abnormal is in 'the droplet separation zone, said charging means remaining inactivated unless said sort signal is received, and

electrical deflecting means whereby charged droplets are deflected to a separate receptacle from that for uncharged droplets.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3380584 *Jun 4, 1965Apr 30, 1968Atomic Energy Commission UsaParticle separator
US3560754 *Nov 17, 1965Feb 2, 1971IbmPhotoelectric particle separator using time delay
US3675768 *Mar 17, 1969Jul 11, 1972Gildardo Legorreta SanchezMethod and apparatus for classifying and segregating particles with electrical and optical means
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3791517 *Mar 5, 1973Feb 12, 1974Bio Physics Systems IncDigital fluidic amplifier particle sorter
US3819270 *Oct 2, 1972Jun 25, 1974Block EngineeringBlood cell analyzer
US3824402 *Jun 4, 1973Jul 16, 1974Energy CommissionDual parameter flow photometric apparatus and method
US3827555 *Mar 5, 1973Aug 6, 1974Bio Physics Systems IncParticle sorter with segregation indicator
US3907437 *Apr 26, 1973Sep 23, 1975Block EngineeringCell classification system
US3910702 *Feb 12, 1974Oct 7, 1975Particle Technology IncApparatus for detecting particles employing apertured light emitting device
US3924947 *Aug 9, 1974Dec 9, 1975Coulter ElectronicsApparatus for preservation and identification of particles analyzed by flow-through apparatus
US3963606 *Jun 3, 1974Jun 15, 1976Coulter Electronics, Inc.Semi-automatic adjusting delay for an electronic particle separator
US3984307 *Aug 5, 1974Oct 5, 1976Bio/Physics Systems, Inc.Combined particle sorter and segregation indicator
US4009435 *Oct 8, 1975Feb 22, 1977Coulter Electronics, Inc.Apparatus for preservation and identification of particles analyzed by flow-through apparatus
US4038556 *Jun 14, 1976Jul 26, 1977Coulter Electronics, Inc.Method and apparatus for simultaneous optical measurement of particle characteristics
US4053229 *Jan 13, 1976Oct 11, 1977The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration2°/90° Laboratory scattering photometer
US4071298 *May 17, 1976Jan 31, 1978Stanford Research InstituteLaser Raman/fluorescent device for analyzing airborne particles
US4074939 *May 13, 1976Feb 21, 1978Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V.Apparatus for investigating fast chemical reactions by optical detection
US4095898 *Jun 10, 1976Jun 20, 1978Coulter Electronics, Inc.Particle analysis system with photochromic filter
US4097373 *Mar 23, 1977Jun 27, 1978John Caldwell AllredHigh speed particle sorter using a field emission electrode
US4101276 *Jun 2, 1976Jul 18, 1978Beckman Instruments, Inc.Method and apparatus for signalling the introduction of chemical reaction components into a chemical analyzing system
US4162282 *Apr 22, 1976Jul 24, 1979Coulter Electronics, Inc.A laminar stream of a core liquid introduced into a stream of an immiscible liquid
US4168460 *Jul 21, 1977Sep 18, 1979Max-Planck Gesellschaft Zur Forderung Der Wissenschaften E.V.Particle sorting apparatus
US4191739 *Oct 17, 1977Mar 4, 1980General Electric CompanyAntigen-antibody reaction assay employing particle aggregation and resistive pulse analysis
US4196437 *Mar 6, 1978Apr 1, 1980Hertz Carl HMethod and apparatus for forming a compound liquid jet particularly suited for ink-jet printing
US4203670 *Apr 21, 1977May 20, 1980Bromberg Nathan SSystem and method of fluorescence polarimetry
US4230031 *Apr 26, 1978Oct 28, 1980Coulter Electronics, Inc.Biohazard containment apparatus and method
US4263508 *Apr 20, 1979Apr 21, 1981Research CorporationPulse edge measurement for determining particle dimensional characteristics
US4279345 *Aug 3, 1979Jul 21, 1981Allred John CHigh speed particle sorter using a field emission electrode
US4284495 *Feb 15, 1980Aug 18, 1981Newton William AEvaporator, encapsulating particles
US4284496 *Dec 10, 1979Aug 18, 1981Newton William AParticle guiding apparatus and method
US4293221 *Apr 17, 1979Oct 6, 1981Research CorporationMultidimensional slit-scan flow system
US4298836 *Nov 23, 1979Nov 3, 1981Coulter Electronics, Inc.Particle shape determination
US4317520 *Aug 20, 1979Mar 2, 1982Ortho Diagnostics, Inc.Servo system to control the spatial position of droplet formation of a fluid jet in a cell sorting apparatus
US4318480 *Aug 20, 1979Mar 9, 1982Ortho Diagnostics, Inc.Method and apparatus for positioning the point of droplet formation in the jetting fluid of an electrostatic sorting device
US4318481 *Aug 20, 1979Mar 9, 1982Ortho Diagnostics, Inc.Method for automatically setting the correct phase of the charge pulses in an electrostatic flow sorter
US4318482 *Aug 20, 1979Mar 9, 1982Ortho Diagnostics, Inc.Method for measuring the velocity of a perturbed jetting fluid in an electrostatic particle sorting system
US4318483 *Aug 20, 1979Mar 9, 1982Ortho Diagnostics, Inc.Automatic relative droplet charging time delay system for an electrostatic particle sorting system using a relatively moveable stream surface sensing system
US4325483 *Aug 20, 1979Apr 20, 1982Ortho Diagnostics, Inc.Method for detecting and controlling flow rates of the droplet forming stream of an electrostatic particle sorting apparatus
US4329787 *Apr 28, 1981May 18, 1982Newton William ADroplet exploding and freezing apparatus and method
US4343782 *Apr 6, 1979Aug 10, 1982Shapiro Howard MCytological assay procedure
US4347935 *May 16, 1979Sep 7, 1982The United States Of America As Represented By The United States Department Of EnergyWith measurement of the distance between the centers of adjacent droplets in a fluid jet
US4350892 *Jul 31, 1980Sep 21, 1982Research CorporationX'-, Y'-, Z'- axis multidimensional slit-scan flow system
US4352731 *Dec 29, 1980Oct 5, 1982Occidental Research CorporationApparatus for selective wetting of particles
US4395676 *Nov 24, 1980Jul 26, 1983Coulter Electronics, Inc.Focused aperture module
US4399219 *Jan 29, 1981Aug 16, 1983Massachusetts Institute Of TechnologySampling, suspension, gelation, measurement, drops
US4401755 *Jan 29, 1981Aug 30, 1983Massachusetts Institute Of TechnologyProcess for measuring microbiologically active material
US4444317 *Aug 26, 1981Apr 24, 1984Georg WickObservation of immunofluorescene for distinguishing between specific and nonspecific binding of conjugates
US4487320 *Nov 3, 1980Dec 11, 1984Coulter CorporationAnalysis of blood cells
US4498766 *Mar 25, 1982Feb 12, 1985Becton, Dickinson And CompanyLight beam focal spot elongation in flow cytometry devices
US4510438 *Feb 16, 1982Apr 9, 1985Coulter Electronics, Inc.Coincidence correction in particle analysis system
US4515274 *Dec 2, 1981May 7, 1985Coulter CorporationParticle analyzing and sorting apparatus
US4538733 *Oct 14, 1983Sep 3, 1985Becton, Dickinson And CompanyParticle sorter with neutralized collection wells and method of using same
US4564803 *Aug 29, 1983Jan 14, 1986Coulter CorporationMethod and apparatus for removing foreign matter from a flow cell of a particle study device
US4667830 *Jun 15, 1981May 26, 1987The Board Of Trustees Of The Leland Stanford Junior UniversityMethod and means for sorting individual particles into containers for culturing, cloning, analysis, or the like
US4673288 *Sep 7, 1984Jun 16, 1987Ratcom, Inc.Flow cytometry
US4691829 *Dec 6, 1984Sep 8, 1987Coulter CorporationMethod of and apparatus for detecting change in the breakoff point in a droplet generation system
US4751179 *May 31, 1984Jun 14, 1988Coulter Electronics, Inc.Method and reagents for differential determination of four populations of leukocytes in blood
US4751188 *Oct 13, 1983Jun 14, 1988Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V.Method for the simultaneous quantitative determination of cells and reagent therefor
US4778593 *Apr 28, 1986Oct 18, 1988Agency Of Industrial Science And TechnologyMethod and apparatus for discriminating minute particles
US4818103 *Jan 20, 1987Apr 4, 1989RatcomFlow cytometry
US4837446 *Mar 31, 1988Jun 6, 1989International Paper CompanyApparatus and process for testing uniformity of pulp
US4844610 *Apr 29, 1988Jul 4, 1989Becton, Dickinson And CompanyFor a flow cytometer
US4916060 *Jun 27, 1989Apr 10, 1990Massachusetts Institute Of TechnologyProcess for chemical measurement in small volume samples by fluorescent indicators
US4987539 *Aug 5, 1987Jan 22, 1991Stanford UniversityApparatus and method for multidimensional characterization of objects in real time
US4988619 *Nov 30, 1987Jan 29, 1991United States Department Of EnergyPassageways for sheathed fluids, cells
US5089384 *Nov 4, 1988Feb 18, 1992Amoco CorporationMethod and apparatus for selective cell destruction using amplified immunofluorescence
US5142462 *Apr 27, 1990Aug 25, 1992Olympus Optical Co., Ltd.Illuminating optical system
US5180065 *Oct 11, 1990Jan 19, 1993Canon Kabushiki KaishaApparatus for and method of fractionating particle in particle-suspended liquid in conformity with the properties thereof
US5188935 *Nov 13, 1990Feb 23, 1993Coulter Electronics, Inc.Incubation with fluorescent antibody; lysis; fixing
US5194909 *Dec 4, 1990Mar 16, 1993Tycko Daniel HApparatus and method for measuring volume and hemoglobin concentration of red blood cells
US5199576 *Apr 5, 1991Apr 6, 1993University Of RochesterSystem for flexibly sorting particles
US5232828 *Mar 9, 1992Aug 3, 1993Becton, Dickinson And CompanyCoating interior of containers with albumin; centrifuging; sedimenting cells; prevents sticking to walls
US5275787 *Aug 17, 1992Jan 4, 1994Canon Kabushiki KaishaDetection of particles and synchronizing circuits
US5464581 *Aug 2, 1993Nov 7, 1995The Regents Of The University Of CaliforniaFlow cytometer
US5540494 *Jun 3, 1994Jul 30, 1996Purvis, Jr.; Norman B.Method and apparatus for determining absolute particle size, surface area and volume normalized fluorescence using forward angle light scatter intensity in flow cytometry
US5550058 *Dec 15, 1992Aug 27, 1996University Of RochesterSystem for flexibly sorting particles
US5558998 *Jun 5, 1995Sep 24, 1996The Regents Of The Univ. Of CaliforniaDNA fragment sizing and sorting by laser-induced fluorescence
US5649576 *Feb 26, 1996Jul 22, 1997Pharmacopeia, Inc.Partitioning device
US5776781 *Feb 20, 1997Jul 7, 1998SystemixPreventing contamination of particles
US5859705 *May 26, 1993Jan 12, 1999The Dow Chemical CompanyApparatus and method for using light scattering to determine the size of particles virtually independent of refractive index
US5940177 *Jan 8, 1998Aug 17, 1999Basf AktiengesellschaftMethod and apparatus for determining the size distribution of different types of particles in a sample
US5998212 *Aug 26, 1996Dec 7, 1999University Of Texas Medical Branch At GalvestonMethod for flexibly sorting particles
US6079836 *Jul 20, 1998Jun 27, 2000Coulter International Corp.Flow cytometer droplet break-off location adjustment mechanism
US6121048 *Oct 18, 1994Sep 19, 2000Zaffaroni; Alejandro C.Method of conducting a plurality of reactions
US6145247 *Jun 27, 1997Nov 14, 2000Weyerhaeuser CompanyFluid switch
US6209589Oct 17, 1997Apr 3, 2001Smithkline Beecham PlcApparatus and method for distributing beads
US6248590Feb 27, 1998Jun 19, 2001Cytomation, Inc.Method and apparatus for flow cytometry
US6265163Aug 6, 1998Jul 24, 2001Lynx Therapeutics, Inc.Solid phase selection of differentially expressed genes
US6354770Jul 20, 2000Mar 12, 2002Weyerhaeuser CompanyUpstream engaging fluid switch for serial conveying
US6399365Jul 17, 2001Jun 4, 2002Affymetrix, Inc.Bioarray chip reaction apparatus and its manufacture
US6551817Jan 14, 2002Apr 22, 2003Affymetrix, Inc.Generating chips; form microarray on subtrate, separate into chips mate chips to a package
US6582159Feb 8, 2002Jun 24, 2003Weyerhaeuser CompanyUpstream engaging fluid switch for serial conveying
US6589792Feb 26, 1999Jul 8, 2003Dakocytomation Denmark A/SMethod and apparatus for flow cytometry
US6709203May 8, 2003Mar 23, 2004WeyerhaeuserUpstream engaging fluid switch for serial conveying
US6733977Aug 28, 2002May 11, 2004Affymetrix, Inc.Generation of solid support for biopolymer analysis; form probe arrays on substrate, separate substrate, join substrate to package, recover package
US6819411Feb 2, 1998Nov 16, 2004Xy, Inc.Optical apparatus
US6849423Dec 28, 2001Feb 1, 2005Picoliter IncSeparating preferential particles from solution; obtain sample, detect particle in sample, expose sample to acoustic vibration, recover particles from fluid
US6909269Nov 27, 2002Jun 21, 2005Sysmex CorporationParticle detector and particle analyzer employing the same
US6941005Nov 1, 2002Sep 6, 2005Coulter International Corp.Monitoring and control of droplet sorting
US7012689May 17, 2002Mar 14, 2006Dako Colorado, Inc.Flow cytometer with active automated optical alignment system
US7024316Oct 20, 2000Apr 4, 2006Dakocytomation Colorado, Inc.Transiently dynamic flow cytometer analysis system
US7094527Nov 29, 2001Aug 22, 2006Xy, Inc.System for in-vitro fertilization with spermatozoa separated into X-chromosome and Y-chromosome bearing populations
US7115229 *Sep 24, 2001Oct 3, 2006Alpha MosDetection of preferential biopolymers in sample; obtain sample, incubate with probes, detect signal, monitor and record pattern
US7169548Jan 9, 2003Jan 30, 2007Xy, Inc.Sperm cell processing and preservation systems
US7170601 *Sep 27, 2002Jan 30, 2007Rion Co., Ltd.Flow cell, and particle measurement device using the same
US7195920Feb 25, 2003Mar 27, 2007Xy, Inc.Collection systems for cytometer sorting of sperm
US7208265Jan 5, 2000Apr 24, 2007Xy, Inc.Method of cryopreserving selected sperm cells
US7221453Nov 16, 2004May 22, 2007Xy, Inc.Optical apparatus
US7270986Feb 1, 2005Sep 18, 2007Picoliter Inc.Ejection of localized volumes from fluids
US7354733 *Mar 26, 2002Apr 8, 2008Cellect Technologies Corp.photophoric labels reduce photosensitive metal compound to form metal grains which adhere to cells; silver halide, peroxidase; useful in flow cytometry
US7364895Aug 11, 2003Apr 29, 2008Affymetrix, Inc.Apparatus for mixing fluids comprising multilayered functionalized substrates; high throughput assay
US7371517May 9, 2001May 13, 2008Xy, Inc.High purity X-chromosome bearing and Y-chromosome bearing populations of spermatozoa
US7372566 *Oct 25, 2002May 13, 2008Btf Pty Ltd.Cytometer
US7392908Jan 12, 2005Jul 1, 2008Beckman Coulter, Inc.Methods and apparatus for sorting particles hydraulically
US7430046 *Jul 29, 2005Sep 30, 2008Biovigilant Systems, Inc.Pathogen and particle detector system and method
US7510841Jan 28, 2004Mar 31, 2009Illumina, Inc.Methods of making and using composite arrays for the detection of a plurality of target analytes
US7586604May 22, 2007Sep 8, 2009Xy, Inc.Optical apparatus
US7612020Jan 28, 2004Nov 3, 2009Illumina, Inc.Composite arrays utilizing microspheres with a hybridization chamber
US7618770Sep 2, 2005Nov 17, 2009Xy, Inc.Methods and apparatus for reducing protein content in sperm cell extenders
US7629113Feb 20, 2002Dec 8, 2009Xy, IncSystems for sorting sperm via flow cytometry for sex-specific and low dose efforts at artificial insemination; animal husbandry
US7691645 *Oct 16, 2001Apr 6, 2010Agilent Technologies, Inc.Solid phase matrix for use in the isolation of preferential particles in sample
US7713687Nov 29, 2001May 11, 2010Xy, Inc.Uniform binding of fluorochrome(s) to the DNA within mammalian spermatozoa (or sperm cells) allowing such labeled spermatozoa to be separated into high purity X-chromosome bearing and Y-chromosome bearing populations
US7723116May 25, 2006May 25, 2010Xy, Inc.Flow cytometry involving the use of a pulsed laser to sort sperm cells; even split radiation beams are directed to multiple nozzles; differentiated sperm cells are separated at higher speeds and even into subpopulations having higher purity
US7738099Jul 17, 2006Jun 15, 2010Biovigilant Systems, Inc.Pathogen and particle detector system and method
US7758811Mar 29, 2004Jul 20, 2010Inguran, LlcMulti channel, flow cytometry units; computer controlled fluid flow, laser analysis, sorting
US7771921Sep 28, 2006Aug 10, 2010Xy, Llcsubstantially uniform binding of fluorochrome(s) to the DNA of mammalian spermatozoa contained within previously frozen and then thawed semen; for artificial insemination, surgical insemination, and in-vitro fertilization and embryo culturing techniques
US7772005Jul 29, 1999Aug 10, 2010Xy, LlcNon-surgical artificial insemination is achieved for sexed and unsexed equines in a commercially practical manner; insemination and sorting systems particularly adapted to use for sex-selected sperm
US7799569Mar 16, 2009Sep 21, 2010Inguran, LlcProcess for evaluating staining conditions of cells for sorting
US7820425Dec 7, 2006Oct 26, 2010Xy, LlcMethod of cryopreserving selected sperm cells
US7833147Jul 22, 2005Nov 16, 2010Inguran, LLC.Process for enriching a population of sperm cells
US7838210Mar 29, 2005Nov 23, 2010Inguran, LLC.comprising a motility inhibitor; staining chemically immotile sperm cell suspension with a DNA-selective dye followed by sorting
US7855078Aug 15, 2003Dec 21, 2010Xy, LlcHigh resolution flow cytometer
US7892725Mar 29, 2005Feb 22, 2011Inguran, LlcProcess for storing a sperm dispersion
US7901897Mar 16, 2009Mar 8, 2011Illumina, Inc.Methods of making arrays
US7929137Sep 8, 2009Apr 19, 2011Xy, LlcOptical apparatus
US7943384Jun 7, 2010May 17, 2011Inguran LlcMulti channel, flow cytometry units; computer controlled fluid flow, laser analysis; sorting X and Y sperm cells
US8004661Jun 30, 2009Aug 23, 2011Microbix Biosystems Inc.Method and apparatus for sorting cells
US8049888 *Mar 1, 2004Nov 1, 2011Firma Cytecs GmbhDevice for measuring light emitted by microscopically small particles or biological cells
US8137967Aug 21, 2006Mar 20, 2012Xy, LlcIn-vitro fertilization systems with spermatozoa separated into X-chromosome and Y-chromosome bearing populations
US8148110 *Dec 26, 2002Apr 3, 2012The Board Of Trustees Of The Leland Stanford Junior UniversityComprises reporter system for detecting molecular interactions in eukaryotic cell or lysate; fluorescent bioassay
US8211629Aug 1, 2003Jul 3, 2012Xy, LlcLow pressure sperm cell separation system
US8218144Jul 11, 2008Jul 10, 2012Azbil BioVigilant, Inc.Pathogen and particle detector system and method
US8297959 *May 2, 2007Oct 30, 2012Terapia Celular, Ln, Inc.Systems for producing multilayered particles, fibers and sprays and methods for administering the same
US8467040Aug 22, 2011Jun 18, 2013Microbix Biosystems, Inc.Method and apparatus for sorting cells
US8486618Jul 18, 2011Jul 16, 2013Xy, LlcHeterogeneous inseminate system
US8497063Aug 24, 2010Jul 30, 2013Xy, LlcSex selected equine embryo production system
US8575568Jun 25, 2009Nov 5, 2013Horiba Abx SasElectrooptic measurement device and method intended for classifying and counting microscopic elements
US8628952Mar 16, 2009Jan 14, 2014Illumina, Inc.Array kits and processing systems
US8628976Dec 3, 2008Jan 14, 2014Azbil BioVigilant, Inc.Method for the detection of biologic particle contamination
US8652769Aug 9, 2010Feb 18, 2014Xy, LlcMethods for separating frozen-thawed spermatozoa into X-chromosome bearing and Y-chromosome bearing populations
US8664006Mar 1, 2013Mar 4, 2014Inguran, LlcFlow cytometer apparatus and method
US8665439Jun 30, 2009Mar 4, 2014Microbix Biosystems, Inc.Method and apparatus for limiting effects of refraction in cytometry
US8709817Feb 7, 2013Apr 29, 2014Inguran, LlcSystems and methods for sorting particles
US8709825Mar 1, 2013Apr 29, 2014Inguran, LlcFlow cytometer method and apparatus
US8748183Feb 7, 2013Jun 10, 2014Inguran, LlcMethod and apparatus for calibrating a flow cytometer
US8795500 *Feb 9, 2010Aug 5, 2014Sony CorporationApparatus and microchip for sorting micro particles
US8796186Jun 10, 2009Aug 5, 2014Affymetrix, Inc.System and method for processing large number of biological microarrays
US8820538Mar 17, 2014Sep 2, 2014Namocell LLCMethod and apparatus for particle sorting
US8828210Oct 16, 2008Sep 9, 2014Cambridge Enterprise LimitedMicrofluidic systems
US8951474Feb 5, 2010Feb 10, 2015On-Chip Biotechnologies Co., Ltd.Disposable chip-type flow cell and flow cytometer using same
US20100065734 *Nov 30, 2007Mar 18, 2010The University Of QueenslandParticle sorting apparatus and method
US20110284378 *Feb 9, 2010Nov 24, 2011Sony CorporationApparatus and microchip for sorting micro particles
US20130017148 *Sep 14, 2012Jan 17, 2013Gustavo LarsenSystems for producing multilayered particles, fibers and sprays and methods for administering the same
US20130308122 *Nov 15, 2011Nov 21, 2013Horiba Abx SasDevice and method for multiparametric measurements of microparticles in a fluid
DE2449701A1 *Oct 18, 1974May 7, 1975Coulter ElectronicsVerfahren und vorrichtung zur gewinnung von informationen ueber die eigenschaften von teilchen
DE2543310A1 *Sep 27, 1975Mar 31, 1977Strahlen Umweltforsch GmbhVorrichtung zur zaehlung und klassifizierung von teilchen
DE2636470A1 *Aug 13, 1976Dec 22, 1977Coulter ElectronicsFotoanalysegeraet und verfahren zur gleichzeitigen messung von teilcheneigenschaften
DE2660947C2 *Aug 13, 1976Jul 24, 1986Coulter Electronics, Inc., Hialeah, Fla., UsTitle not available
DE2712360A1 *Mar 22, 1977Sep 28, 1978Zoeld Tibor Dr PhysKanalzaehler zur zaehlung und groessenbestimmung von in einem elektrolyten suspendierten teilchen
DE2742838A1 *Sep 23, 1977Apr 5, 1979Zoeld Tibor Dr PhysKanalzaehler zur zaehlung und groessenbestimmung von in einem elektrolyten suspendierten teilchen
DE3043814A1 *Nov 20, 1980Sep 3, 1981Coulter ElectronicsTeilchenerfassungsvorrichtung und -verfahren
DE3233055A1 *Sep 6, 1982Mar 8, 1984Coulter ElectronicsOptical through-flow device for examining particles suspended in a liquid flow
DE3307789A1 *Mar 4, 1983Sep 6, 1984Coulter CorpVerfahren und vorrichtung zur anzeige einer aenderung des zerfallpunktes in einem tropfenerzeugungssystem
DE3310551A1 *Mar 23, 1983Sep 27, 1984Coulter CorpParticle analysis and sorting apparatus
DE3531969A1 *Sep 7, 1985Mar 20, 1986Becton Dickinson CoGeraet und verfahren zur erfassung und klassifizierung von teilchen mit hilfe von techniken der durchfluss-cytometrie
EP0121261A2 *Mar 31, 1984Oct 10, 1984Becton, Dickinson and CompanyMethod and apparatus for distinguishing subclasses of leukocytes in a sample
EP0177718A2 *Aug 20, 1985Apr 16, 1986Partec AGMethod and device for sorting microscopic particles
EP0246011A2 *May 1, 1987Nov 19, 1987I-Stat CorporationImproved particle counter and method of manufacture
EP0279000A1 *Feb 17, 1987Aug 24, 1988Ratcom, Inc.Flow cytometry
EP0412431A2 *Aug 2, 1990Feb 13, 1991Becton Dickinson and CompanyMethod and apparatus for sorting particles with a moving catcher tube
EP0425381A1 *Oct 25, 1990May 2, 1991ABX , Société Anonyme diteApparatus for counting and determination of at least one leucocyte-subpopulation
EP1316792A2 *Nov 21, 2002Jun 4, 2003Sysmex CorporationParticle detector and particle analyzer employing the same
EP1544600A1 *Sep 27, 2002Jun 22, 2005Rion Co., Ltd.Flow cell, and particle measurement device using the same
EP2258171A2 *May 9, 2001Dec 8, 2010Xy, LlcHigh purity X-chromosome bearing and Y-chromosome bearing populations of spermatozoa
EP2258174A2 *May 9, 2001Dec 8, 2010Xy, LlcHigh purity x-chromosome bearing and y-chromosome bearing populations of spermatozoa
EP2267429A1Dec 28, 2001Dec 29, 2010Picoliter Inc.Focused acoustic ejection cell sorting system and method
WO1982002561A1 *Jan 29, 1982Aug 5, 1982James C WeaverProcess for measuring microbiologically active material
WO1982002562A1 *Jan 29, 1982Aug 5, 1982James C WeaverProcess for isolating microbiologically active material
WO1985001108A1 *Aug 17, 1984Mar 14, 1985Coulter CorpMethod and apparatus for removing foreign matter from a flow cell of a particle study device
WO1985005684A1 *May 9, 1985Dec 19, 1985Coulter ElectronicsMethod and reagent system for four-population differential determination of leukocytes
WO1989000894A1 *Aug 3, 1988Feb 9, 1989Univ Leland Stanford JuniorApparatus and method for multidimensional characterization of objects in real time
WO1990012308A1 *Mar 30, 1990Oct 18, 1990Maritime Scient Serv LtdMethod and apparatus for the identification of particles
WO1992017288A1 *Apr 3, 1992Oct 15, 1992Univ RochesterSystem for flexibly sorting particles
WO1994028392A1 *May 26, 1994Dec 8, 1994Elizabeth E BenedettoApparatus and method for determining the size of particles using light scattering
WO1998017383A1 *Oct 17, 1997Apr 30, 1998John Francis HareApparatus and method for distributing beads
WO1999044036A1 *Feb 23, 1999Sep 2, 1999Becton Dickinson CoElectrostatic deceleration system for flow cytometer
WO2010004173A1 *Jun 25, 2009Jan 14, 2010Horiba Abx SasElectrooptic measurement device and method intended for classifying and counting microscopic elements
WO2010090279A1Feb 5, 2010Aug 12, 2010On-Chip Biotechnologies Co., Ltd.Disposable chip-type flow cell and flow cytometer using same
WO2011086990A1Jan 11, 2011Jul 21, 2011On-Chip Biotechnologies Co., Ltd.Disposable chip flow cell and cell sorter using same