Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3711385 A
Publication typeGrant
Publication dateJan 16, 1973
Filing dateSep 25, 1970
Priority dateSep 25, 1970
Also published asUS3864163
Publication numberUS 3711385 A, US 3711385A, US-A-3711385, US3711385 A, US3711385A
InventorsBeer H
Original AssigneeChemnor Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electrode having platinum metal oxide coating thereon,and method of use thereof
US 3711385 A
Abstract
A method of making an electrode for use in an electrolytic process. The electrode has a core of a film-forming metal and a layer having at least a part of the outside portion of the thickness thereof of an electrolyte resistant and electrolysis product resistant material, which material contains as the material effective for carrying out electrolysis at least one oxide of at least one platinum metal taken from the group consisting of platinum, iridium, rhodium, palladium, ruthenium and osmium. The method comprises forming the platinum metal on the core and then oxidizing it, forming the oxide and then applying it to the core, or forming the oxide directly on the core, for example, by heating a solution of a salt of the metal or electrolysis.
Images(10)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 3,711,385 ELECTRODE HAVING PLATINUM METAL OXIDE COATING THEREON, AND METHOD OF USE THEREOF Henri Bernard Beer, Kalmthout, Belgium, assignor to Chemnor Corporation, Panama City, Panama No Drawing. Continuation-impart of application Ser. No. 549,194, May 11, 1966. This application Sept. 25, 1970, Ser. No. 75,726

Int. Cl. 801k 3/00 U.S. Cl. 20459 41 Claims ABSTRACT OF THE DISCLOSURE An electrode for use in an electrolytic process. The electrode has a core of a film-forming metal and a layer having at least the outside portion of the thickness thereof of an electrolyte resistant and electrolysis product resistant material, which outside portion has a thickness of at least about 0.054 micron. The layer is on at least part of the surface of said core. The material of the portion consists essentially of at least one oxide which is an oxide of at least one platinum metal taken from the group consisting of platinum, iridium, rhodium, palladium, ruthenium, and osmium. The electrode is especially useful in electrolysis of brine to obtain chlorine.

This application is a continuation-in-part of application Ser. No. 549,194, filed May 11, 1966, now abandoned.

I his invention relates to electrodes for electrolytic processes, the electrodes comprising a core of a film-forming metal, said core being provided with a thin layer of a non-film-forming material, capable of conducting an electric current from the film-forming core to an electrolyte or vice versa, it being a further requirement for said thin layer, when it is in contact with the electrolyte, to be chemically resistant to the effect of the electrolyte and the products of the electrolysis.

By film-forming metal is meant a metal or alloy which, when connected as an anode in the electrolyte and under the conditions in which the metal or the alloy is subsequently to operate as an anode, exhibits the phenomenon that within a few seconds the passage of the electrolysis current drops to less than 1% of the original value. For purposes of this invention, examples of these metals are titanium, titanium alloys, tantalum, tantalum alloys, zirconium, zirconium alloys, niobium, and niobium alloys, and tungsten and tungsten alloys.

By core of film-forming metal is meant a body which either consists entirely of the film-forming metal or of a jacket of a film-forming metal filled with a conductive material, such jacket separating the inner material completely from the electrolyte. The core can have any desired shape, such as a perforated or unperforated plane plate, a rod having a cylindrical or rectangular or any other cross-sectional configuration, to increase or decrease the surface area, a straight or curved wire or strand of wires, a wire gauze, or a composite structure of any desired shape.

The term platinum metal oxide layer as used throughout the specification and claims should be understood, unless otherwise indicated, to mean a layer of a single platinum metal oxide or a layer of a physical mixture of a platinum metal oxide with one or more other platinum metal oxides, or a layer of a physical mixture of one or more platinum metal oxides with one or more oxides of a metal other than a platinum metal. In the physical mixtures of oxides, the individual oxides are present as discrete particles.

Hitherto, a thin layer, as referred to above, on a core 3,711,385 Patented Jan. 16, 1973 of film-forming metal, has mainly been formed of metallic platinum, iridium, rhodium, palladium, ruthenium, osmium, or alloys of these so-called platinum metals with each other. This layer, which is generally porous, can be continuous and cover the core entirely, or it can be interrupted and cover the core partially. In all of the prior proposals in this connection, however, irrespective of the manner in which the layers were applied, and irrespective of Whether they consisted of a single platinum metal or of an alloy of platinum metals, the metals in the layer were in the pure metallic state and free of chemically combined oxygen.

It has now unexpectedly been found that layers which are chemically much more resistant to both the electrolyte and products of electrolysis are obtained from these platinum metals by using them not in the metallic state, but in the form of their individual oxides, either singly or in mixtures. The electric conductivity of the oxides in relatively thin layers has been found to be virtually equal to that of the corresponding metals.

One aspect of the invention is an electrode for use as an anode in electrolytic processes in which current is supplied to the electrolysis apparatus. The electrode comprises a core of a film-forming metal at least partially covered by a layer, at least the outside portion of which layer consists of at least one oxide of a metal of the platinum group, i.e. an oxide of a metal taken from the group consisting of platinum, iridium, rhodium, palladium, ruthenium, and osmium, or mixtures of oxides of these metals. The average thickness of the oxide layer is at least about 0.054 micron. The calculated thickness as set forth hereinafter in the examples is a minimum thickness of the oxide layer. Alternatively the layer can have the outside portion consisting of a mixture of at least one oxide of such a platinum metal with at least one oxide of a metal other than a platinum metal. It is the oxide of the metal of the platinum metal group which is eifective for carrying out the electrolysis, and the balance of the material of said outside portion is ineffective for carrying out electrolysis at a threshold voltage as low as that at which said oxide is effective. Such a layer can have the same minimum thickness. I

The invention also comprises methods of making such oxide layer covered electrodes and methods of using such electrodes.

In addition to their chemical resistivity, the oxides and mixtures of the oxides of the platinum metals with each other and with oxides of certain other metals generally have the particular advantage that the threshold value at which they are capable of dissociating an electrolyte at lower than that of the pure platinum metal or an alloy of the pure platinum metals, so that the overall electric energy to be supplied for the electrolytic process is considerably less, which in turn often also avoids undesirable side reactions. This also makes it possible to carry out catalytic reactions at such an electrode. However, the threshold value can be changed as desired by the addition of other oxides of non-film forming metals, such as of manganese, lead, chromium, cobalt, and iron. Additions of oxides of film-forming metals such as titanium, tantalum, Zirconium, niobium and tungsten can act to raise or lower the threshold value depending on the amount added. Furthermore, the platinum metal oxides, with or without the addition of such other oxides, are considerably more active catalytically than the corresponding platinum metals, thereby providing substantial technical advantages in catalytic and/or electrochemical reactions of organic compounds or in electrolytic processes in an organic medium. An explanation of this effect could be that the active surface area of such an oxide is much larger than that of the corresponding platinum metal, possibly because the oxide may nave a capillary structure, resulting in a certain depth of action.

The core of the electrode according to the present invention is a film-forming metal as defined above, i.e. a metal taken from the group consisting of titanium, tantalum, zirconium, niobium, tungsten, and alloys of the metals With each other or with other metals. Where the alloy is with other metals, the alloy must consist predominantly of at least one of said film-forming metals, i.e. the characteristics of said mctalor alloys of said metals determine the behavior of the core in an electrolyte.

The core can be formed from any of the above filmforming metals, but-titanium and niobium are preferred if chlorine, either as such or in combination with other products, is a product formed at the anode, titanium and niobium being superior to the other film-forming metals for this purpose. The other film-forming metals can be used under oxidizing conditions, particularly in processes in which oxygen is a product of the electrolysis.

Also suitable for the purposes of the present invention, as the core material, are alloys of film-forming metals, for example, titanium. with 115% molybdenum, titanium with 2% aluminum and 2% manganese, titanium with 0.1-2% copper or titanium with O.151% palladium. Alloys of the same nature can also be formed with tantalum, zirconium and niobium.

Before a film-forming core can be entirely or partly covered with a platinum metal oxide, it will generally be necessary to subject the film-forming metal to a pretreatment to render it better suitable for the application of platinum metal oxides or mixtures thereof with each other or with other oxides, notably the film-forming metal oxides. Such a pretreatment will generally be chemical degreasing, electrolytic degreasing, removal of foreign materials bymeans of an oxidizing acid, such as nitric acid which does not affect the core, pickling in a nonoxidizing acid,'such as hydrochloric acid, oxalic acid or tartaric acid to produce a rough surface, or a treatment with fluorine compounds to produce a smooth surface. Furthermore, to promote the adhesion of the platinum metal oxides, a porous oxide layer can be formed on the core to provide an anchorage for the platinum metal oxides. Such oxide layer can be formed by a suitable treatment of the core in an oxidizing medium, or by. means of a direct current and/or alternating current.

After the core has been subjected to any of such pretreatments, if at least such pretreatment is desired, the

platinum metal oxide can be applied thereto in various manners, such as:

- (l) The core can be covered with the desired platinum metal in the metallic state, either galvanically .or by the thermalidecomposition of a platinum metal compound, or in any other manner. Thereafterthe metal can be entirely or partially oxidized to form the oxide thereof. This oxidation canbe effected thermally for some of the platinum metals. Ruthenium and palladium can be heated in air, for example, at atmospheric pressure at a temperature of from 300 to 500C. Iridium and rhodium can behea ted in an oxygen containing atmosphere at a temperature of-from 600 C. and higher, and at a partial pressure of oxygen of at least 300 atmospheres. The oxidation of the metal and the alloys of the metals can also be effected by galvanic oxidation by means of a direct current and/ or alternating current, or by a chemical oxidation by means of an oxidant, for example an oxidizing salt melt.

(2) The platinum metal oxide or a mixture of oxides of platinum metals can be applied directly to the core. This can be effected by immersing the core in the molten oxide or oxide mixture provided that the conditions are such that the platinum metal oxides concerned do not dissociate. Other ways areby dispersing the oxide or mixture of oxides in a liquid carrier such as alcohol or Water, and depositing .this onto the core by electrophoresis; by p y g he ox de or mixture at oxides onto the core at an elevated temperature and/or pressure; by brushing or painting the core with a dispersion of the oxide or mixture of oxides in an unstable carrier followed by firing; or by contacting a grounded core with electrostatically charged oxide or mixture. of oxides at room temperature followed by baking. Generally speaking, the application of the oxide or mixture of oxides directly to the core will be effected under oxidizing conditions. The platinum metal oxides or mixtures thereof, or mixtures, of the platinum metal oxide with oxides of other metals can also be applied directly to the film-forming metal core by immersing one or two of such cores connected to a source of current in a solution of a platinum metal salt, a mixture of platinum metal salts or a mixture of platinum metal salts with salts of other metals, and passing a direct or an alternating current or a combination of the two through the immersed electrodes for some time.

(3) The platinum metal oxide or the mixture of platinum metal oxides can also be formed on the core in situ from one or more platinum metal compounds, for example, by heating, a chemical reaction, or electrochemical reaction.

It is included within the scope of the. present invention to cover the core of film-forming metal with a platinum metal or alloy of platinum metals, and to oxidize only the outer part of the layer, e.g. 5-25 of the thickness of the layer. Also, the oxides of the platinum metals can be admixed with other oxides. It is highly beneficial to use oxides of other than platinum metals, which oxides are difficult to reduce or refractory, such as the oxides of the film-forming metals, or other oxides such as chromium and silicon oxides. Such oxides aregenerally added in quantities up to 50% by Weight of said platinum metal oxide, preferably 1-25 by weight, to prevent reduction of the platinum metal oxide.

.The advantages of the use of platinum metal oxides instead of platinummetals in the metallic state are "the following:

(a) The oxides have a greater resistance to products of electrolytic processes than-the metals. For example, in alkali metal chloride electrolysis, a core of a filmforming metal coated with metallic palladium or ruthenium loses more than 50 g. of metal per ton of chlorine produced. When the core is coated with palladium oxide or ruthenium oxide, the loss is less than 0.5 g. per ton of chlorine produced.

' (b) As a result of the greater resistance of the platinum metal oxides, the electrodes can be used in processes for which the platinum metals themselves are unsuitable.

(c) The platinum metal oxides can be more easily applied inproperly adhering layers than the platinum metals.

(d) The platinum metal. oxides, by themselves or in combination with other oxides, have a better resistanceto contact with mercury or amalgam than the platinum metals so that the electrode of the present invention can also be used in cells in which such contact is inevitable.

(e) As a result of the greater resistance, the platinum metal oxides can be applied in thinner layers than the platinum metals, resulting in great technical and economic advantages.

(f) Contrary to the platinum metals themselves, the platinum metal oxides have a depth effect, i.e. an effect connected with the greater porosity of the coating which the platinum metal oxides form, so that electrodes having an extra catalytic activity become possible.

These advantages are also obtained by the use of mixtures of platinum metal oxides and oxides of other metals.

The electrodes according to the present invention are provided with one or more terminals for electric leads, either before or after the platinum metal oxide or oxides have been applied.

Some examples of anodes covered with single platinum metal oxides or mixtures of oxides of the platinum metals with, each other or with oxides of metals. oth r than platinum metals for specific purposes will be described hereinafter.

In some of the following examples, certain ranges are mentioned for the heating periods and temperatures to form oxides. Such ranges, however, are not intended to limit the invention in any way. Within these ranges good results have been obtained in practice, but generally speaking, the advantages of the invention can also be realized outside of these ranges. The heating periods and temperatures to be selected within the ranges mentioned depend on the desired thickness of the layer of oxide, the desired aging of the oxide, the desired crystal structure and the like. Generally speaking, a long heating period within the temperature ranges mentioned will be advantageous.

If the platinum metal oxide layer is formed in situ by the oxidation of the platinum metal, it will generally be contaminated with a smaller or larger content of the free metal, depending on the manner in which the oxide layer is formed, so that the exact chemical composition of the oxide is difficult to determine. Insofar as, in the following examples, certain platinum metal oxides are designated by name or by a formula, such designation is intended as an approximation of the composition which is considered most probable.

In the following examples, where thickness of the deposited layer is referred to, reference is to average thickness. The actual thickness at any point on the surface may vary somewhat from this average.

EXAMPLE 1A A plate of commercial grade titanium having the dimensions 20 x 20 x /s inches is subjected to a pretreatment comprising decreasing, pickling in oxalic acid at 95 C., and rinsing with dimineralized water.

A mixture comprising a platinum metal compound is applied to the core by a series of painting or brushing steps onto both sides of the core with intermediate heating. Said compound is one which, when heated, is directly converted to the desired oxide, i.e. without intermediate reduction to the metal. One example of such a mixture is the following:

4.5 cc. isopropyl alcohol 0.1 cc. 36% hydrochloric acid 0.5 g. palladium chloride (40% by weight Pd).

After each coating step with this solution, the core is heated at 400-500 C. for about 10 minutes in an oxidizing atmosphere, for example, air, and all of the compound is converted to directly form a layer of palladium oxide in the desired form and in properly adherent condition. The calculated thickness of the layer is about 0.54 micron. The adherence can be further improved by subsequent heating in the same temperature range for 1-60 hours.

The adherence of oxide films can be improved by first applying to the core of the film-forming metal a porous layer of oxide of the film-forming metal, for example, by connecting the core in an electrolyte alternately as an anode and as a cathode, or by heating in an oxygen containing atmosphere, whereafter a platinum metal oxide layer will adhere very well to the oxide layer thus formed. This is particularly beneficial for oxide layers of a thickness of from 1-10 microns. Electrodes thus obtained are suitable for the electrolysis of chloride containing solutions in contact with organic compounds, or for the normal alkali metal chloride electrolysis.

EXAMPLE 1B If a platinum metal layer is first applied to the core, the same can also be oxidized electrolytically. Thus, a core pretreated in the manner described above in Example IA, and electrolytically or thermally provided 6 with a platinum metal coating, is connected as an anode in an electrolyte consisting of l% sulphuric acid at room temperature, whereafter a combination of direct current. and alternating current, with a voltage of about 2-6 volts and a current density of 1-50 ma./cm. is passed through the electrolysis apparatus for 10-80 hours. Thereafter the anode is thoroughly rinsed in water and heated in air at ll0240 C. for at least 3 minutes. Alternatively any acid which will supply oxygen can be used in place of the sulphuric acid. This treatment can also be carried out at an elevated temperature, for example, at 50-60 C., in which case the duration of the electrolysis can be considerably shortened and/ or a lower acid concentration can be used. The electrodes can be spaced apart a distance of 2-50 mm. During this treatment the platinum metal on the core will be oxidized to a platinum metal oxide.

EXAMPLE 1C Another possibility is the chemical oxidation of the platinum metal. A titanium core as described above in Example 1A is thoroughly degreased, for example, by means of petroleum ether or carbon tetrachloride, dried at about 80 C., subsequently pickled in a mixture of 10% hydrochloric acid and 10% oxalic acid, and then dabbed with 5% nitric acid, whereafter there is brushed onto the surfaces of the core a mixture of:

cc. of isopropyl alcohol 10 gm. of platinum chloride (40% by weight Pt) 10 cc. of lavender oil.

The thus coated core is carefully heated in an open flame until the entire surface to which the solution was applied is coated with platinum metal. Subsequently, the thus plated core is immersed in a melt of sodium and/ or potassium nitrate at a temperature of 400-600 C. for from 1-60 minutes while passing a mixed alternating and direct current therethrough until platinum metal oxide has been formed thereon. For shorter times and lower temperatures less than all of the thickness of the platinum metal will be oxidized, While by using longer times and higher temperatures, the entire thickness can be oxidized.

EXAMPLE 1D The oxidation of the platinum metals ruthenium and palladium can also be carried out at elevated pressure. For example, a core as described above in Example 1A is coated with a ruthenium metal salt and reducing agent containing solution similar to that described in Example 1C.'The core is then introduced into an oxygen containing atmosphere having an oxygen partial pressure of 0.2-25 atm. and heated at a temperature of 225-500 C. or higher for a period of 1-30 hours until the outer part of the ruthenium layer is oxidized or the whole thickness is oxidized. Alternatively, the plating can be carried out by any conventional plating step, such as electroplating.

EXAMPLE 1E Cores of tantalum or titanium like the core of Example 1A and pretreated in the same manner can be coated with platinum metal oxides in layers of 0.5-50 microns by placing two cores as the two electrodes in an aqueous solution of 5 g. platinum chloride and 5 cc. 36% hydrochloric acid in 1000 cc. water of a temperature of 75 C., and supplying to these cores an alternating current of 4-8 volts with a current density on the cores of 50-500 ma./cm. After about 10 minutes there has then formed on the two electrodes a strongly adhering platinum oxide layer which in combination with the core is an excellent anode for the electrolysis of aqua regia, sulphuric acid and alkalis.

Titanium and tantalum cores coated with a platinum metal oxide, obtained by the above described methods of Examples lA-lE, are very suitable for use as anodes in the electrolysis of alkali metal chlorides, both in aqueous and in non-aqueous mediums, the oxides Pt and RuO being preferred as being much more resistant to nascent chlorine, which is formed in such chloride electrolysis, than metallic platinum or ruthenium, which, unlike the oxides, is dissolved under these conditions.

EXAMPLE 2A A core of normal commercial titanium can be degreased by means of any of the compositions commercially available for the purpose, followed by electrolytic degreasing in a standard bath, whereafter the core is rinsed and placed in a nitric acid solution to remove foreign metals, such as iron, from its surface. Thereafter, the core is again rinsed and pickled for 5 hours in an aqueous oxalic acid solution to which a chlorine compound, such as ammonium chloride, has been added. Subsequently the core is rinsed and then again placed in 5% nitric acid, whereby the impurities present in the titanium, such as iron and copper, are removed from the freshly pickled surface. After about 0.5 hour, the core is rinsed well and dried at 50 C. Sub-' sequently, platinum dioxide is sprayed onto the core by means of a plasma burner, and an excellent adherence is obtained.

EXAMPLE 2B It is also possible to apply a platinum oxide coating to the core by coating the core with a dispersion of the oxide in a carrier. For this purpose there is first prepared a platinum dioxide dispersion by mixing 5 g. finely divided PtO e.g. particles having a size less than 1 micron, in 1 litre of a mixture of water and alcohol, which acts as the carrier, whereafter the dispersion thus obtained is applied to a titanium core prepared according to Example 1A by brushing or spraying. The core thus coated is dried to remove the carrier, and the coated core is then baked at a temperature of at least 460 C. in an oxygen containing atmosphere than oxygen partial pressure of 0.2 atm. for at least 5 min. Thereafter the core is cooled at the same pressure, whereby the platinum dioxide is left on the core metal in a properly adhering condition. The calculated thickness of the layer of platinum dioxide is about 0.95 microns.

The core to which the dispersion of the platinum oxide in a mixture and alcohol is applied is preferably first provided, either thermally, chemically, or galvanically, with an extremely thin layer of porous titanium oxide in which the platinum oxide can anchor itself. After the platinum oxide has been applied to this oxide layer, the coated core is preferably subjected to a thermal treatment under pressure to enable any amorphous oxides to be converted into crystalline oxides so that an ideal adherence of the platinum oxide to the core is obtained.

Another method of anchoring the platinum oxide is the use of at least partially porous titanium, provided the porosity is not so high as to inhibit the formation of a barrier layer under anodic conditions. The porosity of titanium can be reduced, after the application of the dispersion and the drying, by rolling, which improves the anchorage of the platinum oxide embedded in the porous titanium.

The titanium cores coated with platinum oxide manufactured in accordance with Examples 2A and 2B are very suitable for use an anodes under the same conditions as describe-d in Examples 1A-1E, and also for purposes of cathodic protection.

EXAMPLE 3 A core of commercially. pure titanium is degreased and pickled in the manner described in Example 1A and dried in air at 120 C. Subsequently ruthenium oxide (R110 is applied to the thus pretreated core electrophoretically in the following manner.

Ruthenium chloride is dissolved in a mixture of equal parts of water and alcohol. Then the solution is alkalized, egg. to pH 9 by means of ammonia, to form a sol of extremely finely divided ruthenium oxide. In this sol there are placed two of the pretreated titanium cores or one of the pretreated titanium cores with another electrode of a material which acts as a cathode, and a direct current is passed through the electrodes. The electrophoresis which then occurs causes extremely finely divided particles to be deposited from the sol onto the electrode. By careful drying and heating, and excellently adhering layer is obtained.

It is also possible to deposit a mixture of platinum metal oxides onto the core by dissolving salts of the desired platinum metals in the desired quantities, making a sol of the solution thus obtained in a known manner and depositing these precipitated particles on the core by electrophoresis. The precipitated particles are converted to oxides by careful drying and heating.

A sol can also be made by combining the platinum metal oxides in the desired quantities with oxides of other metals such as manganese or lead, whereafter the platinum metal oxides, together with the other metal oxides,

are deposited on the core by electrophoresis.

In each instance of electrophoretic deposition the de posited coating should be carefully dried and heated to promote adherence. Titanium cores thus coated can be used for a large diversity of electrolytic processes, it being possible to render the overvoltage either high or low by the selection of the quantity and the nature of the oxides of the metals other than the platinum metals. Electrodes thus obtained are suitable for use in the electrolysis of metal chlorides, both in aqueous and in non-aqueous media for cathodic protection, and for use in the galvanic industry.

Ruthenium oxide has a greater chemical resistance than ruthenium and in addition requires less energy forv effecting the desired reaction in an electrolytic process.

EXAMPLE 4 A core of commercial grade titanium is degrcased and subsequently pickled in a solution of a fluorine compound, for example, parts by weight of water, 18 parts of nitric acid, and 2 parts of sodium fluoride. After the pickling, the titanium has a very smooth, almost polished surface.

A dispersion of ruthenium oxide in water is prepared by means of a non-ionic moistener, for example, an ethylene oxide condensation product. This dispersion is painted onto the pretreated core, whereafter the core thus painted is carefully dried. Then the ruthenium oxide present on the surface is forced into the surface of the core by hammering or pressing, which produces an electrode which is mechanically very strong, and is excellently suited for cathodic protection of objects in sea water and other surroundings where the electrode is subjected to mechanical Wear by contact with objects such as floating logs and the like.

This electrode is also excellently suited for use in electrolytes containing non-dissolved salt particles, or electrolytes in which salt particles are deposited on the electrode, which is apt to cause excessive mechanical wear.

EXAMPLE 5 A tube of practically pure tantalum, having a diameter of mm., a length of 1500 mm., and a wall thickness of 1 mm., and which is closed on one end, is pretreated by degreasing, for example, by means of petroleum ether or carbon tetrachloride and is then pickled. The tube is galvanically coated with ruthenium in a known manner. After this the tantalum, coated with ruthenium, metal is heated in an oven in air at temperatures between 450 and 600 C. for 3 hours, whereby more of the ruthenium-metal is converted into the oxide. (In general 1 micron of ruthenium-metal is for the largest part converted into the oxide in 6 hours at a temperature of 550 C. in air.) The formed coated core is then filled with a melt consisting of 50% lead and 50% bismuth, whereafter the filled core is cooled.

Alternatively tantalum can be thermally coated with ruthenium oxide in the following manner: A piece of tantalum sheet is pretreated, etched etc. in the usual way and after this painted several times with a mixture of 1 gr. RuCl (which contains 40% Ru metal) 4 cc. isopropylalcohol 1.3 cc. linalool.

After each treatment the sheet is dried in air for 10 minutes and heated in an oven in air at 450 C. for 10 minutes. This treatment is repeated a suflicient number of times until the desired thickness of the layer is reached. Each coating of the above mixture on an etched tantalum surface will give a thickness calculated to be about V of a micron. After the last coating the tantalum sheet is heated for one hour in a reducing atmosphere at 450 C. to convert all the deposited ruthenium to the metal. To convert this ruthenium metal for the largest part to the ruthenium oxide, the coated tantalum is heated for 60 hours in air at temperatures between 450 and 600 C.

The anode produced by this treatment is exceptionally suitable for the electrolyses of brine, and other chlorine containing electrolytes at high current densities with a very low overvoltage and low losses of active surface per amp-hour.

A solid core of tantalum can be treated in a similar manner.

A titanium sheet can be used in place of tantalum.

It is also possible to use a core obtained by coating 21 body of a non-film-forming metal, for example copper with a film-forming metal, such as titanium or tantalum, by applying this metal to the body by galvanization, spraying, or by a technique using an explosion in which the film-forming metal plate is laid on a base body and an explosion is caused adjacent the film-forming metal plate, driving it against the base body.

EXAMPLE 6 A rod-shaped core of commercially pure zirconium having a diameter of 2.5 cm. and a length of 50 cm. is thoroughly degreased, for example, by means of petroleum ether or carbon tetrachloride, dried, and subsequently blasted with zirconia. Then there is painted or brushed onto the surface a mixture comprising:

G. Isopropyl alcohol 10 Linalool (coriandrol) Platinum chloride (40% by weight Pt) 2 Palladium chloride (40% by weight Pd) 2 The core thus-coated is heated in air and at a temperature of 601000 C. for a period of 025- hours. The dissolved platinum and palladium salts will be decomposed to a platinum and palladium alloy.

The metallic platinum and palladium alloy is oxidized to a mixture of oxides in a salt melt of sodium and/or potassium nitrate having a temperature of 300-850 C. for at least 10 minutes while passing a mixed alternating and direct current therethrough. Longer times and temperatures at the upper end of the range will produce more complete oxidation. The completely oxidized layer will have a thickness calculated to be about 5.2,u.

A zirconium core coated with a mixture of platinum and palladium oxides can be very satisfactorily used as an anode in practically all acids or in aqueous or alcoholic solutions of such acids, and is much more suitable for these uses than a core coated with an alloy of metallic platinum and palladium. The oxides are preferred to the metal because they are much more resistant to the action of the acids.

The electrodes thus obtained is particularly suitable for .the preparation of perborates.

10 EXAMPLE 7 A plate-shaped core of commercially pure niobium, having the dimensions 150 x 150 x 0.1 cm., is thoroughly degreased by means of, for example, carbon tetrachloride and acetone 50/50 and dried. Subsequently there is applied to both sides of the core, by brushing or painting a mixture of 100 cc. of isopropyl alcohol 10 gm. of palladium bromide (40% by weight of Pd) 10 cc. of anise-oil.

The core thus coated is heated in air at 400750 C. for 05-10 hours. The dissolved palladium salt is decomposed to palladium. The palladium coated core is then immersed in a salt melt of sodium and/or potassium nitrate having a temperature of SOD-850 C. for at least 10 minutes while passing a mixed alternating and direct current therethrough to oxidize the palladium to palladium oxide.

A niobium core coated with palladium oxide is excellently suited for use in alkaline solutions and for chlorine electrolysis. The oxide is considerably more resistant to the action of alkaline solutions or of chlorine than metallic palladium.

EXAMPLE 8 A titanium core pretreated in the manner described in Example 1A is coated on both sides by brushing or painting with a mixture of:

100 cc. of isopropyl alcohol 10 cc. of iridium chloride (40% by weight Ir) 2 gm. of manganese oxalate (38% by weight Mn).

The core thus coated can :be heated in an atmosphere having an oxygen partial pressure of 1-10 atmospheres at a temperature of 200-750 0., preferably 400-525 C. for 10-60 minutes, the salts being directly converted to the oxides.

The titanium core coated with iridium and manganese oxides can be used as an anode for the electrolysis of chlorine containing solutions such as hydrochloric acid, brine, zinc chloride, and of sulphuric acid solutions and the like, and has a chemical resistance far superior to that of a core coated with metallic iridium. Consequently the layer of oxides can be considerably thinner than a layer of the corresponding metals to obtain the same chemical resistance, while the same quantity of electrical energy can be transmitted.

The anode thus obtained is particularly suited for the preparation of per-compounds.

EXAMPLE 9 A titanium core is pretreated in the same manner as described in Example 1A. A solution consisting of:

30 cc. of isopropyl alcohol;

10 cc. of linalool (coriandrol);

2 gm. of palladium chloride (about 40% by weight Pd);

and

2 gm. of platinum chloride (40% by weight Pt).

is applied to both sides of the titanium core by means of a brush or by spraying, whereafter the core thus coated is heated in the air at 300-400" C., and subsequently at 450-480" C. in an atmosphere consisting of a reducing gas admixed with ammonia or a volatile amine.

If so desired, this treatment is repeated until the desired thickness of the layer has been obtained.

There is thus produced a titanium core coated with a platinum-palladium alloy.

Two cores coated in this manner are placed in a 1% aqueous H solution and alternately connected as an anode and as a cathode, such as by connection to a source of alternating current, at a current density of 1-10 ma./cm. at room temperature, as a result of which treatment the platinum metals are converted into the' corresponding oxides.

1 1 EXAMPLE 10 A tantalum core of the same size as that of Example is pretreated in the manner described in Example 5, whereafter there is formed on the surface of the core a layer of a mixture containing 90% palladium oxide and iridium oxide. The mixture is applied as follows:

1 g. palladium chloride (40% by weight Pd), 0.1 g. iridium chloride (40% by weight Ir), and 1 cc. 36% hydrochloric acidare dissolved in 10 cc. isopropyl alcohol. This mixture is applied to the tantalum core by painting, dipping or spraying. To obtain a better adherence, the tantalum core is preferably provided with an extremely thin layer of tantalum oxide in a manner known per se, for example, electrolytically, or by heating in an oxygen containing atmosphere, for example air, whereafter the solution is easily absorbed in the layer of tantalum oxide. By simple heating in the air at 300-600 C. for a period of 2 or 3 minutes to 1 hour the desired mixture of these oxides is directly formed on the tantalum surface and adhereswell. The layer is calculated to be about 0.099 micron thick.

It is also possible to deposit the mixture of the oxides directly onto the tantalum core by means of electrophoresis from a solution in the following manner:

1 g. palladium chloride (40% by Weight Pd) and 0.1 g. iridium chloride (40% by weight iridium) are dissolved in 100 cc. of water. By blowing ammonia gas into the solution of these salts are precipitated as hydroxides, which can be dehydrated in a known manner, for example, by boiling and adding an oxidant if necessary. In some cases, particularly-if a sol of a higher concentration is desired, the addition of a protective colloid may be necessary to enable the sol to be kept and used for longer periods of time. By connecting a tantalum core as an electrode in the sol and applying an electric voltage for some seconds to some minutes, a dense layer of the precipitated oxides is caused to adhere to the tantalum core, which layer can be made to adhere to the core very well by careful drying and subsequent heating. In this case it is recommended that the tantalum core be previously superficially oxidized.

The tantalum core coated with the palladium and iridium oxides thus obtained is excellently suited as an voltage and a greater chemical resistance than a core anode in the electrolysis of aqueous solutions of potassium or sodium chloride, e.g. brine, and has a lower overcoated with an alloy of the corresponding metals.

EXAMPLE 1 1 A niobium core is pretreated in the manner described in Example 7 and coated with a mixture of 5 0% rhodium oxide and 50% iridium oxide in the following manner:

Rhodium and iridium salts are dissolved in water in the desired ratio and precipitated by means of a base, such as NaOH, whereafter the mixture is converted into the oxides by means of an oxidant, such as oxygen gas. Subsequently the precipitated oxides are filtered, dried, and, if desired, brought into the desired oxidationstate. The mixture of oxides. thus obtained is milled or finelydivided in any other manner, and then dispersed in a liquid carrier, such as ethanol, whereafter the dispersion is applied to the niobium core by means of a brush or by dipping the core into the dispersion, and is carefully dried. The mixture of oxides is then embedded in the surface of the niobium by hammering, pressing, or subjecting the core to any other form of pressure, or by means of ultrasonic vibrations.

The niobium core thus coated with a mixture of rhodium and iridium oxides is excellently suited for the electrolysis of hydrochloric acid, nickel salt solutions, chromic acid solutions, and for the preparation of chlorates and per-chlorates.

12 EXAMPLE 12 A core of titanium containing 4% molybdenum is pretreating in the manner described in Example 1A, whereafter a mixture of platinum oxide and 10% manganese dioxide is applied to the surface of the core.

The mixture of platinum oxide and manganese dioxide can be applied to the core by any of the methods mentioned hereinbefore, for example, by burning in from a solution, by electrophoresis from a sol, mechanically, for example, by pressure, but also by placing the core in an electrolytecontaining a solution of the salts of the metals in the desired ratio, connecting the core to the negative pole of a source of direct current while employing an inert material as the anode, for example platinized titanium, the desired alloy of platinum and manganese being deposited on the core from the electrolyte by the direct current, and converting the alloy into the oxides, for example, by galvanic oxidation.

A titanium core pretreated in a similar manner is coated with a mixture of platinum oxide and 5% silicon dioxide, which may be effected in the following manner:

The titanium core is degreased and provided with a thin film of oxide by heating in the air at 400 C. for 0.5 hour. Subsequently a dispersion of 95 parts by Weight of PtO and 5 parts by weight of SiO in a liquid carrier, such as pure Water, which dispersion can be stabilized by means of a protective colloid, is applied to the core by brushing or dipping, and dried. If so desired, this treatment is repeated until the desired quantity of PtO and Si0 has been applied to the surface of the titanium core. The thus treated core is heated for 5-300 minutes at 8001100 C. under mildly oxidizing conditions. During this heating, the platinum oxide and the silicon oxide are baked or sintered to the titanium surface so that a very strong adherence is obtained. The adherence of platinum metal oxide to metallic titanium by baking or sintering is not only improved by the addition of silicon oxide, but also by the addition of substances such as titanium hydroxide, zirconium oxide, and/or other socalled refractory oxides.

A titanium core pretreated in a similar manner is coated with a mixture of platinum oxide and chromium oxide in the following. manner.

A solution of 5 g. platinum chloride and 2 g. ammonium dichromate in ethyl alcohol is applied to the titanium core by painting or spraying, and dried at C. If so desired, this treatment is repeated until the desired thickness has been obtained. Subsequently, the thus coated core is heated at 460480 C. in oxygen under a pressure of 815 atmospheres to form platinum and chromium and chromium oxides directly.

The electrode thus obtained is particularly resistant and, inter alia, extremely well-suited for use in a galvanic bath containing small quantities of fluorine.

The titanium cores coated with mixtures of platinum oxide and another metal oxide can be used under the same conditions, as the electrodes described in Examples 1-4, 8 and 9.

EXAMPLE 13 A rod of tungsten is sandpapered, electrolytically degreased and after this, painted with a solution of 1 gr. RuCl (which contains 40% Ru metal) in 5 cc. isopropyl alcohol. The coated rod is dried in the air for 10 minutes and after this is heated in an oven in air at 300 C. for 10 minutes. This treatment is repeated 5 times. After this treatment the coated rod is heated again in an oven in air for an hour at 450 C. The rod is thereby coated with a layer of ruthenium oxide. This is proven by exposing the coated rod to aqua regia, to which the layeris resistant. (Ruthenium metal is not resistant to aqua regia.) The tungsten rod coated in this way with ruthenium oxide is an excellent anode for the electrolyses of brine, hydrochloric acid etc. at low power-consump- 13 tion and has a very low over-voltage for chlorine and has very little weight loss of ruthenium oxide per ton of chlorine.

What is claimed is:

1. An electrode for use in an electrolytic process comprising a core of a film-forming metal and a layer having at least the outside portion of the thickness thereof of an electrolyte resistant and electrolysis product resistant material, said outside portion having a thickness of at least about .054 micron, said layer being on at least part of the surface of said core, said material consisting essentially of at least one oxide which is an oxide of at least one platinum metal taken from the group consisting of platinum, iridium, rhodium, palladium, ruthenium, and osmium.

2. An electrode as claimed in claim 1 in which the entire thickness of the layer is said resistant material.

3. An electrode as claimed in claim 1 in which only the outside portion of the thickness of said layer is of said resistant material.

4. An electrode as claimed in claim 1 in which said film-forming metal is a metal taken from the group consisting of titanium, tantalum, Zirconium, niobium, tungsten and alloys consisting predominantly of at least one of said metals.

5. An electrode as claimed in claim 1 in which the film-forming metal is taken from the group consisting of titanium and alloys consisting predominantly thereof.

6. An electrode as claimed in claim 1 in which the film-forming metal is taken from the group consisting of tantalum and alloys consisting predominantly thereof.

7. An electrode as claimed in claim 1 in which the film-forming metal is taken from the group consisting of zirconium and alloys consisting predominantly thereof.

8. An electrode as claimed in claim 1 in which the film-forming metal is taken from the group consisting of niobium and alloys consisting predominantly thereof.

9. An electrode as claimed in claim 1 in which the film-forming metal is taken from the group consisting of tungsten and alloys consisting predominantly thereof.

10. An electrode as claimed in claim 1 in which the film-forming metal is titanium and the material is platinum oxide.

11. An electrode as claimed in claim 1 in which the film-forming metal is titanium and the material is platinum dioxide.

12. An electrode as claimed in claim 1 in which the film-forming metal is titanium and the material is palladium oxide.

13. An electrode as claimed in claim 1 in which the film-forming metal is tantalum and the material is platinum oxide.

14. An electrode as claimed in claim 1 in which the film-forming metal is titanium and the material is ruthenium oxide.

15. An electrode as claimed in claim 1 in which the film-forming metal is tantalum and the material is rhodium oxide.

16. An electrode as claimed in claim 1 in which the core is a base of a non-film forming metal coated with a layer of a film forming metal.

17. An electrode as claimed in claim 16 in which the base is copper and the film forming metal is a metal taken from the group consisting of titanium and tantalum.

18. An electrode as claimed in claim 1 in which the film-forming metal is zirconium oxide and the material is of substantially equal parts by weight of platinum and palladium oxide.

19. An electrode as claimed in claim 1 in which the film-forming metal is niobium and the material is palladium oxide.

20. An electrode as claimed in claim 1 in which the film-forming metal is titanium and the material is iridium oxide having a minor proportion of manganese oxide therein.

21. An electrode as claimed in claim 1 in which the film-forming metal is titanium and the material is a mixture of about equal parts by weight of platinum oxide and palladium oxide.

22. An electrode as claimed in claim 1 in which the film-forming metal is tantalum and the material is a mixture of about by weight palladium oxide and 10% by weight iridium oxide.

23. An electrode as claimed in claim 1 in which the film-forming metal is niobium and the material is a mixture of about equal parts by weight of rhodium oxide and iridium oxide.

24. An electrode as claimed in claim 1 in which the outer 5-25 of the thickness of the layer is a platinum metal oxide.

25. An electrode as claimed in claim 1 in which the film-forming metal is titanium having up to 4% molybdenum therein, and the material is a mixture of about 90% platinum oxide and about 10% manganese dioxide.

26. An electrode as claimed in claim 1 in which the film-forming metal is titanium having up to 4% molybdenum therein, and the material is a mixture of about platinum oxide and about 5% silicon dioxide.

27. An electrode as claimed in claim 1 in which the film-forming metal is titanium having up to 4% molybdenum therein, and the material is a mixture of platinum oxide and chromium oxide.

28. An electrode as claimed in claim 1 in which the film-forming metal is an alloy of about 85% titanium and about 15% zirconium, and the material is platinum oxide. I

29. An electrode for use in an electrolytic process comprising a' core of a film-forming metal and a layer having at least the outside portion of the thickness thereof of an electrolyte resistant and electrolysis product resistant material, said outside portion having a thickness effective for carrying out electrolysis, said layer being on at least part of the surface of said core, said material containing as the substance effective for carrying out electrolysis at least one oxide which is an oxide of at least one platinum metal taken from the group consisting of platinum, iridium, rhodium, palladium, ruthenium, and osmium any balance of said material being ineffective for carrying out electrolysis at a threshold voltage as low as that at which said oxide is elfective.

30. An electrode as claimed in claim 29 in which said oxide of a metal other than said platinum metals is present in an amount of up to 50% by weight of the said platinum metal oxide.

31. An electrode for use in an electrolytic process comprising a core of a film-forming metal and a catalytically active conductive layer having at least the outside portion thereof of electrolyte resistant and electrolysis product resistant material, said layer being on at least part of the surface of said core, said material consisting essentially of at least one oxide which is an oxide of at least one platinum metal taken from the group consisting of platinum, iridium, rhodium, palladium, ruthenium, and osmium.

32. The electrode of claim 31 in which the outside portion of said layer extends at least down to a depth of 5% of the depth of said layer.

33. An electrode for use in an electrolytic process comprising a core of a film-forming metal and a layer having at least the outside portion of the thickness thereof of an electrolyte resistant and electrolysis product resistant material, said outside portion having a thickness effective for carrying out electrolysis, said layer being on at least part of the surface of said core, said material consisting essentially of a mixture, in other than mixed crystal form, of at least one oxide which is an oxide of at least one platinum metal taken from the group consisting of platinum, iridium, rhodium, palladium, ruthenium, and osmium, and at least one oxide of a filmforming metal.

34. An electrode for use in an electrolytic process comprising a core of a film-forming metal and a layer having at least the outside portion of the thickness thereof of an electrolyte resistant and electrolysis product resistant material, said outside portion having a thickness effective for carrying out electrolysis, said layer being on at least part of the surface of said core, said material consisting essentially of a mixture of at least one oxide of at least one platinum metal taken from the group consisting of platinum, iridium, rhodium, palladium, ruthenium, and osmium and at least one oxide of a metal taken from the group consisting of manganese, lead, chromium, cobalt, iron, titanium, tantalum, zirconium and silicon.

35. A method of using an electrode, which electrode comprises a core of a film-forming metal and a layer having at least the outside portion of the thickness thereof of an electrolyte resistant and electrolysis product resistant material, said outside portion having a thickness of at least .054 microns, said layer being on at least part of the surface of said core, said material containing as a substance effective for carrying out electrolysis at least one oxide which is an oxide of at least one metal taken from the group consisting of platinum, iridium, rhodium, palladium, ruthenium, and osmium, any balance of said material being ineffective for carrying out electrolysis at a threshold voltage as low as that at which said oxide is effective, said method comprising the stepsof inserting the electrode into an electrolyte, and passing an electrolyzing current through the electrode and the electrolyte.

36. A method of using an electrode, which electrode comprises a core of a film-forming metal and a layer having at least the outside portion of the thickness thereof of an electrolyte resistant and electrolysis product resistant material, said outside portion having a thickness effective for carrying out electrolysis, said layer being on at least part of the surface of said core, said material consisting essentially of a mixture of at least one oxide which is an oxide of at least one metal taken from the group consisting of platinum, iridium, rhodium, palladium, ruthenium, and osmium, and at least one oxide of a metal taken from the group consisting of manganese, lead, chromium, cobalt, iron, titanium, tantalum, zircom'um and silicon, said method comprising the steps of inserting the electrode into an electrolyte, and passing an electrolyzing current through the electrode and the electrolyte.

37. A method of carrying out electrolysis comprising inserting an electrode which comprises a core of a filmforming metal and a layer having at least the outside portion of the thickness thereof of an electrolyte resistance and electrolysis product resistant material, said outside portion having a thickness of at least .054 microns, said layer being on at least part of the surface of said core, said material containing as a substance effective for carrying out electrolysis at least one oxide which is an oxide of at least one metal taken from the group consisting of platinum, iridium, rhodium, palladium, ruthenium, and osmium, any balance of said material being ineffective for carrying out electrolysis at a threshold voltage as low as that at which said oxide is effective into an electrolyte, and passing an electrolyzing current through the electrode and the electrolyte.

38. A method of carrying out electrolysis comprising inserting an electrode which comprises a core of a filmforming metal and a layer having at least the outside portion of the thickness thereof of an electrolyte resistant and electrolysis product resistant material, said outside portion having a thickness effective for carrying out electrolysis, said layer being on at least part of the surface of said core, said material consisting essentially of a mixture of at least one oxide which is an oxide of at least one metal taken from the group consisting of platinum, iridium, rhodium, palladium, ruthenium, and osmium, and at least one oxide of a metal taken from the group consisting of manganese, lead, chromium, cobalt, iron, titanium, tantalum, Zirconium and silicon into an electrolyte, and passing an electrolyzing current through the electrode and the electrolyte.

39.' An electrolytic process for the preparation of a chemical product, said process comprising the steps of providing an electrolyte containing the elements of the chemical'product to be produced in an electrolytic cell, said cell including an electrode positioned within said electrolyte, said electrode comprising a core of a filmforming metal, and a layer having at least the outside portion of the thickness thereof of an electrolyte resistant and electrolysis product resistant material, said outside portion having a thickness of at 1east1'054 micron, said layer being on at least part of-the surface of said core, said material containing as a substance effective for carrying out electrolysis at least one oxide which is an'oxide of at least one metal taken from the group consisting of platinum, iridium, rhodium, palladium, ruthenium, and osmium, any balance of said material being ineffective for carrying out electrolysis at a threshold voltage as low as that at which said oxide is effective, into an electrolyte, and passing an electrolyzing current through the electrode and electrolyte, and recovering said chemical product from said cell.

40. An electrolytic process for the preparation of a chemical product, said process comprising the steps of providing an electrolyte containing the elements of the chemical product to be produced in an electrolytic cell, said cell including an electrode positioned within said electrolyte, said electrode comprising a core of a filmforming metal and a layer having at least the outside portion of the thickness thereof of an electrolyte resistant and electrolysis product resistant material, said outside portion having a thickness effective for carrying out electrolysis, said layer being on at least part of the surface of said core, said material consisting essentially of a mixture of at least one oxide which is an oxide of at least one metal taken from the group consisting of platinum, iridium, rhodium, palladium, ruthenium, and osmium, and at least one oxide of a metal taken from the group consisting of manganese, lead, chromium, cobalt, iron, titanium, tantalum, zirconium and silicon, passing an electrolyzing current through the electrode and electrolyte, and recovering said chemical product from said cell.

41. An electrode as claimed in claim 34 in which the mixture is a mixture of platinum oxide and silicon dioxide.

References Cited UNITED STATES PATENTS 2,63l,1-15 3/1953 Fox 204290 F 2,987,453 6/1961 Durose 20451 3,055,811 9/1962 Ruff 204290 F 3,096,272 7/1963 Beer 204290 F 3,177,131 4/1965 Angellet al. 204290 F 3,207,679 9/1965 Schmidt 20442 3,282,735 11/1966 Kring et al. 13-6--120 3,428,544 2/1969 Bianchi et a1. 204-290.

OTHER REFERENCES Delahay-Tobias, Advances in Electrochemistry and Electrochemical Engineering, vol. 6, 1967, pp. 208-209.

JOHN H. MACK, Primary Examiner S. S. KANT ER, Assistant Examiner US. Cl. X.R.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,711,385 'Dated 'June 16, 1973 Inv n Q (s) HENRI BERNARD BEER It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

After the Serial Number, insert --The portion of the term of Claims priority: Great Britain May 12, 1965 No. 20133/65 Column 2, line 50, change "at" to -is-.

Column 5, line '35, change "dimineralized" to -demineralized-. Column 11, line 45, delete in its entirety;

between lines 47 and 48 insert --voltage and a greater chemical resistance than a core--.

Column 12, line 52, delete "chromium and";

Column 13, line l0 (Claim 1, line 6) change "micron" to microns--; v Column 13, line 67 (Claim 18, line 3) after "platinum" insert -oxide- Column 16, line 16 (Claim 39, line l0) change" "micron" to -microns-.

Signed and sealed this 9th day of July 1973.

this patent subsequent to January 4, 1989 has been disclaimed.-- I

(SEAL):

Attest:

MCCOY M. GIBSON, JR. I C. MARSHALL DANN Attesting Officer Commissioner of Patents FORM uscoMM-oc scan-Poo 9 ".5. GOVERNMENT- PRINTING OFFICE 2 l9, 0-355-334,

Disclaimer 3,711,385.-He11rz' Bernard Beer, Kalmthout, Belgium. ELECTRODE HAV- ING PLATINUM METAL OXIDE COATING THEREON, AND METHOD OF USE THEREOF. Patent dated J an. 16, 1973.- Disclaimer filed Nov. 6, 1972, by the assignee, Ohemnor Corporation. Hereby disclaims the portion of the term of the patent subsequent to J an. 4,1989.

[Ofioial Gazette October 30, 1.973.]

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3869312 *Sep 4, 1973Mar 4, 1975Ici LtdElectrodes and electrochemical processes
US3878083 *May 17, 1973Apr 15, 1975Electronor CorpAnode for oxygen evolution
US3882002 *Aug 2, 1974May 6, 1975Hooker Chemicals Plastics CorpAnode for electrolytic processes
US3922226 *Apr 30, 1974Nov 25, 1975Ici LtdAnodes for mercury-cathode electrolytic cells
US3933616 *Sep 24, 1973Jan 20, 1976Chemnor CorporationCoating of protected electrocatalytic material on an electrode
US3951766 *Apr 2, 1975Apr 20, 1976Hooker Chemicals & Plastics CorporationElectrolytic cell and method of using same
US4005004 *Sep 10, 1975Jan 25, 1977Asahi Kasei Kogyo Kabushiki KaishaElectrode coating consisting of a solid solution of a noble metal oxide, titanium oxide, and zirconium oxide
US4037032 *May 5, 1976Jul 19, 1977Diamond Shamrock Technologies S.A.Electric storage battery with valve metal electrodes
US4049532 *Sep 23, 1974Sep 20, 1977Solvay & Cie.Titanium or alloy
US4067783 *Mar 21, 1977Jan 10, 1978Bell Telephone Laboratories, IncorporatedGold electroplating process
US4101906 *Apr 25, 1977Jul 18, 1978International Business Machines CorporationCharge electrode assembly for ink jet printer
US4112140 *Apr 14, 1977Sep 5, 1978The Dow Chemical CompanyElectrode coating process
US4140813 *Aug 30, 1977Feb 20, 1979Hoechst AktiengesellschaftFirst coating of titanium oxide applied by flame spraying
US4184192 *Feb 15, 1978Jan 15, 1980Matsushita Electric Industrial Co., Ltd.Solid electrolyte compacitor using low resistivity metal oxide as cathode collector
US4185142 *Aug 9, 1978Jan 22, 1980Diamond Shamrock CorporationOxygen electrode rejuvenation methods
US4186423 *Sep 30, 1977Jan 29, 1980Matsushita Electric Industrial Company, LimitedOxide of ruthenium, rhodium, rhenium, osmium or iridium, valve metal anode with dielectric oxide film
US4214971 *Aug 14, 1978Jul 29, 1980The Dow Chemical CompanyElectrode coating process
US4235695 *Dec 9, 1977Nov 25, 1980Diamond Shamrock Technologies S.A.Made of vitreous or glassy carbon porous body for electrolysis of brines
US4289591 *May 2, 1980Sep 15, 1981General Electric CompanySolid solution of manganese oxide in ruthenium oxide
US4310391 *Dec 21, 1979Jan 12, 1982Bell Telephone Laboratories, IncorporatedElectrolytic gold plating
US4313814 *Dec 22, 1977Feb 2, 1982Tdk Electronics Co., Ltd.Electrode for electrolysis and manufacture thereof
US4331742 *Dec 24, 1980May 25, 1982Lovelace Alan M AdministratorSolid electrolyte cell
US4333805 *Apr 27, 1981Jun 8, 1982General Electric CompanyIon exchanging, manganese oxide, ruthenium oxide
US4360416 *Apr 27, 1981Nov 23, 1982General Electric CompanyAnode catalysts for electrolysis of brine
US4362707 *Apr 23, 1981Dec 7, 1982Diamond Shamrock CorporationPreparation of chlorine dioxide with platinum group metal oxide catalysts
US4381290 *Feb 1, 1982Apr 26, 1983Diamond Shamrock CorporationMethod and catalyst for making chlorine dioxide
US4406757 *May 19, 1982Sep 27, 1983Polychrome CorporationAnodization method
US4440603 *Jun 17, 1982Apr 3, 1984The Dow Chemical CompanyApparatus and method for measuring dissolved halogens
US4444642 *Aug 17, 1981Apr 24, 1984Diamond Shamrock CorporationProtective coating of lead or manganese dioxide
US4465580 *Feb 2, 1979Aug 14, 1984Chlorine Engineers Corp. Ltd.Coating of nickel or alloy, platimun-group metal oxide
US4469581 *May 19, 1982Sep 4, 1984Permelec Electrode Ltd.Electrolytic electrode having high durability
US4479864 *Jul 28, 1983Oct 30, 1984The Japan Carlit Co., Ltd.Titanium or alloy, platinum, iridium dioxide, ruthenium dioxide
US4495046 *Aug 18, 1983Jan 22, 1985Union Oil Company Of CaliforniaElectrode containing thallium (III) oxide
US4501824 *Jan 10, 1983Feb 26, 1985Eltech Systems CorporationCatalyst for making chlorine dioxide
US4502936 *Nov 20, 1981Mar 5, 1985Imi Kynoch LimitedCorrosion resistance
US4519889 *May 24, 1983May 28, 1985Oronzio Denora Impianti Elettrochimici S.P.A.Halogenation apparatus
US4581117 *Mar 4, 1985Apr 8, 1986Permelec Electrode Ltd.Durable electrode for electrolysis and process for production thereof
US4585540 *Jan 7, 1985Apr 29, 1986Eltech Systems CorporationComposite catalytic material particularly for electrolysis electrodes and method of manufacture
US4696731 *Dec 16, 1986Sep 29, 1987The Standard Oil CompanyMixed metal oxide coating over amorphous metal alloy coating; fusion
US4702813 *Dec 16, 1986Oct 27, 1987The Standard Oil CompanyApplying one alloy coating, then different second alloy coating
US4705610 *May 27, 1986Nov 10, 1987The Standard Oil CompanyAnodes containing iridium based amorphous metal alloys and use thereof as halogen electrodes
US4708888 *Apr 29, 1986Nov 24, 1987Eltech Systems CorporationElectrocatalytic
US4781803 *Jun 16, 1986Nov 1, 1988The Standard Oil CompanyElectrolytic processes employing platinum based amorphous metal alloy oxygen anodes
US4783246 *Dec 1, 1987Nov 8, 1988Eltech Systems CorporationBipolar rapid pass electrolytic hypochlorite generator
US4797182 *Apr 13, 1987Jan 10, 1989Eltech Systems CorporationElectrolytic process with metal oxide in electrode surface
US4798715 *Feb 5, 1988Jan 17, 1989Eltech Systems CorporationProducing chlorine dioxide from chlorate salt
US4808494 *Jun 15, 1987Feb 28, 1989Combustion Engineering, Inc.Thermally actuated hydrogen secondary battery
US4871703 *Dec 17, 1987Oct 3, 1989The Dow Chemical CompanyDissolving metal salts, evaporating solvent, heating in oxygen to convert to oxide, bonding to heat-sensitive substrate
US4936971 *Mar 31, 1988Jun 26, 1990Eltech Systems CorporationMassive anode as a mosaic of modular anodes
US5004626 *May 31, 1989Apr 2, 1991Huron Technologies, Inc.Base Of Conductive Valve Metal, Electronically Conductive Barrier Layer And Electrocatalytic Coating
US5110436 *Feb 1, 1991May 5, 1992The United States Of America As Represented By The Adminstrator Of The National Aeronautics And Space AdministrationWater electrolysis
US5188721 *Jan 10, 1990Feb 23, 1993Eltech Systems CorporationPlate anode having bias cut edges
US5230780 *Feb 21, 1992Jul 27, 1993Eltech Systems CorporationElectrolyzing halogen-containing solution in a membrane cell
US5314601 *Jun 25, 1992May 24, 1994Eltech Systems CorporationElectrodes of improved service life
US5324407 *Feb 26, 1993Jun 28, 1994Eltech Systems CorporationSubstrate of improved plasma sprayed surface morphology and its use as an electrode in an electrolytic cell
US5421968 *Sep 28, 1990Jun 6, 1995Eltech Systems CorporationCathodic protection system for a steel-reinforced concrete structure
US5423961 *Nov 5, 1992Jun 13, 1995Eltech Systems CorporationCathodic protection system for a steel-reinforced concrete structure
US5435896 *Mar 25, 1994Jul 25, 1995Eltech Systems CorporationCell having electrodes of improved service life
US5451307 *Oct 1, 1990Sep 19, 1995Eltech Systems CorporationCathodic protection of steel reinforced concretes
US5454925 *May 3, 1994Oct 3, 1995Eltech Systems CorporationRepair of mesh electrode spaced from electrode pan
US5464519 *Dec 2, 1993Nov 7, 1995Eltech Systems CorporationRefurbished electrode having an inner plate and outer envelope electrode
US5503663 *Nov 30, 1994Apr 2, 1996The Dow Chemical CompanySable coating solutions for coating valve metal anodes
US5545262 *Nov 16, 1994Aug 13, 1996Eltech Systems CorporationMethod of preparing a metal substrate of improved surface morphology
US5578175 *Aug 16, 1994Nov 26, 1996National Science CouncilProcess for manufacturing iridium and palladium oxides-coated titanium electrode and the electrode produced thereby
US5578176 *May 15, 1995Nov 26, 1996Eltech Systems CorporationMethod of preparing electrodes of improved service life
US5584975 *Jun 15, 1995Dec 17, 1996Eltech Systems CorporationTubular electrode with removable conductive core
US5619793 *Oct 16, 1995Apr 15, 1997Eltech Systems CorporationMethod of refurbishing a plate electrode
US5639358 *Feb 27, 1995Jun 17, 1997Eltech Systems CorporationElectroconductive overcoating on concrete
US5653857 *Nov 29, 1995Aug 5, 1997Oxteh Systems, Inc.Filter press electrolyzer electrode assembly
US5672394 *Aug 2, 1996Sep 30, 1997Eltech Systems CorporationElectrodes of improved service life
US5753098 *Apr 22, 1996May 19, 1998Excel Technologies International Corp.Cylindrical electrolyzer assembly and method
US5759361 *Dec 16, 1996Jun 2, 1998Eltech Systems CorporationCathodic protection system for a steel-reinforced concrete structure
US5770035 *Dec 18, 1996Jun 23, 1998De Nora S.P.A.Method for the electrolysis of aqueous solutions of hydrochloric acid
US5783053 *Feb 10, 1997Jul 21, 1998Eltech Systems CorporationCombination inner plate and outer envelope electrode
US5783058 *Jun 6, 1996Jul 21, 1998Eltech Systems CorporationAnode electroplating cell and method
US5804053 *Oct 25, 1996Sep 8, 1998Eltech Systems CorporationContinuously electroplated foam of improved weight distribution
US5879817 *Jan 19, 1995Mar 9, 1999Eltech Systems CorporationReinforced concrete structure
US5948222 *May 1, 1995Sep 7, 1999Occidental Chemical CorporationReactivation of deactivated anodes
US5952055 *Jul 20, 1998Sep 14, 1999Brown, Jr.; Carl W.Applying protective cathodic coating containing non-corroding metal and electrochemically active material onto surface of concrete
US6051117 *Nov 5, 1997Apr 18, 2000Eltech Systems, Corp.Reticulated metal article combining small pores with large apertures
US6071570 *Aug 27, 1997Jun 6, 2000Eltech Systems CorporationElectrodes of improved service life
US6254743Dec 24, 1990Jul 3, 2001Eltech Systems CorporationExpanded titanium metal mesh
US6498121 *Feb 25, 2000Dec 24, 2002Symyx Technologies, Inc.Platinum-ruthenium-palladium alloys for use as a fuel cell catalyst
US6527939Jun 22, 2000Mar 4, 2003Eltech Systems CorporationMetal can be deposited in cell operation that does not exhibit an adverse effect on electrode potential
US7132188Apr 4, 2003Nov 7, 2006The Board Of Trustees Of The University Of IllinoisIncludes formic acid fuel solution which is oxidized at an anode which includes platinum/palladium catalyst which promotes oxidation of formic acid, and does not include formation of carbon monoxide intermediate; includes antifreeze
US7232508May 6, 2004Jun 19, 2007Permelec Electrode Ltd.Electrolytic electrode and process of producing the same
US7258778Mar 24, 2003Aug 21, 2007Eltech Systems CorporationElectrocatalytic coating with lower platinum group metals and electrode made therefrom
US7282282Sep 17, 2003Oct 16, 2007The Board Of Trustees Of The University Of IllinoisOrganic fuel cells and fuel cell conducting sheets
US7422994Dec 21, 2005Sep 9, 2008Symyx Technologies, Inc.Platinum-copper-tungsten fuel cell catalyst
US7569297Dec 16, 2005Aug 4, 2009The Board Of Trustees Of The University Of IllinoisFuel cell membranes and crossover prevention
US7591934Jun 30, 2008Sep 22, 2009Freeport-Mcmoran CorporationApparatus for producing metal powder by electrowinning
US7608560Jun 7, 2004Oct 27, 2009Symyx Technologies, Inc.Platinum-titanium-tungsten fuel cell catalyst
US7700521Aug 18, 2004Apr 20, 2010Symyx Solutions, Inc.Platinum-copper fuel cell catalyst
US7736475Dec 11, 2008Jun 15, 2010Freeport-Mcmoran CorporationSystem and method for producing copper powder by electrowinning using the ferrous/ferric anode reaction
US7740974Nov 5, 2004Jun 22, 2010The Board Of Trustees Of The University Of Illinoisanode catalyst that includes Pd supported on carbon; included other metal chosen from the group of metals Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Au; membrane electrode; low cost
US7785728Apr 2, 2004Aug 31, 2010The Board Of Trustees Of The University Of IllinoisPalladium-based electrocatalysts and fuel cells employing such electrocatalysts
US7935236Jun 8, 2006May 3, 2011The United States Of America As Represented By The Secretary Of The ArmyElectro-osmotic pulse (EOP) treatment method
US7998899 *Nov 25, 2008Aug 16, 2011Shell Oil CompanyCatalyst with support structure
US8142898Oct 29, 2009Mar 27, 2012De Nora Tech, Inc.Smooth surface morphology chlorate anode coating
US8273237Jan 16, 2009Sep 25, 2012Freeport-Mcmoran CorporationMethod and apparatus for electrowinning copper using an atmospheric leach with ferrous/ferric anode reaction electrowinning
US8580091May 27, 2011Nov 12, 2013Water Star, Inc.Multi-layer mixed metal oxide electrode and method for making same
US8702873 *Jan 17, 2011Apr 22, 2014General Electric CompanyChlorine generating device and related dishwasher
US20120180825 *Jan 17, 2011Jul 19, 2012General Electric CompanyChlorine generating device and related dishwasher
CN100402705CMay 14, 2004Jul 16, 2008培尔梅烈克电极股份有限公司Electrolytic electrode and process of producing the same
CN100411731CSep 22, 2006Aug 20, 2008中国海洋大学Method for preparing nano powder photocatalyst
CN100411732CSep 22, 2006Aug 20, 2008中国海洋大学Method for preparing nano powder catalyst
DE2645414A1 *Oct 8, 1976Apr 13, 1978Sigri Elektrographit GmbhVerfahren zur herstellung von metallanoden fuer die elektrolytische gewinnung von mangandioxid
DE2909593A1 *Mar 12, 1979Sep 27, 1979Permelec Electrode LtdElektrode zum gebrauch bei der elektrolyse einer waessrigen metallhalogenidloesung sowie verfahren zur herstellung derselben
DE3034578A1 *Sep 13, 1980Apr 9, 1981Grace W R & CoKieselsaeuregel und elektrodialyseverfahren zu seiner herstellung
DE3219003A1 *May 19, 1982Dec 9, 1982Permelec Electrode LtdElektrolytische elektrode mit hoher lebensdauer und verfahren zur herstellung derselben
DE3330388A1 *Aug 23, 1983Mar 1, 1984Permelec Electrode LtdElektrolytische elektrode und verfahren zu deren herstellung
DE3502876A1 *Jan 29, 1985Aug 8, 1985Permelec Electrode LtdVerfahren zur herstellung einer elektrode
DE3715444A1 *May 8, 1987Nov 26, 1987Permelec Electrode LtdDauerhafte elektrode fuer elektrolysen und verfahren zu deren herstellung
EP0027051A1 *Oct 7, 1980Apr 15, 1981Eltech Systems CorporationCoated metal electrode with improved barrier layer and methods of manufacture and use thereof
EP1477585A2 *May 6, 2004Nov 17, 2004Permelec Electrode Ltd.Electrolytic electrode and process of producing the same
WO2005095671A2 *Mar 9, 2005Oct 13, 2005Studiengesellschaft Kohle MbhMethod for the production of iridium oxide coatings
WO2007047182A2 *Oct 6, 2006Apr 26, 2007All My Relations IncInternal combustion apparatus and method utilizing electrolysis cell
Classifications
U.S. Classification205/464, 205/474, 204/290.14, 427/125, 427/126.5, 205/620, 205/594, 252/514, 427/126.3, 205/469, 205/572, 427/126.6, 204/290.12, 205/502, 205/535
International ClassificationC25B11/00, C25B11/10, C25B11/04
Cooperative ClassificationC25B11/0478, C25B11/0447, C25B11/0484
European ClassificationC25B11/04D4, C25B11/04D2, C25B11/04D4B
Legal Events
DateCodeEventDescription
Oct 28, 1988ASAssignment
Owner name: ELECTRODE CORPORATION, A DE CORP., OHIO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DIAMOND SHAMROCK TECHNOLOGIES, S.A.;REEL/FRAME:005004/0145
Effective date: 19881026