Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3714811 A
Publication typeGrant
Publication dateFeb 6, 1973
Filing dateJun 22, 1970
Priority dateJun 22, 1970
Also published asCA939606A, CA939606A1
Publication numberUS 3714811 A, US 3714811A, US-A-3714811, US3714811 A, US3714811A
InventorsDaigle E, Luke R, Turner J, Wise H
Original AssigneeShell Oil Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Marine mud hydrocarbon surveying
US 3714811 A
Abstract
A process for exploring a water-covered region is improved by jetting water into soft bottom sediments, forming a slurry of the sediments in water, extracting gas from the slurry and measuring the concentration with location of a mobile reservoir fluid that was entrapped within the bottom sediments.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 91 Daigle et a1.

[ 1 MARINE MUD HYDROCARBON SURVEYING [75] Inventors: Edwin E. Daigle; Robert R. Luke; James B. Turner; Harold L. Wise, all of Houston, Tex.

[73] Assignee: Shell Oil Company, New York, NY.

[22] Filed: June 22, 1970 [21] Appl. No.: 48,366

[ Feb. 6, 1973 2,346,203 4/1944 Zaikowsky 175/60 X 2,774,569 12/1956 .lacobsen 3,486,570 12/1969 Richardson....

3,490,550 l/1970 Horton ..175/213 X OTHER PUBLICATIONS Abstract No. 107857, Petroleum Abstracts 1969,

Libby et 211.; How To Carry Out An Efficient Program For Sampling Off-Shore Minerals," Eng. Mining 1., Vol. 169, No. 12, pp. 72-74, December, 1968.

Primary Examiner-Richard C. Queisser Assistant Examiner-C. E. Snee, III Attorney-Harold W. Coryell and Harold L. Denkler [57] ABSTRACT A process for exploring a water-covered region is improved by jetting water into soft bottom sediments, forming a slurry of the sediments in water, extracting gas from the slurry and measuring the concentration with location of a mobile reservoir fluid that was entrapped within the bottom sediments.

8 Claims, 4 Drawing Figures GAS DISCHARGE GAS GAS EXTRACTOR ANALYZER l -l2o 2' -16 -::t'.:-: t T; g SLURRY r DISCHARGE RECORDER ETHANE TOTAL HYDRO- CARBON GAS DISCHARGE GAS GAS EXTRACTOR ANALYZER I USILURRT ','-|5

DISCHARGE RECORDER ETHANE TOTAL HYDRO- CARBON /2/ETHANE ?/--OFF-SCALE TOTAL HYDROCARBON Nina - INVENTORS: FIG. I EDWIN E. DAIGLE ROBERT R. LUKE JAMES B. TURNER HAROLD L.WISE

THEIR ATTORNEY PATENTEUFEB 6|975 3,714,811

SHEET 2 [IF 2 FIG. 4

INVENTORS:

EDWIN E. DAIGLE ROBERT R. LUKE JAMES B. TURNER HAROLD L.WISE

THEIR ATTORNEY 1 MARINE MUD HYDRO CARBON SURVEYING BACKGROUND OF THE INVENTION The invention relates to a process for investigating earth formations located under a large body of water. More particularly it relates to measuring the concentration with location of a mobile fluid,-such as a hydrocarbon, in sediments at the bottom of a body of water, in order to locate an underlying reservoir that contains the mobile fluid,.

Mobile reservoir fluids, such as hydrocarbons and/or inorganic gases, are known to seep from subterranean reservoirs and migrate up through the overlying earth formations. Priorprocedures for exploring watercovered regions have utilized various combinations of geophysical techniques, such as seismic or gravity mapping techniques, and measurements of the amounts of hydrocarbon and/or inorganic gases in a body of water or in core samples or bit cuttings of the earth formations underlying the water. The obtaining of core samples or bit cuttings is a relatively expensive operation and is usually employed only in locations that have been selected as the sites for wells, or platforms, or the like.

A survey or map of the amount with location of a mobile reservoir fluid that might be contained within a body of water is not significant unless the bottom. sediments have allowed the reservoir fluid to flow through them and enter the water. In a region containing subterranean structures having geophysical properties that may be indicative of a subterranean reservoir, the overlying water may be substantially devoid of any mobile reservoir fluid. Such a situation is common when the bottom sediments are soft and relatively impermeable, such as the clays or muds that cover much of the Gulf of Mexico. An absence of hydrocarbons in the water above a subterranean reservoir structure that might contain hydrocarbons provides substantially no definite information. There may be no hydrocarbons present in the reservoir structure, or none that escape from the reservoir, or none that provide detectable amounts of seepage through the relatively impermeable and hydrocarbon adsorptive layer of mud that underlies the water.

A primary object of the present invention is to provide a relatively economical and reliable procedure for detecting and characterizing any mobile reservoir fluids which have been adsorbed or otherwise trapped or entrained within a layer of unconsolidated sedimentary earth formations underlying a body of water.

SUMMARY OF THE INVENTION In accordance with this invention measurements are made of the concentration of at least one mobile reservoir fluid in a water-covered unconsolidated sedimentary earth formation. A stream of relatively clean water is jetted into the sedimentary earth formation to form a pumpable slurry of sedimentary material in water. Measurements are made of the locations at which the slurry is formed. And, gaseous fluid is extracted from the slurry and analyzed with respect to its concentration of a mobile reservoir fluid in order to map the concentration with location of the mobile reservoir fluid in the sedimentary earth formation.

The present invention provides an improved method of exploring a water-covered region by: measuring the magnitude with location of at least one geophysical property of subterranean earth formations; measuring the concentration with location within the water of at least one mobile reservoir fluid; and, measuring the concentration with location within an unconsolidated sedimentary earth formation of the mobile reservoir fluid in a region in which a geophysical property is indicative of a subterranean reservoir structure and the overlying water is substantially devoid of the mobile reservoir fluid.

DESCRIPTION OF THE DRAWING FIG. I is a schematic illustration of a suitable system and its use in analyzing an unconsolidated sedimentary earth formation in accordance with the present invention.

FIG. 2 is a more detailedillustration of water-jetting element for use in the system shown in FIG. 1.

FIG. 3 illustrates an alternative form of record.

FIG. 4 illustrates an alternative form of water-jetting element for use in the system shown in FIG. 1.

DESCRIPTION OF THE INVENTION In the equipment shown in FIGS. 1 and 2, a vessel 1 is shown on a body of water 2, above a layer of unconsolidated sedimentary earth formation or mud 3. A mud-sampling device 4 forms a slurry of sediment in water that is pumped to a surface location through conduit 5. The mud-sampling device contains a pumping means 6 having an intake port 7, and a pump-discharge conduit 8. The pump-discharge conduit is connected to jet nozzles 9 which are arranged to jet water into the mud to form a stream of slurry which flows into conduit 5 as shown by the arrows. The mud-sampling device 4 is mounted on a base structure 10. As the mud-sampling device advances to increasing depths within the mud 3, a measuring means, such as a rack and pinion arrangement 11, responds to the extent of such advance and telemeters an electrical signal relating to the depth of penetration by means of electrical conduit 14.

In a near surface location, the slurry of sedimentary solids in water is pumped through gas extractor l2 and discharged, as indicated at 12a. The extracted gas is passed through a gas analyzer 13, and discharged, as indicated at 13a. An electrical signal from the gas analyzer is conveyed to recorder 15 by electrical conduit 16. The recorder may indicate, for example, measurements made at each of a series of depths within the sediments 3 of the concentration of ethane and the concentration to total hydrocarbon. As indicated in FIG. 3, such measurements can be utilized to plot the concentration with depth of such components of the sedimentary earth formation.

In the arrangement shown in FIG. 4, a slurry of sedimentary particles in water is formed by a self-anchoring type of mud-sampling device. Pump 18 is preferably a positive displacement pump, such as a Moyno pump that is adapted to pump a slurry into conduit 5 at a rate exceeding the rate of water inflow through intake port 19. In .such an operation, the pressure is reduced below base structure 10 and conduit 20 while water is jetted from the nozzles 9 into the mud 3 and the sampling device is urged toward the mud by the hydrostatic pressure of the body of water. This sampling arrangement can be operated, for a selected time, such as at least several minutes at each of a series of locations, so that, at'each location, a substantially steady state flow of slurry of substantially uniform concentration is obtained. The maximum concentration during a selected time, or the average concentration during such a time, or the like, is thus representative of the concentration of the mobile reservoir fluid being sampled at each location at which the sampling device is applied to the mud. Alternatively, such a sampling device can be operated substantially continuously while being towed along the bottom of the body of water to measure a quantity such as concentration with distance along the line of tow.

In this invention the mobile subterranean reservoir fluid to be detected can comprise one or more of substantially any kind of mobile fluid that is apt to seep out of a subterranean reservoir and migrate toward the surface of the earth. Such fluids often comprise gaseous or relatively volatile hydrocarbons such as those containing from about one to ten carbon atoms, and/or one or more inorganic gases which are apt to be copresent with hydrocarbons in hydrocarbon containing reservoirs, such as carbon dioxide, nitrogen, oxygen, hydrogen sulfide, etc.

The water which is jetted into the sedimentary earth formation to form a slurry of the sedimentary solids can be obtained from the body of water or from substantially any convenient source ofa clean water which is substantially free ofthe mobile reservoir fluid for which the sediment is being analyzed. Where desirable, water from the body of water can be preprocessed to remove contaminants and/or clean water can be transported from a supply source other than the body of water.

The pumping means for jetting the water into the mud andflowing the resulting slurry of sediments in water, or watery mixture of suspended particles, to a surface location can comprise one or more surface or subsurface pumps and pump-driving devices. The rates of jetting the water into contact with the mud, flowing the resultant slurry to surface location, and advancing the stream of jetted water into the mud, are preferably coordinated in order to maintain a relatively constant slurry consistency with respect to the number of parts of suspended solid per part of water.

In measuring the concentration of a mobile reservoir fluid with depth within the bottom sediments, a stream of jetted water is preferably advanced into the sediments by advancing a nozzle-supporting means downward past a base structure that rests on the top of a layer of sediments while measurements are made of the magnitude with time of that advance.

At a convenient location near the surface of the body water, gas is preferably extracted from the slurry by subjecting the slurry to a flashing or vaporizing action under-a relatively strong vacuum. Such a gas extraction operation can be accomplished by means of known and available equipment and techniques such as those described in US. Pat. Nos. 2,918,579, 3,116,133, 3,296,776, 3,455,144, etc.

The gas which is extracted from the slurry is preferably supplied to a chromatographic analyzer containing a chromatographic column adapted to isolate at least one individual component from the other components of the extracted gas. A flame ionization detector that is adapted to provide an electrical signal related to the concentration of such a gas is preferably utilized to measure the concentration of the isolated component. Such gas analyzing devices are known and suitable types of such equipment and techniques are described in the patents referred to above. In a preferred procedure: a slurry of the bottom sediments is formed and pumped at coordinated rates, as mentioned above; gas is extracted substantially continuously from the slurry; and, aliquot portions of the extracted gas are supplied periodically to a gas analyzer. Such a procedure facilitates the provision of a record of the type shown in FIGS. 1 and 3 which indicates the concentration with depth within the mud. The extracted gas can advantageously comprise the vapors of at least one hydrocarbon that contains at least four carbon atoms and may be a liquid at normal atmospheric pressure and temperature. The measurements of the gas are preferably indicative of the concentrations of at least one individual hydrocarbon.

higher than methane.

In a particularly preferred embodiment, such hydrocarbon measurements are supplemented by measurements of at least one inorganic gas. The copresence of at least one hydrocarbon and at least one inorganic gas in significant proportions provides a particularly significant indication of the presence of an underlying reservoir that contains valuable petroleum material.

The present invention is particularly useful in conjunction with other geophysical and geochemical exploration processes that are applicable to a watercovered region. In an exploration process, it is generally too expensive to undertake all of the sampling and analyzing operations which would be needed to resolve all, or even most, of the questions concerning what might be contained in reservoirs below a large water-covered region such as the Gulf of Mexico. Marine seismic and/or gravity measurements may indicate the presence of numerous anomalies indicative of subterranean structures that might contain petroleum material. An analysis of water samples is apt to indicate that no hydrocarbon and/or inorganic gases indicative of seepage from subterranean reservoirs are present in the water in a region containing such an anomaly.

The present invention is at least in part premised on a discovery that, in the above-type of situation such inconsistent measurements may be due to the low permeability and/or high fluid adsorptive properties of unconsolidate sedimentary earth formation material underlying that portion of the body of water. For example, in at least one region in the Gulf of Mexico it was found that seismic anomalies and other geological information were indicative of subterranean reservoirs that were apt to contain hydrocarbons, but no hydrocarbons could be detected in samples of the water in measurements made in a manner that was adapted to detect less than one part per million. In the same region, when the underlying bottom sediments were analyzed in accordance with the present reservoir they were found to contain significant concentrations of total hydrocarbons and ethane. In the same region it was established that the subterranean reservoir which was responsible for the appearance of the seismic anomaly was an oil-containing reservoir.

We claim as our invention:

1. In a process for surveying a water-covered region by measuring concentrations of at least one mobile reservoir fluid in water-covered unconsolidated sedimentary earth formations at known areal locations, an improved procedure that provides a measurement of the concentrations with depth within the formations, comprising:

jetting a stream of water into contact with a water covered unconsolidated sedimentary earth formation at increasingly deeper depths within the formation to form a pumpable slurry of the sedimentary material in water;

flowing said slurry to a surface location;

coordinating the rate at which said water .is jetted, the rate at which the depth at which said slurry is formed is advanced deeper within the earth formation and the rate at which said slurry is flowed to a surface location in order to maintain a substantially constant slurry consistency;

measuring a quantity related to the depth within said sedimentary earth formation at which said slurry is formed; and

extracting gas from said slurry and measuring a quantity related to the concentration with depth within said sedimentary earth formation of at least one mobile subterranean reservoir fluid.

2. The process of claim 1 including:

measuring the magnitude with areal location of (a) at least one geophysical property responsive to subterranean earth formations and (b) the concentration of said at least one mobile subterranean reservoir fluid; with said measurements being conducted in a region in which the water is substantially devoid of said mobile subterranean reservoir fluid but said measured geophysical properties of the subterranean earth formations are indicative of the presence of a subterranean adapted to be a reservoir.

3. The process of claim 2 in which said geophysical property is the reflection of seismic energy.

4. The process of claim 3 in which said mobile subterranean reservoir fluid is a hydrocarbon higher than methane.

5. The process of claim 1 including measuring the concentration of at least one hydrocarbon higher than methane and at least one inorganic gas.

6. The process of claim 1 including measuring maximum concentration of said mobile fluid that is extracted within a selected depth interval within said sedimentary earth formation. 1

7. The process of claim 1 including measuring the average concentration of said mobile fluid that is extracted within a selected depth interval in said sedimentary earth formation.

8. The process of claim 1 including measuring the concentration of said mobile fluid with location along the upper boundary of said sedimentary earth formation.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2346203 *Dec 7, 1940Apr 11, 1944Consolldated Engineering CorpWell logging method
US2774569 *Apr 5, 1954Dec 18, 1956Jacobsen Karl Oscar FEarth moving hydraulic suction nozzles
US2918579 *Jan 31, 1957Dec 22, 1959Atlantic Refining CoExploration for petroliferous deposits by locating oil or gas seeps
US2923151 *Dec 17, 1956Feb 2, 1960Phillips Petroleum CoExtracting and analyzing gas from well drilling mud
US3455144 *Oct 9, 1967Jul 15, 1969Pan American Petroleum CorpApparatus for detecting hydrocarbon gas in sea water
US3486570 *May 15, 1967Dec 30, 1969Alluvial Mining & Shaft SinkinAlluvial prospecting units
US3490550 *Jul 14, 1967Jan 20, 1970Ocean Science & EngVibratory coring apparatus
US3561546 *Nov 12, 1968Feb 9, 1971Leo HorvitzMethod of and apparatus for underwater geochemical exploration
Non-Patent Citations
Reference
1 *Abstract No. 107857, Petroleum Abstracts 1969, Libby et al., How To Carry Out An Efficient Program For Sampling Off Shore Minerals, Eng. Mining J., Vol. 169, No. 12, pp. 72 74, December, 1968.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3987677 *Jan 30, 1976Oct 26, 1976Terradex CorporationMethod and apparatus for underground deposit detection in water covered areas
US4340391 *Jul 13, 1981Jul 20, 1982Chevron Research CompanyPredicting hydrocarbon potential of an earth formation underlying a body of water by analysis of seeps containing low concentrations of methane
US5992213 *Jul 20, 1998Nov 30, 1999Tartre; AndreMethod for testing soil contamination
US6289714Oct 5, 1999Sep 18, 2001TARTRE ANDRéMethod for testing soil contamination, and probe therefor
US7527109 *Oct 31, 2005May 5, 2009Doyle & Wachstetter, Inc.Locating apparatus and system
US20040014223 *Oct 2, 2001Jan 22, 2004Annie AudibertMethod intended for chemical and isotopic analysis and measurement on constituents carried by a drilling fluid
US20060090578 *Oct 31, 2005May 4, 2006Barker Steven HLocating apparatus and system
DE4021893A1 *Jul 10, 1990Jan 23, 1992Noell GmbhBalanced pressure earth drilling rig - producing negligible emission of gaseous toxic pollutants
EP0415672A2 *Aug 24, 1990Mar 6, 1991Amoco CorporationMethod for exploring the earth's subsurface
EP0678758A1 *Apr 22, 1994Oct 25, 1995Thompson, Keith Francis MacKechnieOffshore petroleum exploration system
WO1995027911A1 *Apr 12, 1995Oct 19, 1995Expertise Envirotest Ltee SocMethod and apparatus for testing soil contamination
WO2011076848A1 *Dec 22, 2010Jun 30, 2011Shell Internationale Research Maatschappij B.V.Determining a property of a formation material
Classifications
U.S. Classification73/19.1, 436/30
International ClassificationE21B7/18, E21B49/00, G01N33/24, G01V9/00
Cooperative ClassificationG01N33/241, E21B7/185, G01V9/007, E21B49/001, E21B49/00
European ClassificationE21B49/00, G01N33/24A, E21B49/00A, E21B7/18A, G01V9/00C