Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3716758 A
Publication typeGrant
Publication dateFeb 13, 1973
Filing dateMar 10, 1972
Priority dateMar 12, 1971
Also published asDE2212067A1
Publication numberUS 3716758 A, US 3716758A, US-A-3716758, US3716758 A, US3716758A
InventorsPalazzetti M
Original AssigneeFiat Spa
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Thyristor ignition control device
US 3716758 A
Abstract
A thyristor ignition control device for internal combustion engine ignition circuits. A capacitor is charged from a voltage source and discharges through the primary of a step-up transformer when a thyristor connected across the source is fired, producing a high voltage impulse at the transformer secondary to induce sparking across a gap. To limit the current through the thyristor during the initial stages of firing the transformer has a core, for example of ferrite, with a high initial reluctance, thereby reducing wear in the thyristor.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1 1 Palazzetti 1 51 Feb. 13, 1973 1541 THYRIISTOR IGNITION CONTROL DEVICE [30] Foreign Application Priority Data March 12, 1971 Italy 67866 AH] [52] US. Cl... ..3l7/96, 315/209 SC, 431/18, 431/264 [51] Int. Cl ..F23g 3/00 [58] Field of Search ..3l7/79, 80, 81, 96, 97, 98; 431/18, 24, 27, 70, 264, 266; 315/209 SC [56] References Cited UNITED STATES PATENTS I 3,393,039 7/1968 Eldridge, Jr. et a1. ..431/70 6 3,488,113] 1/1970 Myers et a1 ..431 24 3,529,910 9/1970 Potts et a1 ..431/27 3,596,133 7/1971 Warren et al. ..315/209 SC 3,632,285 1 1972 Foster ..317/96 x 3,681,001 3 1972 Potts ..431/264 Primary ExaminerVolodymyr Y. Mayewsky Attorney-Richard C. Sughrue et a1.

[57] ABSTRACT A thyristor ignition control device for internal combustion engine ignition circuits. A capacitor is charged from a voltage source and discharges through the primary of a step-up transformer when a thyristor connected across the source is fired, producing a high voltage impulse at the transformer secondary to induce sparking across a gap. To limit the current through the thyristor during the initial stages of firing the transformer has a core, for example of ferrite,with a high initial reluctance, thereby reducing wear in the thyristor.

2 Claims, 4 Drawing Figures PAIENI FEB 1 31915 Fig TIIYRISTOR IGNITION CONTROL DEVICE BACKGROUND OF THE INVENTION This invention relates to ignition control devices, especially for ignition circuits in internal combustion engines, and more particularly the invention concerns the ignition coil or transformer of such ignition control devices.

Electronic ignition control devices are known, in which a capacitor is pre-charged from a voltage source and in which the firing of a thyristor induces the discharge of the capacitor through the primary winding of a step-up transformer, inducing a high voltage pulse across the transformer secondary winding sufficient to induce discharge across a spark-gap, such as, for example, in a sparking plug of an internal combustion engine, a flash light, or some other device.

Ideally, the thyristor should cause an instantaneous short circuit between its anode and cathode, so that the current pulse in the primary winding of the transformer or coil is of the shortest possible duration, with the object of achieving a large voltage excursion in the secondary winding. In practice, however, a thyristor has a finite striking time. The impedance of a thyristor in fact decreases hyperbolically in the initial stage of firing, rising again after an interval of a few microseconds. Since the thyristor is traversed by considerable currents while its impedance is still relatively high, it will be appreciated that considerable power has to be dissipated within the thyristor in the initial discharge stage. This harms the thyristor and causes its premature deterioration, with marked shortening of its useful life.

In order to avoid excessive current through the thyristor during the initial firing phase, the time constant of the transformer or ignition coil should be sufficiently long. In practice, however, this time constant is not sufficiently long for this purpose in conventional coils: the time constant of a transformer is proportional, inter alia, to the input inductance of the primary winding and therefore, to the equivalent loss resistance. The latter, as is known, is proportional to f'" where f is the frequency of the applied voltage and a is an empirical parameter roughly equal to 1.6. Consequently the loss resistance is initially very low during the sharp initial transition of the applied voltage signal upon firing of the thyristor, the frequency of this applied voltage being very high. This has the effect of reducing the initial value of the time constant, allowing the current to build up too quickly, and consequently adversely affecting the working conditions of the thyristor.

Apart from contributing to premature deterioration i of the thyristor, this high initial current in the thyristor reduces the magnitude of the voltage excursion in the secondary winding of the transformer or coil.

A main object of this invention, therefore, is to provide an ignition control device for a thyristor firing cir- SUMMARY OF THE INVENTION The invention accordingly provides an ignition control device including a capacitor arranged to be charged from a continuous voltage source, and a thyristor arranged when tired to discharge the capacitor through the primary winding of a transformer, in which the transformer includes a core of high initial reluctance, in order to limit the current through the thyristor during the initial phase of its firing. BRIEF DESCRIPTION OF THE DRAWINGS The invention will be further described, by way of example, with reference to the attached drawings, in which:

FIG. I is a circuit diagram of an ignition control device of known type;

FIG. 2 is a graph showing the variation of the impedance of a thyristor plotted against time 'from the moment of application of a firing pulse;

FIG. 3 is a graph showing the variation of the current in the primary winding of a conventional transformer, plotted against time, from the moment of application of a voltage thereacross, and

FIG. 4 is a graph, similar to that of FIG. 3, showing the primary current variation in a transformer forming part of a device according to the present invention.

DETAILED DESCRIPTION WITH REFERENCE TO THE DRAWINGS Referring to FIG. 1, a capacitor 10 is connected across a direct voltage source 12 in series with the primary winding 14 of a coil or step-up transformer. The secondary winding 16 of the coil or transformer is connected across a spark-gap 18, formed by, for example, a sparking plug in an internal combustion engine.

A thyristor 20 is connected in parallel with the series combination of the capacitor 10 and the primary winding 14. The thyristor 20 is normally, non-conducting and can be rendered conducting, or fired, by the application of a firing or trigger pulse to a control electrode 22.

According to the known manner of operation the capacitor 10 is charged from the source 12 while the thyristor 20 is non-conducting and, when the thyristor 20 is fired, the capacitor 10 discharges into the primary winding 14 of the step-up transformer, inducing in the secondary winding of the latter a high voltage step such as to induce a spark discharge across the spark-gap 18.

From the moment at which the trigger pulse is applied to the control electrode 22 of the thyristor 20, a finite time t elapses before complete firing of the thyristor, that is, before the latter is fully conductive. The impedance Z of the thyristor 20 in fact changes with time as shown graphically in FIG. 2, in which t 0 is the instant at which the trigger pulse is applied. The impedance Z decreases rapidly in a short but finite time, reaching virtually zero at time t During the interval 0 t, the current I in the primary winding 14 of a conventional step-up transformer increases according to the curve shown in FIG. 3. This curve has a marked bend, the initial steeply sloping part of the curve being due to the high initial permeability of the materials normally used for the core of the step-up transformer, and to losses through parasitic currents.

As already explained, the combination of the two effects illustrated graphically in FIGS. 2 and 3 gives rise to a large initial current through the thyristor 20 while the latter still has a relatively high impedance. Consequently the thyristor 20 heats up, and, especially in control devices which are intended to operate repeatedly with high frequency, as, for example in the ignition circuit of an internal combustion engine, this heating up causes rapid deterioration of the thyristor, with drastic reduction of its useful life. I

Moreover, the substantial voltage drop which occurs across the thyristor 20 as a result of the high current flowing through its initially still high impedance, considerably reduces the magnitude of the voltage excursion at the transformer, primary winding 14, therefore reducing also the extent of variation of voltage across its secondary winding 16.

According to this invention, the step-up transformer l4, 16, has a ferrite core of a type having low parasitic current loss and low initial permeability, so that the variation with time of the current I in the primary winding, upon application of a voltage step, has the form shown in FIG. 4. It will be seen that the current I remains low initially and then increases very rapidly.

The coil is so dimensioned that the rapid increase in current occurs when the impedance of the thyristor 20 has decreased to a sufficiently low value as not to give rise to excessive heating up of the thyristor. To this end the windings of the coil are formed, in the known manner, with low parasitic capacity, in order to keep the amount of stored energy low.

lclaim:

1. Ignition control device comprising transformer having a primary and secondary winding, spark electrodes connected across said secondary winding, a capacitor in series with said primary winding, means connecting a continuous voltage source across the serles combination of said capacitor and transformer primary winding to charge said capacitor, and a thyristor connected in parallel with said series combination, control electrode means for firing said thyristor thereby causing discharge of said capacitor through said transformer primary winding, said transformer having a core of high initial reluctance effective to limit current through said thyristor in the initial phase of firing of said thyristor.

2. Ignition control device as claimed in claim 1, wherein said transformer core comprises ferrite material.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3393039 *May 11, 1966Jul 16, 1968Emerson Electric CoBurner control system
US3488131 *Oct 26, 1964Jan 6, 1970Whirlpool CoElectronic spark ignitor control for fuel burner
US3529910 *Mar 20, 1968Sep 22, 1970Liberty Combustion CorpReignite system
US3596133 *Sep 30, 1969Jul 27, 1971Warren Glenn BSolid-state multispark ignition
US3632285 *Dec 31, 1969Jan 4, 1972Fenwal IncGas igniter system
US3681001 *May 15, 1970Aug 1, 1972Liberty Combustion CorpFluid fuel igniter control system
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3813581 *Sep 21, 1973May 28, 1974Cam Stat IncSpark igniter for a plurality of gas burners
US3883246 *Jan 22, 1973May 13, 1975Bicosa RecherchesElectronic device adapted to produce high voltage-pulses, especially for igniting a gas lighter
US4144859 *Dec 8, 1976Mar 20, 1979Iida Denki Kogyo K.K.Oven-rotation prevention method and circuit in the non-contact type ignition circuit for the internal combustion engine
US5065073 *Nov 15, 1988Nov 12, 1991Frus John RApparatus and method for providing ignition to a turbine engine
US5148084 *Feb 23, 1990Sep 15, 1992Unison Industries, Inc.Apparatus and method for providing ignition to a turbine engine
US5245252 *May 8, 1991Sep 14, 1993Frus John RApparatus and method for providing ignition to a turbine engine
US5399942 *Jun 8, 1993Mar 21, 1995Unison Industries Limited PartnershipApparatus and method for providing ignition to a turbine engine
US5473502 *Feb 3, 1995Dec 5, 1995Simmonds Precision Engine SystemsExciter with an output current multiplier
US5488536 *Apr 1, 1993Jan 30, 1996Simmonds Precision Engine Systems, Inc.Exciter circuit using gated switches
US5561350 *Feb 24, 1995Oct 1, 1996Unison IndustriesIgnition System for a turbine engine
US5754011 *Jul 14, 1995May 19, 1998Unison Industries Limited PartnershipMethod and apparatus for controllably generating sparks in an ignition system or the like
US6034483 *Sep 2, 1997Mar 7, 2000Unison Industries, Inc.Method for generating and controlling spark plume characteristics
US6353293Mar 6, 2000Mar 5, 2002Unison IndustriesMethod and apparatus for controllably generating sparks in an ignition system or the like
US6529680Apr 26, 1996Mar 4, 2003Mitsubishi Digital Electronics America, Inc.Device for selecting and controlling a plurality of signal sources in a television system
US7095181Mar 1, 2002Aug 22, 2006Unsion IndustriesMethod and apparatus for controllably generating sparks in an ignition system or the like
US8564209 *Jun 10, 2010Oct 22, 2013Stmicroelectronics (Tours) SasCircuit for controlling a lighting unit with light-emitting diodes
US8994283Sep 20, 2013Mar 31, 2015Stmicroelectronics (Tours) SasCircuit for controlling a lighting unit having a periodic power supply with a thyristor
US20100315006 *Jun 10, 2010Dec 16, 2010Stmicroelectronics (Tours) SasCircuit for controlling a lighting unit with light-emitting diodes
EP0369236A2 *Oct 31, 1989May 23, 1990Unison Industries Limited PartnershipApparatus and method for providing ignition to a turbine engine
Classifications
U.S. Classification361/256, 315/209.0SC, 431/264, 431/18
International ClassificationH01F38/12, F02P3/00, H01F38/00, F02P3/08
Cooperative ClassificationF02P3/0838, H01F38/12
European ClassificationH01F38/12, F02P3/08D6