Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3717462 A
Publication typeGrant
Publication dateFeb 20, 1973
Filing dateJul 22, 1970
Priority dateJul 28, 1969
Also published asDE2037450A1, DE2037450B2
Publication numberUS 3717462 A, US 3717462A, US-A-3717462, US3717462 A, US3717462A
InventorsEndo I, Kinjo K, Negishi H, Yamanouchi T
Original AssigneeCanon Kk
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Heat treatment of an electrophotographic photosensitive member
US 3717462 A
Abstract
An electrophotographic photosensitive material comprising mainly an organic photoconductive material of low molecular weight and a high polymer resin which is subjected to heat treatment or atmosphere treatment, and if desired, stimulus treatment to improve the electrophotographic properties.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

0 United States Patent 11 1 [111 3,717,462

Negishi et al. [451 Feb. 20, 1973 [54] HEAT TREATMENT OF AN [56] References Cited ELECTROPHOTOGRAPHIC PHOTOSENSITIVE MEMBER UNITED STATES PATENTS [75] Inventors: Hirokazu Negishi, Kanagawa-ku, 2 3 1 00 are a.

ig g gg i si'a i gj 3,485,624 12/1969 Thiebaut et al. ..96/l.5 Kik M k T 3,508,961 4/1970 Makino et al. ..1 17/201 M P 9 3,533,783 10/1970 Robinson ..96/1 Yamamuchh Fullsawa'shly 3,506,595 4/1970 Makino et a1. .252/501 Kanagawa'ken, Oflapan 3,287,121 11/1966 Hoegl ..96/l.5 Assignee: Canon Kabushiki Kaisha y 3,238,041 Corrsm Ja an p Primary ExaminerJohn C. Cooper, III Flledi J y 1970 Attorney-Ward, McEihannon, Brooks & Fitzpatrick [21 A 1. N0.: 57 094 1 pp 57 ABSTRACT [30] Foreign Application priority Data An electrophotographio photosensitive material comprising mainly an orgamc photoconductive materlal of July 28, Japan. low molecular and a polymer resin is subjected to heat treatment or atmosphere treat- [52] US. Cl ..96/1.5, 252/501 ment and if desired Stimulus treatment to improve [5 l hit. Cl. ..G03g 5/04 the electrophotographic properties [58] Field of Search ..96/l.5; 252/501 17 Claims, 1 Drawing Figure 2 I Lu 3 i Tm TEMPERATURE (OR CONCENTRATION OF SOLVENT) PATENTEU FEBZO I973 7 1 7, 46 2 L- O [N 3 2y I Tm TEMPERATURE (OR CONCENTRATION OF SOLVENT) HEAT TREATMENT OF AN ELECTROPHOTOGRAPHIC PHOTOSENSITIVE MEMBER This invention relates to a novel organic photosensitive member and, in particular, to a photosensitive member suitable for electrophotography comprising a photosensitive film mainly composed of an organic compund of low molecular weight and a high polymer binder resin said photosensitive film being subjected to a treatment for controlling the crystalline state of the film.

Heretofore, various organic photoconductive materials have been known, for example, condensed polynuclear aromatic compunds such as anthracene, phrene, and perylene, heterocyclic compunds such as triphenyl-pyrazoline derivatives, acylhydrazone derivatives, and high polymer compunds such as poly-N- vinylcarbazole. However, photosensitivity of organic photoconductive materials is so low that organic photoconductive materials are generally not suitable for electrophotographic photosensitive materials. There have been recently found organic compounds, the photosensitivity of which is as high as that of inorganic substances such as zinc oxide and selenium. As representative examples of such highly photosensitive organic materials, there may be mentioned brominated poly-N-vinylcarbazole in Japanese Pat. publication No. 25230/1967, poly-3,6-duodo-9-vinylcarbazole in Japanese Pat. publication No. 7592/1968, poly-N- vinyl-3-aminocarbazole in Japanese Pat. publication No. 9639/ 1967, and polyvinylanthracene in Japanese Pat. publication No. 2629/1968. However, these organic photoconductive materials are prepared through particular and complicated synthetic processes so that these materials are not preferable from economical and practical points of view.

Organic photoconductive materials are usually used as an electrophotographic photosensitive material, and the material may be used, as it is, without mixing with other components, or it may be used by mixing it with a binder in a form of dispersion system or solid solution state.

In such a photosensitive layer, with the lapse of time, coarse crystals form spontaneously, and the coarse crystals continue to grow depending on the outer conditions to form coarse crystals in a wide distribution of particle size. Therefore, not only is the transparency lowered, transparency being an important advantage of organic photoconductive materials, but also the mechanical strength of the photosensitive layer and the photosensitivity is substantially deteriorated.

The present inventors have studied the crystallization phenomenon which reduces the practicability of organic photoconductive materials, and found that excellent photosensitive materials can be obtained by controlling the crystallization state of organic photoconductive materials of low molecular weight. This invention solves various disadvantages of conventional organic photoconductive materials such as low photosensitivity, poor economy, and coarse crystals.

An object of this invention is to provide a photosensitive member comprising an organic photoconductive material of low molecular weight which has photosensitivity, stability and resolving power as high as those of the conventional zinc oxide or selenium.

Another object of this invention is to provide a photosensitive member having good photosensitivity, physical properties and a dot pattern effect corresponding to the shape or resolving power required for the photosensitive member.

A further object of this invention is to provide a photosensitive member having excellent photosensitivity, resolving power, stability, physical properties and a dot pattern effect which can be easily produced by a simple method of manufacturing.

Still another object of this invention is to provide a photosensitive member obtained by applying a treatment for controlling the crystal state to a photosensitive film containing an organic photoconductive material of low molecular weight and a high polymer binder resin.

Further objects and advantages of this invention will be apparent from the following description.

According to the treatment for controlling the crystalline state, the crystalline state formed after subjection to the treatment for controlling the crystalline state has a higher photoconductivity than the original crystalline state.

The treatment for controlling the crystalline state and the photoconductivity thus sensitized depend on crystalline states before and after the treatment. This will be understood by the following explanation. Heretofore, various efforts have been made to prevent crystallization in an organic photosensitive film by, for example, adding crystallization inhibitors such as a plasticizer, polymerization inhibitor, and a softening agent since spontaneous crystallization in an organic photosensitive film deteriorates various useful properties thereof. However, crystallization of the organic photoconductive material is due to the inherent property of the material itself so that it is very difficult to find a useful and practical means for preventing the crystallization. Therefore, the deterioration of photoconductivity and physical properties caused by crystallization has not yet been removed. In general, crystallization does not uniformly occur over the whole surface of the material, but initially occurs at a point where crystallization easily occurs (hereinafter called specific point) and then the crystals thus formed grow and result in the crystallization phenomenon which deteriorates photosensitive film. Under natural conditions, crystallization proceeds starting from the specific point previously formed when the film has been produced. Such specific points are not uniformly distributed and are distributed at low density so that coarse crystals form locally. As a result, the film thus produced is in a state similar to that containing impurities, i.e. the coarse crystals, are not uniform distributed. In other words, a portion where the impurity exists is different from the surroundings in points of photoconductivity, and therefore, fog and irregular charging occur. Further, the physical property at that portion of impurities is different from the surroundings and therefore, the refractive index is different and devitrification occurs and further the mechanical strength is lowered.

According to this invention, the above-mentioned crystallization is positively utilized, and a treatment for controlling the crystalline state is applied so as to sensitize the photoconductivity while keeping the mechanical strength unchanged without causing deterioration of various properties of the photosensitive film.

In a photosensitive film composed of an organic photoconductive material of low molecular weight dispersed in a high polymer binder resin in a form of solid solution, under material conditions the organic photoconductive material of low molecular weight crystallizes to form coarse crystals in the binder resin, but, by applying a treatment for controlling crystalline the state, microcrystals of the organic photoconductive material uniformly form in the binder resin at a high density, and this state shows high photoconductivity. The treatment for controlling the crystalline state imparts external energy to the photosensitive film and produces specific points on the whole film by the stimulus without depending only upon the preliminarily present specific points. Further, the treatment for controlling the crystalline state enables molecules of the organic photoconductive material of low molecular weight to move easily for the purpose of facilitating the formation of microcrystals. More particularly, the treatment is carried out by plasticizing the binder resin by applying heat or solvent so as to facilitate the molecular arrangement for crystallization of the organic photoconductive material of low molecular weight. Even if the stimulus by external energy is absent, the increased mobility of molecules often results in controlling the crystalline state. The photosensitive film thus subjected to the treatment for controlling the crystalline state has clearly sensitized photoconductivity. In a sense, this system is similar to a system wherein cadmium sulfide powders a known excellent photoconductive material are dispersed in a binder resin, but the cadmium sulfide powders are dispersed in an insulating binder resin for the purpose of retaining the insulation property at a dark place and therefore, the purpose is different from the present invention.

The theoretical mechanism of the effect obtained by the treatment for controlling crystalline state is not yet clear, but is considered to be as follows. The conventional formation of coarse crystals of organic photoconductive materials under natural conditions results in nonuniform crystals, wide distribution of particle size, and lowered physical property, photosensitivity and resolving power, while the crystalline state obtained after treatment for controlling crystalline state is uniform with a narrow distribution of crystal size. Therefore, high photosensitivity and high resolving power of the photosensitive member according to this invention predominantly depend on the uniformity of crystal state and narrow distribution of crystal size.

The photosensitive member of this invention is generally obtained by coating an organic photoconduc- -tive material of low molecular weight together with a high polymer resin on a support base, if desired, drying, hardening, and then applying a treatment for controlling crystalline state. The treatment for controlling crystalline state may be effected by various methods. The representative methods are heat treatment and atmosphere treatment. These two treatments may be applied singly or in combination for controlling crystalline state.

A standard of treatment for controlling crystalline state may be shown by a graph of temperature-crystal formation velocity and temperature-crystal growing velocity illustrating the relation between temperature and change of crystalline state.

The attached drawing illustrates a graph of temperature-crystal formation velocity and temperature-crystal growing velocity.

in the graph, the ordinate is velocity and the abscissa is temperature. With respect to the curves 1, 2, and 3, the ordinate is crystal formation velocity, crystal growing velocity and melting velocity, respectively. The

symbol Tm denotes melting temperature. This graph gives various indications referring to the control of crystalline state. When the treatment for controlling crystalline state is effected at a relatively low temperature for long time, the crystal formation velocity exceeds the crystal growing velocity so that microcrystals are formed. On the contrary, when the treatment is effected at high temperature, relatively large crystals are obtained. At an intermediate temperature, particularly, a temperature between that at the peak of crystal formation velocity and that at the peak of crystal growth velocity, various crystalline states may be controlled depending on the temperature. It should be noted here that the treatment temperature should be kept below the melting temperature.

In addition, referring to heat treatment, it is necessary to adjust appropriately heat treating conditions depending on kinds of organic photoconductive materials of low molecular weight. According to the experimental results, stability of an organic photoconductive material of low molecular weight becomes high with increase in symmetry, regularity and polarity of molecular structure of the organic photoconductive material of low molecular weight. Therefore, the optimal heat treating conditions may range widely.

When the heat treatment is effected at a temperature near the second order transition temperature Tg glass transition temperature) of the binder resin, the crystallization is effectively accelerated. in general, when heat treatment is carried out at a temperature higher than the melting point of the photosensitive film, the

photosensitive film becomes amorphous. In view of the foregoing the T and the melting point have a great effect on treatment for controlling crystalline state. Therefore, the heat treating conditions should be appropriately selected depending upon the organic photoconductive material, binder resin, plasticizer, amount thereof and the like.

Heat treatment is usually conducted by a direct heating means a furnace, high frequency wave heating and infrared ray heating, but secondary heating methods such as ion irradiation or electron ray irradiation may be employed and further, if desired, cooling may be employed.

Another treatment for controlling crystallization state is atmosphere treatment. The crystalline state resulting from atmosphere treatment is, to some extent, similar to the relation between temperature and crystalline state in heat treatment, but there are uncer-' to that of heat treatment. Referring to the drawing again, the abscissa is concentration of solvent (the solvent being capable of softening the photosensitive film) present above the coating surface as atmosphere, as shown in the parentheses. The control of crystalline state by using concentration of vapor is sufficiently effective. According to the practical procedure, a solution containing an organic photoconductive material of low molecular weight and a high polymer binder resin is made into a coating film and then a solvent vapor of a certain concentration is kept in contact with the coat ing film for a certain period to control the crystalline state. In this case, the crystalline state is considerably affected by the thickness of coating layer. When the coating layer is thick, for example, over 25 p., evaporation of the solvent present in the coating layer is so slow that a relatively large amount of solvent remains in the coating layer for a considerably long time, and thereby, as shown in the attached graph, the crystal growing velocity exceeds the crystal formation velocity and relatively large crystals are formed from the initial stage of crystallization. On the contrary, when the coating layer is thin, a tendency opposite thereto appears.

The solvent atmosphere treatment lowers Tg of photosensitive film and thereby facilitates crystallization.

The treatment in an antioxidizing atmosphere such as a reducing atmosphere and an inert gas atmosphere prevents oxidation, particularly, in case of high temperature treatment. As the antioxidizing atmosphere, various gases such as nitrogen, hydrogen and rare gas may be used.

These treatments for controlling crystalline state should be applied taking into consideration the shape and inherent property of the organic photoconductive material to be treated, and in addition, resolving the power requested. It is particularly important to control the crystal size so as to obtain high photosensitivity and high resolving power. With respect to the relation among crystal size, crystal orientation and resolving power of the photosensitive film, the crystal size and crystal orientation should be appropriately selected so as to obtain resolving power required.

When the photosensitive member employs a paper as the support and a resolving power of about lines per mm. is desired, the crystal size of about particles per mm. (0.05 mm. in size) is suitable. The control range of crystal size is 0.1 to 100 p. and a crystal particle of above 1 p. can be observed by a microscope. Further, referring to the thickness of the layer of the photosensitive film and degree of crystallization, a thick layer results in easy crystallization and formation of coarse crystals. If there exist coarse crystals in the initial stage of film formation, it is preferable to return the crystalline state once to an amorphous state and then apply the treatment again producing microcrystalline state.

According to another aspect of this invention, a stimulus treatment such as external mechanical, physical and chemical stimulus treatments may be employed in combination with the above mentioned treatment for controlling crystalline state to obtain a photosensitive member.

As the stimulus, there may be mentioned mechanical stimulus such as contact, pressure contact, needle pressure, and friction, physical stimulus such as various radiation irradiation, and ion or electron ray irradiation, and chemical stimulus such as etching oxidation and reduction.

The stimulus treatment not only facilitates the formation of specific points, but also, on the contrary, suppresses the crystallization. The effect of stimulus treatment is so wide as mentioned above depending on the treatment conditions. The action of stimulus treatment may be explained as follows. In general, crystallization starts from the surface of the photosensitive film. The stimulus by the stimulus treatment is given to the film surface to yield specific points on a part of the surface the whole surface. An example of such a specific point is that capable of being a crystal nucleus from which crystallization starts, and only the neighborhood of the specific points is subjected to the treatment for controlling crystalline state and thus when the treatment is applied locally, a photosensitive member having dot pattern effect. This treatment for producing a dot pattern effect may be conducted by one of the above-mentioned stimulus treatments, that is, a pressure contact treatment. By appropriately selecting a heat treatment or atmosphere treatment to be combined, control of crystal size of amorphous or crystalline photosensitive film and control of crystal orientation can be more effectively conducted to produce a photosensitive member excellent in photosensitivity, resolving power, and stability. The dot pattern effect may be obtained by applying locally and partly heat treatment or atmosphere treatment.

The heat treatment and atmosphere treatment, and in addition, the stimulus treatment according to this invention can give a photosensitivity of several to about 10 times that of a photosensitive member not subjected to the treatment for controlling crystalline state. Furthermore, resolving power and stability of photosensitive members are increased by controlling the crystal size and crystal orientation. Mechanical, physical or chemical stimulus can give excellent dot pattern effect and improve the properties.

These efiects such as sensitization, resolving power, dot pattern effect and improvement of properties can be easily obtained by simply applying heat treatment, atmosphere treatment, and if desired, additionally a stimulus treatment at a step in the formation of the photosensitive film. Therefore, it is commercially valuable. Furthermore, the electrophotographic photosensitive member according to this invention has various desireable properties requested to conventional organic photosensitive materials, such as high reliability, high stability, simple handling and high photosensitivity.

Compositions used for this invention are as shown below.

A As organic photoconductive materials of low molecular weight, there may be mentioned the following compounds:

1. As compounds having heterocyclic ring, and aromatic ring, there are, for example, 2,5-bis-(4'- aminophenyl-l ')-l,3,4-oxadiazoles, such as 2,5-bis-(4 -aminophenyl-l )-l ,3 ,4-oxadiazole, 2,5 -bis-(4 rnonoalkylaminophenyl-l l ,3 ,4-oxadiazole, 2 ,5 -bis- (4-dialkylaminophenyl-l l ,3,4-oxadiazole and 2,5 bis-(4'-acylaminophenyl-l )-l ,3,4-oxadiazole; diphenylene hydrazones of aliphatic, aromatic or heterocyclic aldehydes or ketones as disclosed in Japanese Pat. publication No. 4298/1964, such as acetaldehydediphenylene hydrazone, benzaldehyde-diphenylene hydrazone, or pchicrobenzaldehyde-diphenylene hydrazone, 2,4-dichloro benzaldehyde-diphenylene hydrazone, p-dimethylaminocinnamic aldehydediphenylene hydrazone, 2-pyridine aldehyde-diphenylene hydrazone, p-dimethyiamino benzaldehydediphenylene hydrazone, benzaldehyde-3-chlorodiphenylene hydrazone, benzaldehydro-3-bromodiphenylene hydrazone, p-dimethylaminobenzal-B- chloro-diphenylene hydrazone, dimethylaminobenzal-3-bromo-diphenylene hydrazone, benzaldehyde-3,-dichloro -diphenylene hydrazone, benzaldehyde-3,6-dibromo -diphenylene hydrazone, benzaldehyde-3-chloro-6-bromo -diphenylene hydrazone, p-aminodimethylbenzaldehyde -3,6- dichloro diphenylene hydrazone, p-aminodimethyl benzaldehyde -3,6-dibromo diphenylene hydrazone and p-aminodimethyl-benzaldehyde-S-chloro-6-bromo diphenylene hydrazone; 1,3,5-triphenyl pyrazoline, S- aminothiazole derivatives, 4,1,2-triazole derivatives, imidazolone derivatives, oxazo le derivatives, imidazole derivatives, pyrazoline derivatives, imidazolidine derivatives, polyphenylene thiazole derivatives, and 1,6-methoxyphenazine derivatives.

2. As compounds having a condensed ring, there may be given, for example, various derivatives of benzthiazole, benzimidazole, benzoazole, aminoacridine and quinoxaline.

3. As compounds having double bond, there may be given, for example, acylhydrazone derivatives and l ,1 ,6 ,o-tetraphenyl hexatriene.

4. As compounds having amino or nitrile group, there may be given, for example, aminated biphenyls, allylideneazines, N,N,N',N-tctrabenzl -p-phenylene diamine, triphenylamine and p-dimethylaminostyryl ketone.

5. As condensation products, there may be given, for example, condensation products of aldehyde and aromatic amine and reaction products of aromatic amine and aromatic halide.

6. As condensed polymer, there may be given, for example, intermediate condensation products of carboxylic acid halide and triphenylamine.

B. As high polymer binder resins, there may be mentioned, for example, polystyrene resin, polyvinyl chloride resin, phenolic resin, polyvinylacetate resin, polyvinylacetal resin, epoxy resin, xylene resin, alkyd resin, polycarbonate resin, polymethylmethacrylate resin, and polyvinylbutyral resin.

C, As plasticizers, there may be mentioned, for example, dioctylphthalate, tricresyl phosphate, diphenyl chloride, methylnaphthalene, p-terphenyl and diphenyl D. As solvents, there may be mentioned, for example, benzene, chlorobenzene, toluene, acetone, methanol, ethanol, ethyl acetate, methylethyl ketone, trichloroethylene, carbon tetrachloride, methylcellusolve, tetrahydrofuran, dioxane and dimethylformaldehyde.

The organic photoconductive material of low molecular weight used in this invention is that of molecular weight of about 100 to 2000, preferred with 250 to 1000.

Preferable materials having high photosensitivity are 2,5-bis-(4'-aminophenyl)-1,3,4-oxadiazole, diphenylene-hydrazones, l ,3 ,5 -triphenylpyrazoline,

N,N,N',N'-tetrabenzyl-p-phenylenediamine, pdimethylaminophenyl styryl ketone, and triphenylamine.

The amount of binder resin is not critical. It is preferably from 30 to 50 percent by weight based on amount of the organic photoconductive material of low molecular weight. For the purpose of improving further the property of film, a plasticizer may be added in an amount of 5 to percent by weight on the basis of the amount of the organic photoconductive material of low molecular weight.

As the coating method, there may be used conventional methods such as, for example, rotary coating, wire-bar coating, flow coating, and air-knife coating, and the thickness of coating may be adjusted to several p. to several tens u depending on the purpose.

As the support, there may be used a metal plate such as aluminum, copper, zinc, and silver plates, a solvent proof paper, aluminum laminate paper, synthetic resin film containing surfactant, and glass, paper and synthetic resin film having a metal, metal oxide or metal halide deposited on the surface by, for example, vapor deposition. in general, any material may be used which has surface resistivity less than that of the photoconductive layer, i.e. less than i0 9, preferably less than 10), may be used.

Conventional electrophotographic processes may be applied to the electrophotographic photosensitive member to form electrophotographic images. For example, the electrophotographic photosensitive member according to this invention is passed several times under a corona discharging device of 6 KV. in a dark place to accumulate positive charge to become 150-600 V. An appropriate light source, for example, tungsten lamp, is used for projecting light through a positive pattern to the photosensitive member and the charge at the exposed portion is ventrallized. Then, a negative toner is is applied by magnet brush method, cascade method, or furbrush method to produce positive images. This images may be fixed by heating or passing through an appropriate solvent vapor atmosphere. Further, a liquid developer may be used.

The polarity of charge by corona discharging may be either positive or negative.

The following examples are given for illustrating the present invention, but should not be construed as a restriction of the present invention.

EXAMPLE l 2 ,5 -Bis-[4'-n-propylaminophenyl-( l )1- l,3,4-oxadiamle (m.p. 98C) Maleic acid resin (Bcchacite l l l I,

trade name, supplied by Japan Reichhold Co.) (Second order transition temperature 60 65C) Methylene chloride Methylene Blue 10 mg.

The above components were mixed to form a homogeneous solution, applied uniformly to a onesided art paper (80 p. in thickness) to a thickness of 5 p, and dried naturally to form a photosensitive coating, followed by heat treatment at C for 30 minutes. The photosensitive coating thus heat treated was given a positive charge of about 400 V. by a corona charging device of +6KV, exposed to a high pressure mercury lamp, and soaked in a commercially available negative liquid developer to produce a clear visible image.

The exposure time of the photosensitive coating thus heat treated and oriented was about 1/5 that in a case where the heat treatment was not applied.

EXAMPLE 2 p-Dimethylaminobenzaldehyde diphenylene hydrazone (m.p. 175 7C) 1.0 g. Alkyd resin (Bechosol 786, trade name,

supplied by Japan Reichhold Co.) 2 g. Cobalt naphthenate 0.02 g. Methylene chloride 20 ml.

(' A compound obtained by condensing p-dirnethylaminobenzaldehyde with N-aminocarbazole in alcohol.)

EXAMPLE 3 p-Diethylaminobenzylidene-nicotinic acid hydrazide (m.p. l53 154C) 1.0 g. Xylene resin (Nikanol S-lOl, trade name, available from Nippon Gas Chemical) 1 g. Methyl cellosolve 30 ml.

The mixture of the above components was treated in a procedure similar to Example 1, to form a photosensitive coating. The thus obtained coating was subjected to heat treatment at 80C for 30 minutes. The thus produced coating was treated and developed in a manner similar to Example 1 to produce a clear visible image. The photosensitivity was increased to about four times by the heat treatment.

EXAMPLE 4 1,3,5 -Triphenylpyrazoline (m.p. 139C) Acrylnitrile-styrene copolymer (second order transition temperature, 72 75'C) Diphenyl chloride (Kanechlor No. 400, trade name, commercially available from Kanegafuchi Chemical) Methylene chloride The photosensitive preparation mixture of the above components was applied uniformly to an aluminum foil (30 p. in thickness) to form a coating of about a thick.

The coating thus obtained was in a complete amorphous solid solution state. This coating was subjected to heat treatment at 70C for 30 minutes to produce a photosensitive member having a coating containing microcrystallites.

The photosensitive member thus obtained was subjected to the lightening of 200 lux of surface intensity of illumination by tungsten lamp, with negative charge for 1.5 seconds to produce a contrast of 200 V. compared with the untreated member which needed an exposure of 10 seconds for the production of the same contrast. The photosensitivity was increased to 6.5 times.

In this Example, the effect on the photosensitivity was observed by a variation of the periods of the heat treatments. The heat treatment at C for 10 minutes resulted in that the photosensitive coating slightly clouded and the crystal growth was observed, but the change of the sensitivity cannot be measured. The heat treatment at 70C for 20 minutes resulted in that the photosensitive coating clouded considerably, and the photosensitivity was increased to about two times. The heat treatment at 70C for 30 minutes resulted in that the photosensitive coating changed throughout opaque, and the photosensitivity was increased as above mentioned to 6.5 times that of the untreated coating.

In addition, the heat treatment at 70C for 50 minutes resulted in that the photosensitive coating did not change in its appearance, but the photosensitivity was increased to about four times that of the untreated coating. Such effect was somewhat smaller than that of the former treatment.

EXAMPLE 5 The photosensitive member produced in Example 4 was placed in a saturated vapor of methylene chloride for 60 minutes as an atmosphere treatment to give a photosensitive member which was microcrystallized. As the result of determination similar to Example 4, the photosensitivity was increased to five times.

EXAMPLE 6 The photosensitive coating having the same components as Example 4 was subjected to heat treatment at C for 20 minutes to produce a coating in solid solution state. This coating was subjected to heat treatment at 70C for 30 minutes similarly to Example 4 to gain an increase of about 4 times in the photosensitivity. In comparison with Examples 4 and 5, the coating thus obtained retains a considerable amount of residual charge upon decay by light after charging. Therefore, the performance of this coating as an electrophotographic photosensitive coating was less advantageous. The growth of microcrystallites was investigated by a microscope of 500 magnifications resulting in that there was observed more amount of amorphous area on the surface of the coating subjected to heat treatment at 125C for 20 minutes, than that on the coating obtained in Example 4.

EXAMPLE 7 To the coating of the photosensitive member of Example 4 was pressed a metal wire network of mesh, and then heat treatment was applied thereto at 70C for 15 minutes. The thus treated coating was investigated by a microscope of 500 magnifications with the result that the growth of crystallite was partially caused from a part contacted with the metal wire network as a crystal nucleus. To the thus obtained coating was applied a light at 200 lux for 2 seconds to form an image. There was obtained a clear visible image having a dot pattern effect. This was advantageous in the production of a half tone image.

The preparation mixture in Example 4 was applied to an aluminum foil (30 microns in thickness) to form a coating of about 50 microns in thickness, which was then changed to containing coarse crystals as a result of evaporation of the solvent used. Thus obtained coating was excellent in photosensitivity, but poor in image quality. The coating was then subjected to heat treatment in a room saturated by nitrogen gas at 150C for 20 minutes with the result that the coating changed into a solid solution (amorphous) state, and the image quality was increased, but the photosensitivity was reduced.

Furthermore, this coating was subjected to heat treatment at 70C for 30 minutes resulting in the growth of microcrystallite and satisfactory image quality and photosensitivity.

7 EXAMPLE 9 The photosensitive preparation mixture as used in Example 4 was applied to an aluminum film of about 30 micron in thickness to form a coating of about 70 micron in thickness. The thus obtained coating was subjected to heat treatment at 70C for 30 minutes to produce a photosensitive coating containing microcrystallite. To the surface of the photosensitive layer a polyester film of about 25 micron in thickness was adhered completely by using epoxy resin bonding agent to produce a photosensitive member of three layered structure. The photosensitive member thus obtained was subjected to charging of positive charge by a corona discharger of +6 KV, uniformly on the surface of the polyester film of the photosensitive member contemporaneously with whole surface exposure by a tungsten lamp. Then, to the surface of the polyester film, the original image was projected by a tungsten lamp of about 1000 lux, contemporaneously with the application of charging by negative corona discharger of -6 KV. Then, tungsten lamp of 100 W was applied thereto for about 2 seconds to produce an electrostatic image corresponding to a contrast pattern of the original image. This latent image was developed by magnet. brush method to produce an excellent visible image.

EXAMPLE l BenZaIdehyde-LG-dichlorm W 7' I diphenylene hydrazone (m.p. 165T) 2,4,7-Trinitrofluorenone mg. Diphenylamine Blue 20 mg Cumarone-indene resin 1.5 gr. (second order transition temperature; 60-65C) Methyl ethyl ketone 5 ml.

(This compound can be prepared by a process which comprises treating 3,6-dichlorocarbazole, m.p., 201C, in glacial acetic acid with sodium nitrite to provide 3,6-dichloro-9-nitroso carbazole, m.p., l l0C, reducing the resulting compound in ether by zinc dust and h drochloric acid, and immediately condensing the product with benzal ehyde.)

The preparation mixture of the above components was applied to a polyester film undercoated with a conductive polymer, and dried at 50C for 3 minutes to form a photosensitive coating. The thus obtained coating was determined as amorphous by X-ray diffraction spectrum of the collected sample from the coating. The thus obtained film was kept in an oven at C for the period indicated in the Table below, and then cooled. There is shown the transmittivity and appropriate exposure of thus treatedfilms in the Table below. The appropriate exposure was based upon exposure to tungsten lamp by a positive charge and electrophoresis development.

Table uansmittivity appropriate Sample No. the period ratio exposure (minutes) luxsec l 5 80 [50 2 I0 73 I25 3 30 50 300 untreated 0 1000 The transmittivity was measured by a white light, and calculated by assuming the transmittivity of the used film base as percent.

The photosensitivity was increased in Samples 1 and 2 but reduced in Sample 3. The crystalline pattern was observed in the X-ray diffraction spectrum of Sample 3. This result teaches that the increase of a photosen-. sitivity needs a proper degree of crystal growth, or an increase of amount of microcrystallites.

In the replacement of benzaldehyde-3,6-dichloro diphenyl hydrazone of this Example, by benzaldehyde- 3-bromodiphenyl hydrazone (l), benzaldehyde-3- chloro-diphenylene hydrazone (ii), pdimethylaminobenzaldehyde-3,o-dichlorodiphenylene hydrazone (lll), dimethylamino-3,6-dibromo diphenylene hydrazone (IV) and p-dimethylamino-Iichlorodiphenylene hydrazone (V), the procedures of this Example were repeated to result in the appropriate exposure indicated in the Table below for the compounds (I) (V) by the heat treatment for 10 minutes.

Table Compound I ll III N V Appropriate exposure 190 230 I15 l'lO lux. see.

EXAMPLE 1 1 N,N,N',N'-Tetrabenzyl-p-phenylene diamine 1.0 gr. Polyvinyl butylal resin (commercially available under the trade name S-lec BLS by Sekisui Chemical) 1.0 gr. Crystal violet 10 mg. Chloroform 10 ml.

The above components were mixed homogeneously and the mixture was applied uniformly to a one-sided art paper of 80 micron in thickness to form a coating of about 5 micron, thick and dried naturally to form a photosensitive coating. Thus obtained coating was subjected to heat treatment at 95C for 20 minutes. The thus treated photosensitive paper was charged to about 350 V of positive charge by a corona discharger of KV in charge voltage, then exposed at 250 lux. see. by tungsten lamp of 100 W, and developed in a liquid developer to produce a visible image. For the similar photosensitive paper which was not subjected to the above heat treatment, the exposure of about 1,000 lux.sec. was necessary to produce a clear visible image by the similar electrophotographic duplication process.

EXAMPLE l2 p-Dimethylaminophenylstyryl ketone [.0 gr. Polystyrene resin (commercially available under the trade name Piccolastic D-100" by B850) 1 gr. Methylene blue mg. Methyl ethyl ketone 10 ml.

The preparation solution of the above components was applied uniformly to an aluminum foil plate to a thickness of about 5 micron, and dried by hot air blow at 50C for 5 minutes to form a photosensitive coating. The thus obtained photosensitive plate wassubjected to heat treatment at 80C for 30 minutes. This plate was subjected to an electrophotographic duplication process similar to Example 11. The exposure of about 200 lux.sec. was necessary to produce a clear visible image.

EXAMPLE l3 Triphenylamine l.0 gr. Acrylonitrile styrene copolymer resin (commercially available under the trade name "Estylene AS-olNT" by Yahata Chemical) 1.0 gr. Malachite Green 10 mg. Benzene 20 ml.

The preparation solution of the above components was applied to a polyethyleneterephthalate film (90 p. thick) to the surface of which electroconductivity was imparted by coating the film surface with a solution composed of 4 gr. of cuprous iodide and 150 ml. of acetonitrile to which 30 ml. of a 5 percent solution of polyvinyl formal was added, to form a photoconductive coating, then which was dried naturally. The thus obtained photosensitive film was subjected to heat treatment at 70C, for 30 minutes. To the thus treated film, an electrophotographic duplication process was applied. The exposure of about 250 lux.sec. was necessary to produce a clear visible image. For the similar photosensitive film which was not subjected to the above heat treatment, the exposure of 1200 lux.sec. was necessary to produce a clear visible image.

What is claimed is:

1. An electrophotographic photosensitive member which comprises a photosensitive film comprising an organic photoconductive material of molecular weight ranging from 100 to 2,000 and selected from the group consisting of diphenylene hydrazones, 2,5-bis-(4'- aminophenyl)-l ,3 ,4-oxadiazoles, 2,5 -bis-(4 '-substituted aminophenyl)-l,3,4-oxadiazoles wherein the substituent is a monoalkyl, dialkyl or acyl group, l,3,5triphenylpyrazolines, p-dimethyl-aminostyrylketones, N,N,N,N'-tetrabenzylp-phenylenediamine and triphenylamines and a high polymer binder resin, said photosensitive film being heated at a temperature not lower than the second order transition temperature and lower than the melting point of the high polymer binder resin for a period sufficiently long to convert said organic photoconductive material to a uniform crystalline state.

2. An electrophotographic photosensitive member according to claim 1 in which the antioxidizing atmosphere is an inert gas.

3. An photosensitive photosenstive member which comprises a photosensitive film comprising an organic photoconductive material of molecular weight ranging from to 2,000 and selected from the group consisting of diphenylene hydrazones, 2,5'-bis(4'-aminophenylene), -l,3,4-oxadiazoles wherein the substituent is a monoalkyl, dialkyl or acyl group, 1,3,5 triphenylpyrazolines, p-dimethyl-aminostyrylketones, N ,N ,N ,N '-tetrabenzyl-p-phenylenediamine and triphenylamines and a high polymer binder resin, said photosensitive film being heated at a temperature not lower than the second order transition temperature for a period sufficiently long to convert the film to an amorphous state, said photosensitive film then being softened with a solvent vapor capable of softening the photosensitive film.

4. An electrophotographic photosensitive member which comprises a photosensitive film comprising an organic photoconductive material of molecular weight ranging from 100 to 2,000 selected from the group consisting of diphenylene hydrazones, 2,5-bis-(4- aminophenyl )-l ,3,4-oxadiazoles, 2,5-bis-(4-substituted aminophenyl)-l,3,4-oxadiazoles wherein the substituent is a monoalkyl, dialkyl or acyl group, 1,3,5- triphenylpyrazolines, p-dimethyLaminostyrylketones, N,N,N',N'-tetrabenzyl-p-phenylenediamine and triphenylamines and a high polymer binder resin, said photoconductive film being heated at a temperature not lower than the melting point of the high polymer binder resin, for a period sufficient to convert said photoconductor to a uniform crystalline state the surface of said film being stimulated by applying pressure thereto so as to yield specific points on the surface resulting in a dot pattern effect.

5. An electrophotographic photosensitive member which comprises a photosensitive film comprising a diphenylene hydrazone and a high polymer binder resin, said photosensitive film being heated at a temperature not lower than the second order transition temperature and lower than the melting point of the high polymer binder resin for a period sufficient to conhydrazones are heterocyclic aldehyde diphenylene hydrazones.

9. An electrophotographic photosensitive member according to claim 7 in which the aromatic aldehyde diphenylene hydrazone is a member selected from the group consisting of benzaldehyde diphenylene hydrazone and p-dimethylaminobenzaldehyde diphenylene hydrazone.

10. An electrophotographic photosensitive member according to claim 6 in which the aliphatic aldehyde diphenylene hydrazone is a halogen substituted aliphatic aldehyde diphenylene hydrazone.

1L An electrophotographic photosensitive member according to claim 7 in which the aromatic aldehyde diphenylene hydrazone is a halogen substituted aromatic aldehyde diphenylene hydrazone.

12. An electrophotographic photosensitive member according to claim 8 in which the heterocyclic aldehyde diphenylene hydrazone is a halogen substituted heterocyclic aldehyde diphenylene hydrazone.

13. An electrophotographic photosensitive member according to claim 11 in which the halogen substituted aromatic aldehyde diphenylene hydrazone is a member selected from the group consisting of benzaldehyde-Iahalogen substituted diphenylene hydrazone, pdimethylaminobenzaldehyde-3-halogen substituted diphenylene hydrazone, benzaldehyde-3,fi-dihalogen substituted diphenylene hydrazone, and pdimethylamino-benzaldehyde-3,G-dihalogen substituted diphenylene hydrazone.

14. An electrophotographic photosensitive member according to claim 13 in which the benzaldehyde-Iihalogen substituted diphenylene hydrazone is a member selected from the group consisting of benzaldehyde-3-chlorodiphenylene hydrazone and benzaldehyde-3-bromodiphenylene hydrazone.

15. An electrophotographic photosensitive member according to claim 13 in which the pdimethylaminobenzaldehyde-3-ha.logen substituted diphenylene hydrazone is a member selected from the group consisting of p-dimethylaminobenzaldehyde-3- chlorodiphenylene hydrazone and pdimethylarninobenzaldehyde-B-bromodiphenylene hydrazone.

16. An electrophotographic photosensitive member according to claim 13 in which the benzaldehyde-3,6- dihalogen substituted diphenylene hydrazone is a member selected from the group consisting of benzaldehyde-3,6-dichloro diphenylene hydrazone, benzaldehyde-3,6-dibromodiphenylene hydrazone and benzaldehyde-B-chloro--bromo-diphenylene hydrazone.

17. An electrophotographic photosensitive member according to claim 13 in which the pdimethylaminobenzaldehyde-3,6-dihalogen substituted diphenylene hydrazone is a member selected from the group consisting of p-dimethylaminobenzaldehyde-3,6- dichlorodiphenylene hydrazone, pdimethylarninobenzaldehyde-3 ,G-dibromodiphenylene hydrazone and p-dimethylaminobenzaldehyde-3- chloro-6-bromo-diphenylene hydrazone.

II III

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3238041 *May 8, 1962Mar 1, 1966Xerox CorpRelief imaging of photoresponsive member and product
US3287121 *Jan 18, 1965Nov 22, 1966Azoplate CorpProcess for the sensitization of photoconductors
US3478064 *Jun 28, 1965Nov 11, 1969Xerox Corp1,5-bis-(substituted alkylamino)-anthraquinones
US3482970 *Jan 21, 1966Dec 9, 1969Xerox CorpElectrophotographic plate and process using naphthylazo compounds as the primary photoconductor
US3485624 *Jun 7, 1966Dec 23, 1969Eastman Kodak CoPhotoconductive properties of poly-n-vinyl carbazole
US3506595 *Oct 31, 1966Apr 14, 1970Fuji Photo Film Co LtdPhotoconductive insulating material
US3508961 *Dec 20, 1965Apr 28, 1970Fuji Photo Film Co LtdProcess for the production of a light sensitive body having an insulating photoconductive layer
US3533783 *Jul 31, 1967Oct 13, 1970Eastman Kodak CoLight adapted photoconductive elements
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3864127 *Aug 8, 1972Feb 4, 1975Fuji Photo Film Co LtdMethod for preparing ZnO-TiO{HD 2 {B bichargeable electrophotographic material
US4150987 *Oct 17, 1977Apr 24, 1979International Business Machines CorporationHydrazone containing charge transport element and photoconductive process of using same
US4403025 *Jun 24, 1981Sep 6, 1983Fuji Photo Film Co., Ltd.Electrophotographic photoreceptor
US4410615 *Sep 30, 1981Oct 18, 1983Konishiroku Photo Industry Co., Ltd.Layered electrophotographic photosensitive element having hydrazone charge transport layer
US4477550 *May 4, 1983Oct 16, 1984Fuji Photo Film Co., Ltd.Electrophotographic photoreceptor with hydrazone
US5376491 *May 8, 1990Dec 27, 1994Indigo N.V.Organic photoconductor
US5443922 *Oct 28, 1992Aug 22, 1995Konica CorporationOrganic thin film electroluminescence element
US5500568 *Jul 22, 1993Mar 19, 1996Idemitsu Kosan Co., Ltd.Organic El device
US5527652 *Oct 19, 1994Jun 18, 1996Indigo N.V.Organic photoconductor
US5757508 *Mar 9, 1994May 26, 1998Canon Kabushiki KaishaCharging member having an elastomeric member comprising an elastomeric material and a double oxide
US6041209 *Apr 24, 1998Mar 21, 2000Canon Kabushiki KaishaCharging member having an elastomeric member including an elastomeric material having a double oxide
US8268457Dec 5, 2008Sep 18, 2012Idemitsu Kosan Co., Ltd.Organic electroluminescent device and material for organic electroluminescent device
US20070247066 *Apr 6, 2004Oct 25, 2007Idemitsu Kosan Co., Ltd.Electrode Substrate and Its Manufacturing Method
US20090167167 *Dec 5, 2008Jul 2, 2009Idemitsu Kosan Co., Ltd.Organic electroluminescent device and material for organic electroluminescent device
DE102010006280A1Jan 30, 2010Aug 4, 2011Merck Patent GmbH, 64293Farbkonvertierung
DE102010055901A1Dec 23, 2010Jun 28, 2012Merck Patent GmbhOrganische Elektrolumineszenzvorrichtung
DE102011117422A1Oct 28, 2011May 2, 2013Merck Patent GmbhHyperverzweigte Polymere, Verfahren zu deren Herstellung sowie deren Verwendung in elektronischen Vorrichtungen
EP0001599A1 *Oct 6, 1978May 2, 1979International Business Machines CorporationElectrophotographic recording material and its application in a copying process
EP0616020A1Mar 14, 1990Sep 21, 1994Idemitsu Kosan Company LimitedAromatic dimethylidyne compounds and process for preparation thereof
EP0687133A2Jun 9, 1995Dec 13, 1995Toyo Ink Manufacturing Co., Ltd.Hole-transporting material and its use
EP0699654A1Aug 4, 1995Mar 6, 1996Toyo Ink Manufacturing Co., Ltd.Hole-transporting material
EP0779765A2Dec 11, 1996Jun 18, 1997Toyo Ink Manufacturing Co., Ltd.Hole-transporting material and use thereof
EP2229039A1Jun 16, 2004Sep 15, 2010Idemitsu Kosan Co., Ltd.Organic electroluminescent device and display using same
EP2262032A2Apr 4, 2000Dec 15, 2010Idemitsu Kosan Co., Ltd.Organic electroluminescence device and its manufacturing method
EP2270117A2Dec 22, 1999Jan 5, 2011Idemitsu Kosan Co., Ltd.Organic electroluminescence device
EP2371810A1Dec 20, 2005Oct 5, 2011Idemitsu Kosan Co., Ltd.Aromatic amine derivative and organic electroluminescent device using same
EP2448374A2Nov 30, 2004May 2, 2012Idemitsu Kosan Co., Ltd.Asymmetric monoanthracene derivative, material for organic electroluminescent device and organic electroluminescent device utilizing the same
EP2518045A1Oct 26, 2007Oct 31, 2012Idemitsu Kosan Co., Ltd.Aromatic amine derivative and organic electroluminescent element using the same
EP2713415A1Dec 22, 2009Apr 2, 2014Idemitsu Kosan Co., LtdMaterial for organic electroluminescent element, and organic electroluminescent element
EP2910619A1Dec 13, 2004Aug 26, 2015Idemitsu Kosan Co., LtdLight-emitting material for organic electroluminescent device, organic electroluminescent device using same, and material for organic electroluminescent device
WO2000041443A1Dec 22, 1999Jul 13, 2000Idemitsu Kosan Co., Ltd.Organic electroluminescence device
WO2007007553A1Jun 28, 2006Jan 18, 2007Idemitsu Kosan Co., Ltd.Biphenyl derivatives, organic electroluminescent materials, and organic electroluminescent devices made by using the same
WO2007017995A1Jun 30, 2006Feb 15, 2007Idemitsu Kosan Co., Ltd.Aromatic amine derivative and organic electroluminescence device making use of the same
WO2007029410A1Jul 5, 2006Mar 15, 2007Idemitsu Kosan Co., Ltd.Organic electroluminescent element using polyarylamine
WO2007032161A1Aug 8, 2006Mar 22, 2007Idemitsu Kosan Co., Ltd.Asymmetric fluorene derivative and organic electroluminescent element containing the same
WO2007032162A1Aug 8, 2006Mar 22, 2007Idemitsu Kosan Co., Ltd.Pyrene derivative and organic electroluminescence device making use of the same
WO2007052759A1Nov 2, 2006May 10, 2007Idemitsu Kosan Co., Ltd.Organic electroluminescent element
WO2007058044A1Oct 18, 2006May 24, 2007Idemitsu Kosan Co., Ltd.Aromatic amine derivative and organic electroluminescent element employing the same
WO2007058127A1Nov 10, 2006May 24, 2007Idemitsu Kosan Co., Ltd.Aromatic amine derivative and organic electroluminescent element using the same
WO2007058172A1Nov 14, 2006May 24, 2007Idemitsu Kosan Co., Ltd.Organic electroluminescent device
WO2007060795A1Oct 17, 2006May 31, 2007Idemitsu Kosan Co., Ltd.Amine compound and organic electroluminescent element employing the same
WO2007061063A1Nov 24, 2006May 31, 2007Idemitsu Kosan Co., Ltd.Organic electroluminescent device
WO2007063993A1Dec 1, 2006Jun 7, 2007Idemitsu Kosan Co., Ltd.Nitrogenous heterocyclic derivative and organic electroluminescence device making use of the same
WO2007077766A1Dec 22, 2006Jul 12, 2007Idemitsu Kosan Co., Ltd.Material for organic electroluminescent device and organic electroluminescent device
WO2007080704A1Nov 15, 2006Jul 19, 2007Idemitsu Kosan Co., Ltd.Aromatic amine derivatives and organic electroluminescent devices made by using the same
WO2007097178A1Feb 2, 2007Aug 30, 2007Idemitsu Kosan Co., Ltd.Material for organic electroluminescent device, method for producing same and organic electroluminescent device
WO2007099983A1Feb 28, 2007Sep 7, 2007Idemitsu Kosan Co., Ltd.Organic electroluminescent device using fluoranthene derivative and indenoperylene derivative
WO2007100010A1Feb 28, 2007Sep 7, 2007Idemitsu Kosan Co., Ltd.Organic electroluminescent device
WO2007102361A1Feb 28, 2007Sep 13, 2007Idemitsu Kosan Co., Ltd.Aromatic amine derivative and organic electroluminescent device using same
WO2007105448A1Feb 22, 2007Sep 20, 2007Idemitsu Kosan Co., Ltd.Naphthacene derivative and organic electroluminescent device using same
WO2007111262A1Mar 23, 2007Oct 4, 2007Idemitsu Kosan Co., Ltd.Nitrogen-containing heterocyclic derivative and organic electroluminescent device using same
WO2007111263A1Mar 23, 2007Oct 4, 2007Idemitsu Kosan Co., Ltd.Nitrogen-containing heterocyclic derivative and organic electroluminescent device using same
WO2007114358A1Mar 30, 2007Oct 11, 2007Idemitsu Kosan Co., Ltd.Benzanthracene derivative and organic electroluminescent device using the same
WO2007116750A1Mar 27, 2007Oct 18, 2007Idemitsu Kosan Co., Ltd.Material for organic electroluminescent device and organic electroluminescent device using the same
WO2007116828A1Mar 30, 2007Oct 18, 2007Idemitsu Kosan Co., Ltd.Bisanthracene derivative and organic electroluminescent device using the same
WO2007125714A1Mar 28, 2007Nov 8, 2007Idemitsu Kosan Co., Ltd.Aromatic amine derivative, and organic electroluminescence element using the same
WO2007132678A1May 2, 2007Nov 22, 2007Idemitsu Kosan Co., Ltd.Organic electroluminescent device
WO2007132704A1May 9, 2007Nov 22, 2007Idemitsu Kosan Co., Ltd.Organic electroluminescence element
WO2007138906A1May 21, 2007Dec 6, 2007Idemitsu Kosan Co., Ltd.Organic electroluminescent device and full color light-emitting device
WO2007148660A1Jun 19, 2007Dec 27, 2007Idemitsu Kosan Co., Ltd.Organic electroluminescent device employing heterocycle-containing arylamine derivative
WO2008001551A1May 10, 2007Jan 3, 2008Idemitsu Kosan Co., Ltd.Aromatic amine derivative, and organic electroluminescence device using the same
WO2008015949A1Jul 26, 2007Feb 7, 2008Idemitsu Kosan Co., Ltd.Organic electroluminescence device
WO2008023549A1Aug 1, 2007Feb 28, 2008Idemitsu Kosan Co., Ltd.Aromatic amine derivatives and organic electroluminescent devices made by using the same
WO2008023623A1Aug 15, 2007Feb 28, 2008Idemitsu Kosan Co., Ltd.Organic electroluminescent device
WO2008023759A1Aug 23, 2007Feb 28, 2008Idemitsu Kosan Co., Ltd.Aromatic amine derivatives and organic electroluminescence devices using the same
WO2008056652A1Nov 6, 2007May 15, 2008Idemitsu Kosan Co., Ltd.Organic el material-containing solution, method for synthesizing organic el material, compound synthesized by the synthesizing method, method for forming thin film of organic el material, thin film of organic el material, and organic el device
WO2008056722A1Nov 8, 2007May 15, 2008Idemitsu Kosan Co., Ltd.Organic el material-containing solution, method for forming thin film of organic el material, thin film of organic el material, and organic el device
WO2008056723A1Nov 8, 2007May 15, 2008Idemitsu Kosan Co., Ltd.Organic el material-containing solution, method for forming thin film of organic el material, thin film of organic el material, and organic el device
WO2008059713A1Oct 30, 2007May 22, 2008Idemitsu Kosan Co., Ltd.Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
WO2008062636A1Oct 26, 2007May 29, 2008Idemitsu Kosan Co., Ltd.Aromatic amine derivative and organic electroluminescent element using the same
WO2008081823A1Dec 26, 2007Jul 10, 2008Idemitsu Kosan Co., Ltd.Solution containing organic el material, method for synthesis of organic el material, compound synthesized by the synthesis method, method for formation of thin film of organic el material, thin film of organic el material, organic el element
WO2008102740A1Feb 19, 2008Aug 28, 2008Idemitsu Kosan Co., Ltd.Organic electroluminescent device
WO2008111554A1Mar 10, 2008Sep 18, 2008Idemitsu Kosan Co., Ltd.Organic el device and display
WO2008123178A1Mar 24, 2008Oct 16, 2008Idemitsu Kosan Co., Ltd.Organic el device
WO2008126802A1Apr 4, 2008Oct 23, 2008Idemitsu Kosan Co., Ltd.Organic electroluminescent element
WO2009011327A1Jul 14, 2008Jan 22, 2009Idemitsu Kosan Co., Ltd.Organic electroluminescent device material and organic electroluminescent device
WO2009020095A1Aug 4, 2008Feb 12, 2009Idemitsu Kosan Co., Ltd.Aromatic amine derivative and organic electroluminescent device using the same
WO2009066778A1Nov 21, 2008May 28, 2009Idemitsu Kosan Co., Ltd.Organic el element and solution containing organic el material
WO2009069717A1Nov 27, 2008Jun 4, 2009Idemitsu Kosan Co., Ltd.Azaindenofluorenedione derivative, organic electroluminescent device material, and organic electroluminescent device
WO2009081857A1Dec 19, 2008Jul 2, 2009Idemitsu Kosan Co., Ltd.Organic electroluminescent device
WO2009145016A1Apr 21, 2009Dec 3, 2009Idemitsu Kosan Co., Ltd.Aromatic amine derivative and organic electroluminescent device using the same
WO2010074087A1Dec 22, 2009Jul 1, 2010Idemitsu Kosan Co.,Ltd.Material for organic electroluminescent element, and organic electroluminescent element
WO2010074181A1Dec 24, 2009Jul 1, 2010Idemitsu Kosan Co.,Ltd.Organic electroluminescence element and compound
WO2010076878A1Dec 25, 2009Jul 8, 2010Idemitsu Kosan Co.,Ltd.Organic electroluminescent element material and organic electroluminescent element comprising same
WO2010116970A1Apr 5, 2010Oct 14, 2010Idemitsu Kosan Co., Ltd.Organic electroluminescent element and material for organic electroluminescent element
WO2011015265A2Jul 7, 2010Feb 10, 2011Merck Patent GmbhElectronic devices comprising multi cyclic hydrocarbons
WO2011032686A1Sep 15, 2010Mar 24, 2011Merck Patent GmbhFormulas for producing electronic devices
WO2011076314A1Nov 11, 2010Jun 30, 2011Merck Patent GmbhElectroluminescent formulations
WO2011076323A1Nov 24, 2010Jun 30, 2011Merck Patent GmbhFormulations comprising phase-separated functional materials
WO2011076326A1Nov 24, 2010Jun 30, 2011Merck Patent GmbhElectroluminescent functional surfactants
WO2011091946A1Jan 3, 2011Aug 4, 2011Merck Patent GmbhOrganic electroluminescent device comprising an integrated layer for colour conversion
WO2011110275A2Feb 15, 2011Sep 15, 2011Merck Patent GmbhRadiative fibers
WO2011110277A1Feb 15, 2011Sep 15, 2011Merck Patent GmbhFibers in therapy and cosmetics
WO2011137922A1Nov 26, 2010Nov 10, 2011Merck Patent GmbhFormulations and electronic devices
WO2011147522A1Apr 28, 2011Dec 1, 2011Merck Patent GmbhCompositions comprising quantum dots
WO2012013270A1Jun 24, 2011Feb 2, 2012Merck Patent GmbhNanocrystals in devices
WO2012013272A1Jun 28, 2011Feb 2, 2012Merck Patent GmbhQuantum dots and hosts
WO2012014841A1Jul 25, 2011Feb 2, 2012Idemitsu Kosan Co.,Ltd.Organic electroluminescence element
WO2012084114A1Nov 24, 2011Jun 28, 2012Merck Patent GmbhOrganic electroluminescent device
WO2012110178A1Jan 16, 2012Aug 23, 2012Merck Patent GmbhDevice and method for treatment of cells and cell tissue
WO2012126566A1Feb 28, 2012Sep 27, 2012Merck Patent GmbhOrganic ionic functional materials
WO2012152366A1Apr 18, 2012Nov 15, 2012Merck Patent GmbhOrganic ionic compounds, compositions and electronic devices
WO2012157211A1May 9, 2012Nov 22, 2012Sony CorporationOrganic el multi-color light-emitting device
WO2012163464A1May 5, 2012Dec 6, 2012Merck Patent GmbhHybrid ambipolar tfts
WO2013013754A1Jun 28, 2012Jan 31, 2013Merck Patent GmbhCopolymers with functionalized side chains
WO2013035275A1Aug 29, 2012Mar 14, 2013Idemitsu Kosan Co.,Ltd.Nitrogen-containing heteroaromatic ring compound
WO2013046635A1Sep 25, 2012Apr 4, 2013Idemitsu Kosan Co.,Ltd.Material for organic electroluminescent element, and organic electroluminescent element produced using same
WO2013060411A1Oct 1, 2012May 2, 2013Merck Patent GmbhHyperbranched polymers, methods for producing same, and use of same in electronic devices
WO2013069242A1Nov 2, 2012May 16, 2013Idemitsu Kosan Co.,Ltd.Material for organic electroluminescent elements, and organic electroluminescent element using same
WO2015014427A1Jun 26, 2014Feb 5, 2015Merck Patent GmbhElectro-optical device and the use thereof
WO2015014429A1Jul 1, 2014Feb 5, 2015Merck Patent GmbhElectroluminescence device
WO2016034262A1Aug 4, 2015Mar 10, 2016Merck Patent GmbhFormulations and electronic devices
WO2016107663A1Dec 2, 2015Jul 7, 2016Merck Patent GmbhFormulations and electronic devices
WO2016155866A1Mar 4, 2016Oct 6, 2016Merck Patent GmbhFormulation of an organic functional material comprising a siloxane solvent
WO2016198141A1May 13, 2016Dec 15, 2016Merck Patent GmbhEsters containing non-aromatic cycles as solvents for oled formulations
WO2017036572A1Jul 29, 2016Mar 9, 2017Merck Patent GmbhFormulation of an organic functional material comprising an epoxy group containing solvent
Classifications
U.S. Classification430/74, 430/70, 430/73, 430/76
International ClassificationG03G5/06
Cooperative ClassificationG03G5/06
European ClassificationG03G5/06