Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3717958 A
Publication typeGrant
Publication dateFeb 27, 1973
Filing dateDec 16, 1970
Priority dateDec 16, 1970
Publication numberUS 3717958 A, US 3717958A, US-A-3717958, US3717958 A, US3717958A
InventorsC Ellwanger, H Pedersen
Original AssigneeGleason Works
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Machine for lapping gears
US 3717958 A
Abstract
A and machine for lapping hypoid gear pairs by a new method to provide improved tooth engagement characteristics, resulting in good sound qualities over a remarkably increased range of pinion axial adjustment in assembly. The method employs a plurality of special lapping cycles acting on the periphery of the gear teeth to achieve full control of tooth surface mismatch. The lapping machine controls backlash settings, set-overs, and all lapping motions with only three actuators, carries out the new method and achieves a versatility of lapping control far exceeding that available in prior art machines. A control panel provides an array of thumbwheel switches, graduated dials and selector switches for rapid entry of all lapping cycle control data, i.e., backlash, lapping motions and motion rates, number of passes, speeds and torques, all of these parameters being controlled independently for both forward and reverse sides of the teeth. The control panel also permits ready selection of alternative lapping methods including conventional one-cycle lapping methods as well as the novel multi-cycle methods disclosed herein. Stepping motors, responsive to data entered into the control panel, operate linear actuators to displace the gear spindle for effecting all lapping motions and relative gear-to-pinion displacements. The machine is designed with a vertically oriented pinion spindle to reduce floor space and to facilitate adaptation to full automation and is also designed with all relative lapping motions being accomplished by movement of the gear spindle on a unique support structure specially designed to simplify machine control functions.
Images(8)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

a ted States Patent [191 Ellwanger et al.

[ 1 l eh.27,1973

A and machine for lapping hypoid gear pairs by a new MAEHINE FOR LAPPING GEARS [7 5] Inventors: Charles G. Ellwanger; Harry Pedersen, both of Rochester, N.Y.

[73] Assignee: The Gleason Works, Rochester,

[22] Filed: Dec. 16, 1970 [21] Appl. No.: 98,512

[52] 11.1.8. Q1. ..5l/26, 29/90 B, 51/287, 73/162 [51] Int. Cl. ..B24b 37/00 [58} Field oi Search ..51/26, 287; 29/90 B; 73/162 [56] References Cited UNITED STATES PATENTS 1,017,613 2/1912 Weaver ..5l/287 1,796,484 3/1931 Slade 51/26 X 2,904,934 9/1959 Schicht ..51/26 2,919,518 l/1960 Bauer et al. 51/26 2,947,120 8/1960 Bauer et al. 51/26 2,961,873 11/1960 Carlsen 51/26 2,984,956 5/1961 Schicht... 51/287 3,069,813 12/1962 Bauer et al. ..5l/26 3,099,901 8/1963 Hnnkeler ..51/287 X Primary Examiner-Donald G. Kelly Att0mey-Morton A. Polster ABSTRACT method to provide improved tooth engagement characteristics, resulting in good sound qualities over a remarkably increased range of pinion axial adjustment in assembly. The method employs a plurality of special lapping cycles acting on the periphery of the gear teeth to achieve full control of tooth surface mismatch. The lapping machine controls backlash settings, set-overs, and all lapping motions with only three actuators, carries out the new method and achieves a versatility of lapping control far exceeding that available in prior art machines. A control panel provides an array of thumbwheel switches, graduated dials and selector switches for rapid entry of all lapping cycle control data, i.e., backlash, lapping rnotions and motion rates, number of passes, speeds and torques, all of these parameters being controlled inde pendently for both forward and reverse sides of the teeth. The control panel also permits ready selection of alternative lapping methods including conventional one-cycle lapping methods as well as the novel multicycle methods disclosed herein. Stepping motors, responsive to data entered into the control panel, operate linear actuators to displace the gear spindle for effecting all lapping motions and relative gear-topinion displacements. The machine is designed with a vertically oriented pinion spindle to reduce floor space and to facilitate adaptation to full automation and is also designed with all relative lapping motions being accomplished by movement of the gear'spindle on a unique support structure specially designed to simplify machine control functions.

33 Claims, 9 Drawing Figures PATENTEDFEBZYW 3,717. 958

SHEET 1 BF 8 FIG. I

CHARLES G. ELLHANGER HARRY PEDE RSEN INVENTOR.

PATENIED $717,958

SHEET 2 OF 8 CHARLES GILLHANGER HARR Y PEDBQSE N INVENTORS PATENTEDFEBZYIW 3,717,958

SHEET 30F 8 CHARLES G. ELLVANGER HARRY PEDERSEN INVENTORJ PATENT EB FEB 2 7 I973 SHEET 4 OF 8 SETOVER TO FIN.(I)

FIN. m

SETOVERTO FIN,(2)

CHARLES (LELLWANG ER HARRY PEDE RSEN INVENTCRS MACHINE FOR LAPPING GEARS BACKGROUND OF THE INVENTION Spiral bevel and hypoid gears are usually lapped after they have been cut and heat treated, to refine the tooth surfaces and to improve tooth contact. Lapping includes running together a gear pair, Le, a spiral bevel or hypoid gear and a corresponding pinion, under moderate loads while a lapping compound is sprayed on the gears. Once two gears have been lapped together, they are maintained as a pair.

In the course of adapting gears to fit particular applications, the tooth surfaces are shaped so that the gears can tolerate a specified combination of displacements without causing the contact to move off the tooth surface. In order to accomplish this, most spiral bevel and hypoid gears are carefully developed in the cutting to have combined mismatch; i.e., they are relieved in both the profile and lengthwise directions so that only a local area generally at or close to the center of the tooth is unchanged from the theoretically conjugate surface. In lapping such gears, it is desirable to maintain control of mismatch, and problems have been commonly encountered in the past due to lack'of adequate control, and

particularly due to the tendency of lapping to reduce profile mismatch in hypoids. Properly localized tooth contact allows for displacement of the contact under loads, e.g. because of housing and bearing deflections, and for slight errors in positioning of gears in assembly, without causing concentration of the load at the ends of the teeth or affecting the running qualities, e.g. quietness, of the gears when operating. The inadequate control of mismatch has resulted in gear sets which are extremely sensitive to small positioning errors in the assembly with attendant objectionable sound-characteristics.

During known lapping operations, the relative position of the gear and pinion is varied by combinations of three motions so that the entire working area of the teeth may be lapped. The three lapping motions are (1 axial movement of the gear relative to the longitudinal axis of the gear, (2) axial movement of the pinion relative to the longitudinal axis of the pinion, and (3) lateral movement of the pinion axis relative to the gear in a sense to change the hypoid offset. (Because the motions are relative, they may be accomplished by moving either the gear or the pinion or both.) For purposes of this disclosure, these three motions will be designated G, P, and B, respectively Typically, the E, P and G movements each have an effect on both the lengthwise and depthwise position of the localized tooth contact pattern, the primary effect of E movement being on the relative lengthwise position of the contact pattern, the primary effect of P movement being on the relative depthwise position of the contact pattern, and the primary effect of G movement being on the backlash. Generally, in lapping, it is desirable to traverse the contact pattern lengthwise of i the tooth: center to toe, return to center, center to heel,

and return to center, while maintaining constant backlash, and such traversing can be effected in such a manner asto'provide lapping of the entire surfaces of the drive and coast sides of the teeth.

' The ratios of E, P and G movements needed to provide the desired lengthwise traverse and constant backlash" from center to heel (and 'vice versa) and center to toe (and vice versa) are not quite the same, nor are these ratios necessarily the same for the drive and coast sides of the teeth. Most early lapping machines did not take the foregoing into account, but other lapping machines of modern vintage have such a capability. Examples of such machines may be seen from Bauer et al. U.S. Pat. Nos. 2,947,120, issued Aug. 20, 1960 and 3,069,813, issued Dec. 29 1962 and Hunkeler U.S. Pat. No. 3,099,901, issued Aug. 6, 1963.

It should be apparent that machinery for providing basic lapping motion control must be fairly complex, even before one begins to consider the design complexities required to provide additional machine capabilities often considered'desirable, e.g., ability to make additional traverses at different depths, to vary traverse rates at different points, and to vary the location of the mean point (where the traverse begins) for the drive side and the coast side. To the extent that prior machines lack capability of adjusting any of the factors which have been discussed or lack the capability of adjusting and controlling certain of these factors independently of others and automatically, they fail to provide a versatility desired by industry.

The need for more versatile machines, capable of fast and efficient operation, and susceptible for use in highly automated manufacturing facilities has inspired the subject innovation in the structure and control of gear lappers.

In addition to satisfying this long-standing need for greater versatility, the invention herein provides a novel machine orientation having important advantages over prior lapping machines which mount both the gear and the pinion on horizontal axes at the lapping station. The novel lapper orientation disclosed herein mounts the gear on a horizontal axis and the pinion on a vertical axis, and this new machine configuration is superior to the prior art orientation, for automatic load-unload installations, for reasons which will be outlined below.

Another industry need to which the subject invention relates is the lapping of gears requiring a particularly fine finish. After a gear pair has been lapped to establish the desired tooth bearing shape and contact pattern for the mated pair, it is sometimes desirable to additionally refine the tooth surface finish without significantly changing the tooth bearing shape and position as accomplished in the initial lap. As different from prior art machines which, if such a further feather" lap is desired, require the operator to make a separate machine set up, the novel machine disclosed herein permits such additional fine lapping to be selected and carried out automatically as a regular part of the lapping routine.

The invention herein also provides a marked improvement in gear adjustability and noise characteristics, a major problem area in the gear manufacturing industry. A principal concern in lapping is the control of bearing position on the tooth, and in the most commonly employed prior art lapping method, this frequently results in-the excess lapping of a particular area of the tooth. This excessive lapping in turn causes excessive profile width (i.e., a loss in depthwise curvature of the tooth face), resulting in increased sensitivity to slight errors in pinion axial positioningin assembly and operation, and in a high number of assembly rejects based on unacceptable sound characteristics. The novel lapping method and apparatus disclosed herein can control profile width in a manner which permits control of bearing position while maintaining, and even remarkably improving, the adjustability and sound qualities of a gear pair.

Those skilled in the art will be aware that the same novel design disclosed herein in relation to a machine used for lapping gear pairs, may be used for machines for testing gear pairs which have been lapped previously. Of course, such testing machines would not require means for handling and applying lapping compound, nor means for providing certain lapping motions which are not required for testing.

SUMMARY OF THE INVENTION The novel lapper disclosed herein is provided with one vertical spindle and one horizontal spindle (instead of two conventionally horizontal spindles). The two spindles are oriented with respect to the front of the machine in such a way as to facilitate automatic loading, namely, to permit the use of loading devices which can move transversely of the front of the machine to remove the lapped gear pair and to mount the gear pair which is to be lapped. Also, with such spindle orientation the machine may be more rigidly constructed: since the offset adjustment is not vertical, the spindle housings may be more closely coupled to the frame, and the housing, which adjusts for offset, may be fully supported. In addition, the machine can be smaller, in plan view, for a gear member of a given size, taking up less valuable floor space. The distance from the centerline of the vertical spindle to the front of the machine is less than it would be if the gear rather than the pinion were to be mounted thereon, so the machine operator is closer to the work, and the machine may be more easily served. This facilitates making adjustments and handling and observing the work.

It isknown in the manufacture of spiral bevel and hypoid gears thatby properly controlling tooth surface mismatch in the profile (depthwise) direction, as well as in the lengthwise direction, a control may be achieved over the direction of the path on the tooth surface of the instantaneous points of contact. The invention herein is based upon the discovery that by a novel application of these known controls, automotive type hypoid gears may be manufactured which combine quiet operation with remarkably increased pinion axial adjustability, and it has been demonstrated experirrientally that the novel lapping method disclosed herein, which comprises a predetermined combination of several different lapping cycles, will produce gears having such remarkably improved characteristics.

Further, as noted above, known lapping machines have lacked versatility in their-provisions for economically effecting desired controls over basic lapping operations.

The novel lapping machine disclosed herein provides means for selectively controlling and combining at least three different cycles of lapping operation in a fully automated process.

The three basic cycles comprise (l) a semi-finishing cycle (i.e., conventional lapping) in which the contact pattern is traversed toe and heel in the generally known manner for a selected number of passes to obtain desired bearing position and desired lengthwise mismatch, (2) a first "tip" lapping cycle in which the bearing location is displaced high on the tooth of one member by means of a relative positive set-over of the pair, followed by a heel and toe lapping traverse of the tip periphery for a selected number of cycles and (3) a further tip lapping cycle in which the bearing location is displaced high on the tooth of the other member by means of a relative position set-over of the pair, followed by a heel and toe lapping traverse of the tip periphery for a selected number of cycles.

The described lapping method is carried out with independently controllable set-overs, lapping motions, lapping speeds, torques, and traverse rates for the semifinish cycle and for the tip lap cycles, and all three basic lapping cycles are each independently controllable for forward and reverse sides of the teeth.

In addition to the novel three-cycle lapping method described above, the subject apparatus permits the selection of other basic lapping cycle combinations, e.g., (1) conventional semi-finish lapping, as described above as the first cycle of the three-cycle method, or (2) a two-cycle lapping method which consists of a conventional semi-finish cycle followed by a second feather lapping cycle of shorter traverse, intended to refine the finish in the central and most used area of the tooth without significant effect on bearing shape and position.

It will be appreciated by those skilled in the art that lapping is by conventional definition a finishing type of operation which is usually the final step in the manufacture of a gear pair. However, the invention herein provides for further refinement of known lapping processes by utilizing additional novel lapping cycles which follow conventional lapping. Therefore, conventional lapping cycles will be referred to herein as semifinishing cycles or rough lapping to distinguish them from the novel tip and feather lapping cycles which are referred to herein as finish lapping since, according to the invention, it is these latter cycles which are used to provide the actual ultimate finish for the tooth surfaces of a gear pair.

In order to accomplish this versatile automatic operation three different groups of set-over displacements (for run, drive" and coast") and three lapping motions (G, P and E) are provided by moving sub-assemblies about three respective axes. By preference, the sub-assemblies are automatically moved by program-controlled stepping motors.

The preferred embodiment of apparatus for practicing the invention herein provides all the following capabilities: different mean points, drive and coast; different E/P ratios, drive and coast; different distance traveled, drive and coast; different distances traveled to toe versus heel, drive and coast; different rates of travel, drive and coast; variation in traverse rate at a preselected point in traverse between heel and toe; and automatic backlash setting and control. All of these features are independently selectable, and different variables including time, distance, and the sequence and type of lapping cycles may be chosen independently for the drive and coast sides of the gear pair, on, the same machine with fully automatic operation requiring no manual manipulation or attention to the machine or the gear pair.

It will be appreciated by those skilled in the art that the versatile operation just described generally above requires a great number of set-overs of the relative orientation of the spindles to establish backlash and different mean positions of tooth bearing for the gear pair being lapped as well as progressions of relative spindle movements for causing the tooth bearing to be traversed along various mean-to-heel and mean-to-toe paths from the variously established mean position. The machine disclosed herein greatly simplifies the mechanics of these complex motions by producing all of these relative spindle movements for backlash, setovers, and lapping motions, with only three linear actuators (one for each respective P, G, and E line of motion), each having a respective ball screw unit driven by an independently controlled step motor, in combination with a novel gear head assembly of unusual simplicity. This assembly supports the gear spindle for pivotal motion about two axes parallel to its axis to provide the required E and P movements, the gear spindle also being movable linearly in the direction of its axis to provide the G movement. The two pivot axes are positioned a substantial distance from the axis of the gear spindle so that, for the relatively small displacements required, the E and P movements are effectively linear. The relative positions of the two pivot axes and the pivoting support structures cooperating with the linear actuators referred to above are specially designed to simplify machine control functions by providing effectively independent mechanical linkages which result in a one-to-one relationship between the movement of each linear actuator and the spindle movements resulting therefrom. Even for purposes of loading the machine, only the gear head assembly moves, the pinion spindle being fixed 'to the machine frame, thereby providing exceptional rigidity and minimizing alignment problems prevalent in prior art machines in which both spindles are mounted on movable slides.

The principles of the invention will be further hereinafter discussed with reference to the drawings wherein preferred embodiments are shown. The specifics illustrated in the drawings are intended to exemplify, rather than limit, aspects of the invention as defined in the claims. I

BRIEF DESCRIPTION OF THE DRAWINGS In the drawings FIG. 1 is an isometric view of a lapper embodying the principles of the present invention, showing the relative positions of the gear and pinion spindles, the gear head structure with its three axis adjustment means and, generally depicted, the automatic control means for the lapper;

FIG. 2 is a fragmentary side elevation view of the lapper, showing the gear head structure, vertical adjustment means, cross slide and the three stepping motorlinear actuator mechanisms; 7

FIG. 3 is a longitudinal vertical sectional view of one linear actuator mechanism taken substantially along line 3-3 of FIG. 2;

FIG. 4 is a vertical transverse sectional view of one linear actuator mechanism, taken substantially along line 4-4 of FIG. 3, showing the zero lock trip dogs, pistons and switches;

FIG. 5 is a fragmentary transverse vertical sectional view of the lapper, taken substantially along line 5--5 of FIGS. 2 and 6, showing the interior of the gear head structure including the pivot bracket, linear actuator mechanism, gear spindle, gear spindle housing and ball swivels;

FIG. 6 is a horizontal sectional view of the gear head structure taken substantially along line 6-6 of FIG. 5.

FIG. 7 is a simplified block electrical diagram of the lapping motion controller;

FIG. 8 is a schematic example of one-half of the lapping motion controller control panel set for carrying out a particular set of lapping conditions with the effect of such settings being shown by sketches superimposed along the left-hand margin; and

FIG. 8A is a schematic view ofa portion of the control panel of FIG. 8 showing an alternate set of conditions entered.

GEAR HEAD ASSEMBLY AND THREE ACTUATOR UNITS In FIG. 1 there is shown a gear lapper l0 and an electronic control unit 12 which is electrically connected to the gear lapper to receive responses from parts of the lapper and send commands to it.

The machine 10 includes a frame 14 having, at its front, a lapping chamber (work station) 16 into which there projects a vertically, upwardly extending pinion spindle l8 and a horizontally, forwardly extending gear spindle 20. The lapping chamber 16 is shown disposed at a height to be conveniently served by a human operator. At the left side of the front of the machine, below the lapping chamber are shown disposed the housing 22 for an eddy-current drive system having a constant speed motor 24 electromagnetically coupled to an output shaft. Motor 24 drives the pinion spindle 18 through a belt 26 at speeds selected by well-known current control devices (not depicted) which vary the field strength of the electromagnetic coupling. In the corresponding position at the right side of the machine is the housing 28 for a cycle drum 30, e.g., a stack of cams keyed on acommon shaft to effect a time-based control of certain sequential operations of the machine in a manner well known in the art.

The gear spindle 20 is powered for rotation by a hydraulic motor 32 driving through a belt 34. During normal lapping operations, a gear pair is mounted on the spindles, the sliding door 36 covers the lapping chamber, the teeth of the pinion and gear are in mesh, the eddy-current motor 24 drives the pinion through the belt 26 and spindle 18, the pinion drives the gear, and the hydraulic motor 32 is driven by the belt drive 34 from the gear spindle 20 and functions as a brake. The braking torque provided by the hydraulic motor 32 is adjustable in a conventional manner by varying the restriction of the motors fluid exhaust line valving.

Looking also at FIG. 2, behind the lapping chamber, the upper surface 38 of the frame 14 has a plurality of longitudinally spaced, horizontally and transversely extending slideways 40, which mount a horizontal cross slide 42 having downwardly directed, transversely extending runners 44 that cooperate with complementarily shaped grooves 46 in the slideways 40 to permit only lateral movement of the cross slide 42 with respect to the stationary frame 14.

On its upper surface, the cross slide 42 has a plurality of transversely spaced, longitudinally extending and upwardly opening grooves 48.

A gear head structure 50 is mounted on the cross slide 42 with clamps 52 (hydraulic details omitted) engaging in the grooves 48. When the clamps 52 are engaged, the gear head structure is longitudinally fixed on the cross slide 42; when the clamps are disengaged, they permit only longitudinal sliding of the gear head structure with respect to the frame 14 on the cross slide 42. Longitudinal motion in advancing and withdrawing is provided by a fluid pressure operated means, schematically simplified as piston and cylinder arrangement 51, secured between the slide 42 and the gear head structure 50.

The gear head structure 50 has a frame 53 including vertically extending, longitudinally spaced rails 54. A vertical adjusting slide 56 is mounted on rails 54 for only vertical sliding with respect to the gear head structure, A plurality of adjustable clamps 58 are provided for fixing the vertical adjusting slide 56 to frame 53.

The gear head spindle is mounted in the gear head structure 50, and therefore lateral movement of the cross slide 42 with respect to the slideways 40 can be used to adjust the machine for running together gear pairs of differing offset. Since a single machine will generally be used with gear pairs of one nominal offset value for long periods of time, clamping means which clamp the cross slide with respect to the slideways 40 may be manually operated.

Similarly, longitudinal movement of the gear head structure 50 on the cross slide 42 is used to engage and disengage the gear pair being lapped, gear head structure 50 being withdrawn (to the rear in FIG. 1 and to the right in FIG. 2) to facilitate loading and unloading of the machine.

In loading, the gear mounted on the gear spindle is pushed axially forward, by movement of the gear head structure 50, until its teeth bottom in meshing engagement with teeth of the pinion mounted on the pinion spindle, then the clamps 52 are engaged to lock the gear head structure with respect to the cross slide 42. To accommodate different sizes of gears, the vertical adjusting slide 56 is adjusted relative to frame 53 of the gear head structure by rotating a vernier dial 60 which turns an adjusting screw 62 journaled in the frame 53 for rotation about a vertical axis and having a threaded lower end threadably received in an upwardly opening socket 64 on the inside of the vertical adjusting slide 56. As aforementioned, the clamps 58 hold the slide 56 in its adjusted position.

In the presently most preferred embodiment, three stepping-motor driven linear actuator units 66 are mounted on the vertical adjusting slide to provide the three desired lapping displacements (E, P, and G). As seen from the right side of the machine, the three units 66 are disposed in an L-shaped configuration with the units for effecting E movements at the upper left of the vertical adjusting slide 56, the unit for effecting P movements at the lower left of the slide, and the unit for effecting G movements at the lower right of the slide.

Each of the actuator units 66 (which are shown in most detail in FIGS. 3-5 and are also depicted in whole or in part in FIGS. 1, 2 and 6) includes a rotary stepping motor 68 mounted on a housing 70 for a linear actuator 72. Each motor 68 is responsive to pulses from the electronic control unit 12 and imparts rotation to a worm 74 which is in mesh with a worm wheel 76 which is, in turn, keyed to a sleeve 78. The sleeve is journaled for rotation by bearings 80 in the housing 70. The sleeve 78 receives in its bore a ball-nut unit comprising a nut 82 threadably engaged to a linear screw 84 by ball threads 86 in a well-known manner.

One end of the linear screw 84 is of non-circular cross section 88 and is axially slidable in a complementarily cross-sectioned socket 90 secured in the end cap 92 of the housing 70 as a rotation restraint for the linear screw. Thus, as the sleeve 78 and the nut 82 secured to it are caused to rotate, the linear screw 84 is moved axially a very small amount (e.g., 0.010 inch).

With particular reference to FIGS. 5 and 6, it will now be explained how axial movements of linear screws 84 of the G, P and E linear actuator units 66 produce the desired G, P and E movements necessary to the lapping of a gear pair mounted on the spindles 18, 20.

Two of the lapping motions (E and P) can be understood from reference to FIGS. 5 and 6. The gear spindle 20 is mounted in a housing 112 rigidly attached to pivot shaft 122 which is rotatably mounted and constrained against axial movement in pivot bracket 120. Pivot shaft 122 is horizontal, parallel to, and in substantially the same vertical plane as the axis of gear spindle 20. A projecting ear 114 of housing 112 is further operably connected to the pivot bracket by means of a pin 116 and spring 118. The spring urges the housing 112 clockwise in FIG. 5 about the axis of shaft 122.

Each linear screw 84, for the respective E and P units 66, carries a plunger 124 which has a socket at its inner end. Opposite each plunger 124 is a bearing 126 affixed, respectively, to the housing 112 and the pivot bracket 120. Each bearing 126 provides a pressure surface for a respective swivel cup 128 which is freely slidable thereon. Each cup 128 has a spherical seating surface disposed toward a co-acting spherical seating surface of the plunger 124. The cup and plunger receive a bearing ball 130 therebetween.

In the interconnection of the pivot bracket 120, the gear housing 112 and the E motion actuator elements, the spring 118 acts to urge the housing clockwise about the axis of pivot shaft 122 and holds E motion actuator elements 84, 124, 126, 128, and 130 in firm engagement. By virtue of the mounting structure just described, it can be seen that the housing 112 moves angularly about pivot 122 in response to axial movement of the linear actuator screw 84 of the E motion unit. The distance between the pivot shaft 122 and the spindle 20 is sufficiently great, when compared to the small degree of angular motion of the housing 112 produced by the slight extension and retraction of the linear actuator screw of the E motion unit, that the resulting displacement of the gear spindle can be considered as being a substantially linear motion in the direction of the arrow E--E drawn on the longitudinal axis of the gear spindle in FIG. 5. For the preferred design of the novel gear spindle support structure disclosed herein, the vertical distance between pivot shaft 122 and the axis of spindle 20 is not critical so long as it lies in the same vertical plane and is at least great enough to position pivot shaft 122 outside of spindle 20, thereby assuring the effective linearity of the E- E motion.

The P motiomindicated by the arrow P-P of FIG. 5, is similarly provided by pivoting of the pivot bracket 120 about the horizontal pivot shaft 132 which is parallel to the gear. spindle and in the substantially same horizontal plane with its axis. (While the positions of pivot shafts. 122 and 132 have been described as being in respective vertical" and horizontal" planes, it will be understood by those skilled in the art that these positions are, merely based upon the particular verticalpinion-axis/horizontal-gear-axis configuration of the preferred embodiment, the only essential criteria for the relative positions of these pivot shafts being that they be in mutually perpendicular planes both of which contain the axis of one member of the gear pair and that one of the two planes must also contain or be parallel to the axis of the other member of the gear pair.) The small angular displacements of the gear spindle 20 produced by slight axial extension and retraction of the linear actuator screw 84 of the P motionunit 66 can be considered to be substantially linear movements in the direction of the arrow P-P.

The pivot bracket 120 is secured on the pivot shaft 132 via a yoke arrangement 134 including two longitudinally spaced radially projecting ears disposed at opposite side edges of the vertical adjusting slide 56. In the interconnection of the pivot bracket 120, slide 56, and the P motion actuator elements, the weight of the bracket 120, housing 112, and spindle 20 act to urge the entire bracket, housing and spindle assembly counterclockwise about the axis of shaft 132, and holds P motion actuator elements 84, 124, 126, 128 and 130 in firm engagement. Plate 136 and springs 138 provide biasing means to relieve the P motion linear actuating unit of a portion of the gravity load of the bracket, housing and spindle assembly.

In the preferred embodiment disclosed, it should be noted that the relative positions of pivot shafts 122 and 132 and the plunger assemblies 124 of the E and P units, and the relative positions of the bearing balls 130 and 144 and the pivot 142, have all been selected to provide a one-to-one ratio between movements of the plunger assemblies and the relative gear spindle movements which they control, e.g., for each 0.001 inch movement of the E-unit plunger, the gear spindle moves 0.001 inch along the E axis. In this regard, attention is called to the fact that in order to maintain this desired 1:] ratio, where the shaft 132 would otherwise interfere with the swivel 128, ball 130, and plunger assembly 124 of the E-motion unit (see FIG. 5), the shaft 132 is slotted to accommodate that assembly.

More particularly, to achieve this desired 1:1 ratio the relative positions of each bearings 126 of the respective E and P units is critical. The P unit bearing 126 is positioned on pivot axis 122 so that, when P plunger 124 is in its median position, the center of P bearing ball 130 is in the samevertical plane with shaft 132 and is the same distance from the axis of pivot shaft 132 as is the axis of gear spindle which distance, as

that just explained above in relation to pivot 122, is great. enough so that pivot 132 is positioned outside spindle 20 to assure the effective linearity of the P-P movements. It will be appreciated that this arrangement provides the desired 1:1 ratio between the movements of P plunger 124 and the axis of spindle 20, since the latter is moved through the same effective linear distance (though actually through a very small arc) with pivot bracket 120. Further, special attention is called to the fact that, since this movement is also experienced by spindle housing 112', the latter might therefore be expected to move E unit bearing 126 and E bearing ball 130 wither toward or away from E-unit plunger 124, thereby producing undesirable E-axis movements which would seriously complicate the problem of E-axis control. However, the possible complication is avoided by a feature of the invention herein which places E-axis linear actuator unit 66 so that the center of its bearing ball 30 is positioned on the axis of pivot shaft 132 when E-unit plunger 124 is in its median position. To achieve this design feature, shaft 132 is slotted as mentioned above, and since the center of E bearing ball 130 is also positioned on the E axis, the linear movements of the E-unit plunger 124 are directly transmitted into E-E movements of spindle 20.

With reference now to FIG. 6, as the G motion linear actuator plunger 124 is moved axially, the associated bearing ball 130 pivots an arm about the pivot 142, in turn pushing the arm 140 against a ball 144 to move the pivot bracket 120 and the gear spindle housing 112 longitudinally. The ball 144 is mounted with respect to the pivot bracket 120 by a swivel cup 148 mounted on a slide 150 which permits sliding between the swivel cup 148 and the slide 150 only during E and P movements. A spring 146 biases the pivot bracket 120 to maintain the entire G motion assembly (120, 140, 144, 130 and 124) in firm engagement.

SEQUENCE OF MACHINE OPERATIONS Before explaining the sequence of machine opera tions in detail, it will first be described here in a general manner:

After a gear and a pinion have been mounted on their respective spindles, the drum 30 for controlling machine functions advances the gear head structure 50 so that the gear member meshes with the pinion. If the pinion and gear teeth are prealigned at the time of loading, the pinion spindle will not be rotating. Otherwise, automatic meshing is provided by the turning of the pinion spindle 18 at a slow rate (11) 20 rpm). As soon as the teeth mesh, the pinion spindle drive motor is turned off. The gear head structure 50 is then advanced again to bring the gear into metal to metal engagement with the pinion (sensed by a pneumatic switch not shown), and the gear head structure 50 clamps to the cross side 42.

Next, cycle drum 30 enables the lapping motion control circuits of the controller unit 12 (described in greater detail below) to cause machine operations to proceed in the following order as determined by the settings entered into the control panel of controller 12 (the left half of this control panel being shown in detail in FIGS. 8 and 8A and described in detail below:

i. The gear spindle housing 50 then withdraws along the G axis by the distance entered on the lapping motion control panel switch 252 for setting the backlash" (Row a at top of FIG. 8).

2. The pinion spindle 18 is accelerated to a predetermined speed for rough lapping" and in a .direction for lapping the reverse (i.e., coast") side of the teeth. At the start of this acceleration, the gear spindle 20 is moved (set-over") by the mechanism described above to establish a desired means tooth-contact position for the rough lapping motions, and the lapping compound pump is turned on (The system for delivering the lapping compound to the gears is not shown, since such systems are old and not essential to an understanding of the subject invention.) After the start of acceleration, the lapping brake (hydraulic motor 32) is activated to provide a preset ROUGH lap load and the rough lap motions take place. The preset spindle speed and brake load remain in effect throughout the rough lapping event.

. At the conclusion of this first rough lap event,

one of the following courses is initiated:

a. No further lapping is done on the reverse side. (Signaled by OFF setting on selector switch 263 at row k FIG. 8.) The controller 12 steps ahead to events involved with lapping the forward (i.e., drive) side of the teeth, and the events described two paragraphs below begin. Or

b. The reverse side of the teeth is finish lapped using the feather lap sequence. (Signaled by MEAN setting on selector switch 263 at row k.) Or

c. The reverse side is finish lapped in two additional cycles as part of the novel three-cycle lapping sequence described generally above. (Signaled by TIP setting on selector switch 263 at row k.)

4. At the beginning of the finish lap sequence, the

drive motor 24 output shaft speed and the lapping torque supplied by the brake 32 are switched to the values present for finish lapping. Simultaneously, the gear spindle 20 is moved to the Set- Over to Finish Lap" (row j) which has been predetermined as the proper mean tooth-contact position for the finish lapping movements. The finish lapping sequence whether TIP or MEAN is then carried out.

. Immediately upon completion of the finish lapping sequence for the reverse side, the gear spindle 20 is moved to the desired mean position for the rough lapping of the forward side of the gear teeth. (As will be appreciated by those skilled in the art, just as difi'erent mean points are desirable for rough and finish lapping motions on the same side of a tooth, it is desirable to establish still other mean points for the opposite tooth faces.) This last-mentioned spindle movement is selected by setting a Set-Over to Rough for the forward" side of the teeth, such a setting being made on row b of the .forward half of the control panel which is not shown but is similar to that portion of the panel which is illustrated in FIG. 8. Concurrently with the change in the spindle position, the direction and speed of drive motor 24 is reset for rough lapping the forward side, the lapping brake load being released during the time motor 24 changes directions.

6. When the drive motor is at or near the speed required for rough lapping the forward side, the

lapping brake is reset to a load desired for rough lapping the forward side, and the rough lap motions for the forward side can begin.

7. At the conclusion of this rough lap event, any one of the courses indicates at 3 above can be repeated for the forward side of the teeth.

8. Similarly, the finish lap sequences for the forward side are carried out in the same manner as was described above for the reverse side in paragraph 4.

9. At the conclusion of the finish lapping sequence for the forward side, a number of events take place simultaneously.

a. The flow of lapping compound is turned off.

b. The electronic relief valve that controls lapping torque is switched to its minimum setting.

c. A signal is sent to the cycle drum to permit it to advance to its next control sequence, withdrawing the gear head structure 50 to its load position.

10. Shortly after initiating the events at step No. 9 above, a special sequence of motions occurs in the lapping motion system.

a. The data for the last set-over is used to return the step motors 68 to their initial positions. This is done by reversing the sign of the data entry and moving each axis by the distance entered in thumb wheel switches on the control panel.

b. The G axis is then moved forward by the distance entered for setting the backlash.

ll. A signal is transmitted to the cycle drum 30 indicated that the lapping cycle is completed. This permits the cycle drum to move to its position for beginning the complete lapping routine once again for the next gear pair.

LAPPING CYCLE CONTROLLER The sequence of events just described above includes, during each lapping event, the movement of gear spindle 20 through a series of motions calculated to move the point of contact between the gear pair to achieve the lapping action desired for properly finishing the surface of the teeth and assuring proper tooth contact when assembled. The movement of the gear spindle 20 is controlled by the simultaneous movement of the E, P and G linear actuators in response to control pulses fed to their respective stepping motors, as described above. The generation of such control pulses will now be described with reference to the simplified block diagram of FIG. 7.

That portion of the diagram to the left of the dashed line represents the control circuitry for just one axis motor, for one particular cycle of operation, and it should be understood that two more similar circuits (not shown) are provided-for the other motors. The right hand portion of the diagram is common to the control circuit for all three axes, G, P and E. It will also be appreciated that only two switches (202 and 204) related to the direction and displacement along one axis for one particular cycle, are shown in FIG. 7, even though there are similar switches for each cycle (as can be seen from panel board in FIG. 8). Therefore, it will be understood that in actual practice the output of the other switches appearing on the control board, for the other axes and for different cycles and settings,

similarly feed into the circuit in the same manner as is shown for the three switches illustrated.

The live top boxes in FIG. 7 all represent binarycoded-decimal switchs which, as is well known in the art, provide a particular binary output for each one of a plurality of predetermined switch settings. To facilitate explanation of of this lapping control circuitry, the following will be assumed: the two switches 202, 204, on the top left correspond to desired movement along the P-axis during part of the particular cycle shown selected on lines and e of FIG. 8, namely, during a mean-to-heel cycle which is to last six seconds (switch 206), the cycle be repeated twice (i.e., switch 234 is set for two passes), with a rate of 60 percent (switch 242) for the selective extra roughing of one portion of the mean-to-heel path.

It will be appreciated that the individual components which comprisethis circuit are all well known and understood in the art, many being commercially available items. It is the particular method carried out by the sequential operation of the described circuits, in accordance with a predetermined program of control logic, that has been heretofore unknown.

Since it may facilitate understanding of the moredetailed explanation of this control circuitry which appears hereinbelow, the operation of this circuitry will first be described in a general manner as follows; The distance and direction of movement along any one axis G, P or E is preselected by setting of the appropriate switches on the control panel. The preselected distance is divided by the time alloted for this displacement (also preselected by switch setting) to determine a displacement rate" which is defined in terms of pulses per second to be fed to the stepping motor controlling that particular displacement. The stepping motor is then fed pulses at the desired rate for a period determined by timing circuits, the resulting rate of pulses over the prescribed time producing the desired displacemennlt will be appreciated that such displacements are occurring simultaneously on allthree axes during the same prescribed timepcriod. Aftereach individual lapping cycle has been completed, that is, a movement to full displacement and return to starting position, the cycle may be repeated as many times as has been selected on the passes switch relating to that particular cycle. During the cycle, when the displacement has reached some preselected point, the cycle may be slowed down (in the illustrative case by 60 percent) to increase accordingly the amount of lapping time over this particular portion of the tooth surface. This latter feature is accomplished by slowing ;down the time clock which controls the sequence of events in the apparatus. After each pair is lapped, the displacement mechanism is physically checked (by the zero lock system described below) to assure proper operation and to avoid the possible build-up of errors.

placements selected for the other axes. This rate is fed to the axis pulse control" unit 210 which includes a binary rate multiplier," a well-known electronic component which divides (i.e., multiplies by a fraction) an incoming train of pulses to produce an output pulse rate which varies in accordance with the particular binary numeral fed into its control. In other words, the arithmetic unit 208 produces a binary numeral output which, when fed into the binary rate multiplier of the axis pulse control unit 210 will produce the rate of pulses desired to control the stepping motor. As a check on operation of the arithmetic unit and/or of the lapping program set by the operator, the output of the arithmetic unit is also sent to an excessive rate error" detector 212 which provides an error signal 254 in the event that the rate selected is beyond the capacity of the motor.

The information from the time" switch 206 is also sent to a cycle time counter" 214 to preset the number of timing pulses required for it to indicate completion of the cycle. These timing pulses are produced by a timing pulse generator" 216 which is merely a divider which reduces the number of master clock pulses produced by the master clock oscillator. 218 and delivered to the circuit through pulse divider 244. This master clock pulse train is the same pulse train which is used as the input to the axis pulse control unit 210 to produce the desired rate of stepping motor pulses as just described above. I

According to the direction originally selected on switch 202, pulses of appropriate polarity and rate are then fed by the axis pulse control unit 210 to the step motor 68 until completion of the timing cycle is indicated by counter 214. System control logic circuits 224 then cause pulse control unit 210 to reverse polarity, and the same number of pulses of opposite polarity are fed to the step motor 68 until counter 214 indicates the return of. gear spindle 20 to the same position from which the cycle had been commenced.

It should be understood that the positionof gear spindle 20 at the beginning of each cycle is determined by the settings made on the "setover switches of the control panel (rows b and f in FIG. 8). Changes in setover positions are made prior to each lapping cycle by the appropriate addition or subtraction of I the preselected setover displacements from a mean zero position or from a previous setover position. While FIG. 7 does not include such setover switches, it can be appreciated that they .are binary-coded-decimal switches similar to those described above and that the arithmetic unit 208 and axis pulse control 210 operate in the same manner generally described above, driving the step motor to position spindle 20 along the P-axis at the place selected as the proper mean" position for each lapping cycle.

If the system is operating with ideal accuracy, following the completion of lapping a gear pair, including a plurality of cycles controlled in the manner explained above, the gear head structure is withdrawn to permit unloading of the gears and the pulse counter" 228 should return to zero. This corresponds to the datum positions and, as a practical matter, such mechanical sluggishness can generally be expected to result in actual inaccurate movement of as much as three to four ten-thousandths of an inch. The novel apparatus of the subject invention includes a zero-lock mechanism (described in greater detail below) designed to accommodate such expected, practical inaccuracies. At the end of each complete machine cycle, if the stepping motors have not returned exactly to their zero position, they are driven by additional pulses regulated by zero lock input 225 until the zero-lock mechanism indicates that they have been properly reset. Of course, it is always possible that, due to some mechanical malfunction, a stepping motor and its related linear actuator 66 may not be capable of accurately following the control pulses and that the resulting inaccuracies are beyond permissible tolerances. Such error is detected by the position error circuit 230 in the event that the number of pulses required, after the end of all lapping cycles for a gear pair, to return the stepping motor to its proper zero-lock position is greater than the number of pulses considered necessary to move the motor within normal tolerances. That is, if pulses representative of a mechanical movement greater than three to four ten-thousandths of an inch are registered on the counter during zero-lock resetting, a warning signal is provided, since such movement indicates that some mechanical failure is preventing proper machine v response to the pulses generated by the lapping control circuits.

It can also be appreciated that the actual mechanisms of the lapper may not respond in any way whatsoever to the control pulses of electronic controller 12. For instance, if a stepping motor does not respond at all to the pulses fed to it, it would remain in its proper zero-lock" position and no error would be indicted by position error circuit 230 even though the machine was totally inoperative as to the desired movement along a particular axis. In order to provide a check against such a major malfunction, the system control logic 224 provides an additional no motion check by (l) first causing the withdrawal of the zerolock mechanism, (2) delivering checking pulses to the motor to move it a distance known to be sufficient to prevent proper closing of the zero-lock mechanism, and (3) then operating the zero-lock mechanism. If the zero-lock mechanism indicates that the motor has actually been displaced in response to the checking pulses, then the zero-lock mechanism is once again operated in the manner just generally referred to above to return the step motor to its proper datum position. However, if following the final check displacement the zero-lock mechanism indicates that the stepping motor is still in its zero position, then it is apparent that the stepping motor is not properly responding to the pulses being delivered to it and an appropriate warning signal 232 is provided by final check" circuit 233. This warning is accompanied by appropriate P, G, or E lights 235 to indicate which particular stepping motor has failed to respond to the final motion check.

The position error" and final motion" checks which have just been described occur only at the end of the total cycles which have been preselected for one gear set. That is, when all cycles are complete and both sides of the gear teeth have been rough and finish lapped, the arithmetic units reverse all of the setover motions to return the lapper mechanism to its zero position, and it is at this time that the checks just referred to above are made.

5 It will also be appreciated that each cycle of stepping motor action is repeated as desired in accordance with the information selected on the passes switch 234, the system control logic circuits 224 merely repeating the cycle until the number of cycles indicated have been appropriately counted on cycle counter 236.

In order to provide a greater control over the lapping cycle, the subject lapping apparatus also provides for greater lapping of particular portions of the tooth surface during the roughing cycles. This greater time is achieved in an extremely simple manner, namely, by slowing the clock (which regulates all lapping movements) during that particular portion of the lapping cycle. Assuming that it is desired to spend more lapping time in one particular area near the heel of the tooth during the rough lapping cycle, the operator first selects that portion of the overall cycle during which lapping is occurring between the mean setover position and the heel, by setting position switch 238 (row e of FIG. 8) to H. He then selects the particular position at which this extra lapping is to occur by determining how long after the cycle is initiated that the desired slow-down should begin. For instance, assuming that a mean-to-heel basic cycle time of 6 seconds has been set initially (on time switch 206 at row c in FIG. 8 and that it is desired to obtain longer lapping over the outer portion of the heel, the operator sets time switch 240 (row e of FIG. 8) to 3 which will result in the desired slow-down occurring after the first three seconds of the six-second cycle. (The position and time selector switches are not shown in FIG. 7.) To provide the amount of extra lapping desired for this particular tooth area, the operator next sets percent rate switch 242 to a value indicating the amount by which the normal speed of the lapping motion is to be slowed during this portion of the cycle, for instance, to 60 percent of the normal rate. Such slow down increases the amount of time the gear pair run together making contact at this portion of their teeth, thereby increasing the amount of metal removed by the lapping process.

At the desired time, system control logic 224 opens gate 243 and the binary information encoded on switch 242 (representing in this example the 60 percent rate) passes through to the pulse divider 244 which is simply another binary rate multiplier positioned between the master clock oscillator and the remainder of the circuit. This binary input causes the pulse divider to divide the pulse rate of the master clock oscillator, thereby slowing down all three lapping movements to the 60 percent rate. As soon as the cycle time counter 214 has counted the number of pulses indicating the cycle point at which all of the stepping motors are to be reversed to return to the mean position for the cycle, the gate 243 to the percent rate switch 242 is closed and the output of the pulse divider returns to the normal pulse rate for the remainder of the cycle.

It will be appreciated that no attempt is being made to describe the many logic circuits, including reset pulses which clear the various counters, binary rate multipliers, arithmetic units, etc., since these are matters which are well known in the art and, given the general sequence of operations described above, can be easily reproduced by persons skilled in electronic controls.

THE CONTROL PANEL In FIG. 8 there is shown an arrangement of that portion of the switch panel of control unit 12 relating to the lapping of the reverse (coast) side of the teeth. The panel 250 contains an array of thumb-wheel switches for entering the data which controls the selected lapping cycle sequence and the distances, directions and rates of the 3-axis movements effected by the stepping motors. It should be understood that control unit 12 includes a second panel similar to panel 250, but operative to control lapping cycles for the forward (drive) side of the teeth of the gear pair being lapped.

Settings for Tip Lapping Method The control panel setting for a typical lapping sequence employing the novel peripheral (tip") lapping method of the invention will now be described, with reference being made to FIG. 8 and to the method steps set out above under the heading SEQUENCE OF MACHINE OPERATIONS."

At the top of FIG. 8 in row a are switches 252 and 253 for setting the initial backlash in terms of G-axis displacement away from metal-to-metal engagement. The backlash setting, like the other axial displacements for set-overs" and lapping motions, is accomplished by the same electronic logic circuits described above, being calculated at a rate of some number of control pulses per second for the time period alloted to the displacement. In the case of initial backlash setting, switch 252 provides the arithmetic unit with the displacement desired, while T switch 253 sets the alloted time which must be sufficiently long to assure that the displacement can be made without exceeding the maximum pulse response time of the G-axis stepping motor, or else the Excessive Rate warning light 254 will be lighted at the bottom of the panel (see also FIG. 7). After backlash is set, the gear set is in proper position for running together, and this may be done at low speeds in both directions to test for nicks and burrs. However, such testing is not part of the subject invention and for purposes of this disclosure the proper running position merely establishes the zero position for all axis displacements made thereafter.

On the left hand portion of control panel 250 in FIGS. 8 and 8A, are superimposed small representations of gear teeth each of which is intended to illustrate schematically the tooth contact pattern effected by the settings of the thumbwheel switches shown on each of the respective rows, a through k, of the panel. It is assumed that the particular gear pair being lapped when in proper running position with the backlash set as just described above, has an initial tooth contact pattern shown by the dotted lines on the gear tooth in row a, the mean point of this contact pattern being designated by the point 256. In lapping this particular gear pair, .it is desired to improve its initial tooth contact pattern by moving it to a more central location on the tooth and by narrowing it according to the novel method described herein, thereby to improve the adjustability and noise characteristics of the gear pair in assembly. The settings on control panel 250 are selected to provide rough and finish lapping cycles which will result in the desired improvement of tooth contact.

At the start of rough" lapping, spindle 20 is setover" along its E, P, and G axes by the amounts indicated on the switches in row b. This set-over effec tively changes the mean pint of tooth contact from 256 to 258, establishing the starting point for the tooth contact traverses which are used during the rough lapping cycle. It should be noted that this set'over also includes a time switch necessary to make this desired displacement compatible with the pulse rate system used to control the stepping motors.

The switches in rows 0 and 0' describe the end points, toward the heel and toe of the tooth, respectively, to and from which the tooth contact point will be traversed during the rough lapping cycle. For example, these particular setting will result. in a greater traverse over a longer period of time toward the heel along path 255, and a shorter traverse of less duration being made to and from the toe portion of the tooth over a differently directed path 257.

The logic circuits referred to above are programmed to cause one traverse to be made: to the heel followed by one to the toe, this complete movement being considered one lapping pass." Switch 234 determines how many such passes" will be made during the rough lapping cycle, while pinion spindle speed and brake load are determined by the settings of switches 260 and 262. In addition, Selective Rough Control switches 238, 240 and 242 provide for extra lapping of the heel portion of the gear teeth, as was explained above under the heading LAPPING CYCLE CONTROLLER.

As the result of the rough lapping cycle, it is assumed that, when in proper running position, the tooth contact pattern will have been changed to that indicated in dotted lines on the gear tooth superimposed on row e, with the mean point 256 (see sketch in row a) being moved to the center of the tooth as indicated by point 256'- As explained above, the apparatus disclosed herein provides either one of two finishing cycles, tip or feather. The respective settings for set-over and traverses for each of this finishing operation, and the respective effects of these settings are shown, respectively, at the bottom portion of FIG. 8 and in FIG. 8A.

To carry out the novel tip lapping method of the invention herein, it is necessary to use two distinctly different set-overs during the finish lapping cycles, one (shown in row f) moving the mean position of tooth contact to a point 259 near the tip (high on the ad dendum) of the gear, the other (row It) moving it to the point 261 relatively low on dedendum of the tooth. (Note: Point 261 coincides with a point near the tip of the mating gear being lapped.) The row 3 and J settings, for establishing the end points of the traverse of the tooth contact during each of the two tip lapping cycles, are given in the direction of the heel only. However, when Finish Operation switch 263 is set to TIP," the logic circuits automatically calculate the reverse of these settings to determine the toe portion of each of the two finishing cycles, and therefore the actual contact point moves along the tip periphery of the gear teeth toward both heel and toe during each complete pass, as schematically shown in the superimposed gear tooth representations. During these finishing cycles, pinion spindle speed and brake load are controlled by the settings of switches 264 and 266.

As a result of the tip lapping finishing cycles, the running position tooth contact pattern is narrowed (as shown in dotted lines on the gear tooth on row k of FIG. 8) in the manner contemplated by the novel method described hereinabove. This lapping method has been shown to improve the adjustability of gear pairs in assembly by more than 200-300 percent, thereby providing industry with great savings from reductions in initial assembly time, reassembly of rejects, and concommitant labor costs.

Following completion of the reverse side lapping cycles just described, the foreword side of the teeth are lapped in a similar manner. However, it should be understood that while the controls (not shown) duplicate those for reverse lapping, totally different displacements, traverse rates, rotation rates, brake torques and even a different method may be selected, if desired. Settings for Feather Lap Finishing Cycle FIG. 8A shows the lower portion of control panel 250 with the switches in rows f through k being set to provide the alternative mean or feather lap finishing cycle. In this operation, the selection of MEAN on switch 263 automatically by-passes the second setover switches of row It, and rows 3 and j are used to control respectively the heel and toe traverse, giving the same independent control (referred to in the art as split-bias control) for this finishing cycle as is available in roughing as explained above.

The new mean position 268 for the feather lapping finishing cycle is substantially coincident with the mean point of the tooth bearing which will be used when the gear pair is in proper running position, namely, near the center of the new tooth bearing area (see tooth sketch superimposed at row e in FIG. 8) produced by the semi-finish lapping cycle.

The effect of the feather lap finish is to provide an extremely refined tooth surface without appreciably disturbing the tooth contact pattern established during the rough lap cycle (as shown by schematic representations at row eof FIG. 8 and row k of FIG. 8A).

It is emphasized that the particular data entered on the control panel of FIGS. 8 and 8A and used in the above related discussion are merely exemplary of the exceptional versatility of the subject novel apparatus, and that no attempt has been made herein to exhaustively catalog the many different combinations of settings and steps which will be understood by those skilled in the art to be possible with the subject apparatus.

ZERO-LOCK MECHANISM As explained above, because of missed control pulses, sticky linkages, or other machine malfunction, the stepping motors may not return exactly to their pre-calculated zero positions following completion of the lapping of a gear pair, and to check for such malfunction and to ensure that the machine elements are in proper position for lapping the next gear set, a zerolock mechanism is provided.

Referring once again to FIGS. 3 and 4, each linear actuator unit 72 includes a dog 96 shown secured on the sleeve 78 to rotate with the sleeve 78 and the nut 82. The dog is shaped to have two angularly separated,

oppositely outwardly facing side surfaces 98 disposed a predetennined distance apart. There is further pro vided two pistons 100 slidably mounted in one side of the housing to project laterally into the housing. The pistons have side surfaces 102 which face one another and which are so close that when the dog 96 is generally directed toward the pistons, the pistons can only slide inwardly along the side surfaces 98 of the dog if the dog is precisely oriented at a predetermined angular orientation on the linear screw. Thus, since the dog is fixed with respect to the sleeve 78 and the nut 82, the pistons can extend only when the linear screw has a precise, predetermined axial location.

The pistons 100, which are biased by springs 105 toward interference with or sliding capture of the dog 96, are also selectively retractable out of engagement wit dog 96 in response to fluid pressure in chamber 104. The pistons 100 carry axial tail pieces to which limit switch trips 106 are secured for acting limit switches 108 in dependence upon the axial disposition of the pistons 100. upon retraction of the pistons 100, the dog trips 106 actuate the switches 108 to a first position, and upon return of the pistons to a dog-capturing extension as depicted in FIG. 4, the trips 106 actuate the switches 108 to a second position. So long as the pistons are retracted, the dog 96, sleeve 78, and nut 82 are free to rotate and axially extend and retract the linear screw 84. A release of fluid pressure in the chambers 104 allows the pistons to be forced toward their FIG. 4 positions by the springs 105.

As was described above, at the end of a complete lapping routine, the system control logic reverses all of the various set-overs made for the different lapping cycles, including the original backlash setting, thereby theoretically returning all of the mechanism for controlling the 3-axis movements of the gear spindle to its original zero" position. If, at this time, both pistons 100 of each linear actuator unit 72 are not in their fully extended position, i.e., if either limit switch 108 is still in its first position, pulses of appropriate polarity are delivered to the respective stepping motor to rotate dog 96 in the direction of the piston which has already moved to its extended position as indicated by its respective switch 108. Under normal circumstances, only a few pulses should be required before dog 96 returns to its zero position permitting the second piston to also extend, indicating that proper zero-lock has been achieved. However, if an excessive number of pulses are required to return the stepping motor to its proper zero position (e.g., indicating final position error in excess of 0.0007 inches), such position error is indicated by final motion warning light 231 (see FIGS. 7 and 8) as explained above.

As was also explained earlier, a final check is made by retracting the pistons 100, driving each stepping motor and its related dog 96 to a predetermined pistonblock position, and releasing the pistons 100 to their extended positions. If the switches 108 for any of the actuator units indicates that both pistons have returned to their extended positions, it is apparent that their related stepping motor is not properly responding to the control pulses, and this condition is indicated by NO MOTION" light 232 (see FIGS. 7 and 8).

SUMMARY The novel vertical pinion spindle/horizontal gear spindle configuration of the lapping apparatus disclosed herein uses less floor space, permits the operator to get closer to the workpieces, and facilitates use of automatic loading mechanisms.

The exceptionally versatile control arrangements of the subject apparatus can provide: (1) conventional rough lapping to produce a good surface finish over the entire tooth surface, correct the location of the bearing on the tooth, and control bearing length; or (2) rough lapping followed by mean or feather lapping to obtain the above plus optimum surface finish in the centralarea of the tooth, thereby minimizing objectionable sound characteristics due to finish; or (3) rough lapping followed by a novel peripheral lapping or tip lapping-to achieve the controls of the rough lap plus the described advantage of relieving the tops and deep flanks.

The novel peripheral lapping method can provide mating tooth surfaces which have substantial mismatch (or ease-off) both lengthwise and profilewise, and thus a full perimeter of no contact can be produced or preserved in lapping, thereby remarkably improving tolerances for adjusting the gear pair in assembly while maintaining desirable low-noise characteristics.

It should be evident that the machine and method disclosed permit immeasurably greater freedom of control over the lapping of gear pairs than has heretofore been available and permit the manufacture of lapped gear pairs having remarkably improved characteristics.

Itshould also be apparent that the gear lapper and method as described hereinabove can be modified and adapted to the needs of practice without departing from the spirit and scope of the principles of the invention as outlined and explained in this specification.

What is claimed is: 1. In agear head assembly in a machine for running together in mesh apair of bevel or hypoid gears, said assembly includinga head frame and spindle means rotatable about a longitudinal axis for receiving one gear of said pair, the improvement for supporting said spindle in said head frame comprising:

first axis means including a housing for said spindle means movable about a first axial pivot parallel to said spindle axis and laterally displaced therefrom in substantially the same vertical plane, and first actuator means fixed to said head frame for engaging said spindle housing, said first actuator means having a movable member driven by a first step motor to effect small angular movements of the housing about the first axial pivot for moving the spindle means substantially horizontally;

second axis means including pivot bracket means for supporting said first axial pivot, said pivot bracket means being itself movable about a second axial pivot parallel to said spindle axis and laterally displaced therefrom in substantially the I same horizontal plane, and second actuator means fixed to said head frame for engaging said pivot bracket means, said second actuator means having a member driven by a second step motor to effect small angular movements of the pivot bracket means about the second axial pivot for moving the spindle means substantially vertically;

third axis means including actuator means fixed to said head frame for engaging said pivot bracket means, said third actuator means having a movable member driven by a third step motor to effect small rectilinear movements of the pivot bracket means in the axial direction of said first and second pivots for moving the spindle means along its longitudinal axis.

2. The apparatus of claim 1 wherein each said movable member comprises a linearly displaceable ball screw.

3. The apparatus of claim 1 wherein said first and second axial pivots include shafts supported by and supporting, respectively, said pivot bracket means, and wherein the movable members of said first and second actuator means engage said housing and said pivot bracket means, respectively, at locations displaced from their respective pivot shafts to effect said small angular movements.

4. The apparatus of claim 2 wherein the linear displacement of each said ball screw is axial and all three displacements are substantially parallel to each other.

5. The apparatus of claim 3 wherein the displacement of each said movable member and the resulting displacement of the spindle means responsive thereto has a one-to-one ratio, and wherein said second axial pivot shaft has an opening therethrough and the movable member of said first actuator means passes through said opening.

6. In a machine having a frame and a pair of rotatable spindle means mounted to said frame for receiving and running together in mesh a pair of bevel or hypoid gears wherein the relative orientation of said gear pair can be set over to a plurality of mean positions to establish a particular predetermined tooth bearing for each such mean position and wherein said relative orientation may be progressively altered to traverse said tooth bearing generally lengthwise of the teeth of the gear pair from each said mean position, the improvement comprising:

three separate actuator means each including a pulse-responsive motor and a movable member operatively connecting said motor and one of said spindle means, for relatively moving said pair of spindle means along three respective lines of motion, the movements along each said line beingindependently controllable by the selective operation of a respective one of said motors, and controller means for generating pulses to selectively operate each said motor to move said spindle means and alter the relative orientation of said gear pair to effect the set-overs to said plurality of mean positions and to effect said traverses of the tooth bearing.

7. The apparatus of claim 6 wherein one of said spindle means is fixed to said frame, the other spindle means being movable relative thereto, and wherein all three actuator means are operatively connected to said one movable spindle means.

8. The apparatus of claim 6 wherein said controller means also selectively operates at least one of said motors and its respective actuator means to move said spindle means for setting backlash in the relative orientation of the gear pair.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1017613 *Oct 4, 1911Feb 13, 1912Robert B WeaverProcess of grinding gears.
US1796484 *Jul 31, 1928Mar 17, 1931Gleason WorksMethod and machine for finishing gears
US2904934 *May 25, 1956Sep 22, 1959Klingelnberg Soehne FerdGear lapping apparatus
US2919518 *Mar 6, 1957Jan 5, 1960Gleason WorksMachine for lapping or burnishing gears, or like operations
US2947120 *Aug 18, 1958Aug 2, 1960Gleason WorksMachine and method for running gears together for testing and finishing
US2961873 *Dec 28, 1956Nov 29, 1960Gleason WorksMachine for testing or lapping gears or the like
US2984956 *May 28, 1956May 23, 1961Klingelnberg Soehne FerdMethod for lapping gears to correct tooth bearing surfaces
US3069813 *Jun 26, 1961Dec 25, 1962Gleason WorksTesting or finishing machine for bevel or hypoid gears
US3099901 *Aug 25, 1961Aug 6, 1963Gleason WorksMethod and machine for finishing or testing gears
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4788476 *Sep 28, 1987Nov 29, 1988Werkzeugmaschinenfabrik Oerlikon-Buhrle AgMachine for lapping two curved-tooth bevel gears
US5119594 *Jun 8, 1988Jun 9, 1992Zahnradfabrik Friedrichshafen AgGrinding machine for continuous roll grinding of gears
US5191739 *Dec 5, 1990Mar 9, 1993Toyota Jidosha Kabushiki KaishaMethod and apparatus for lapping gear teeth while changing at least one of load torque, rotating speeds and rate of teeth contact point movement of the gears
US5207097 *Aug 12, 1992May 4, 1993Gei Systems, Inc.Gear tester with actuator supported platform
US5219389 *Aug 12, 1992Jun 15, 1993Gei Systems, Inc.Gear tester controlling selected degrees of freedom
US5224377 *Aug 12, 1992Jul 6, 1993Gei Systems, Inc.Rigid test table for gear sets
US5271271 *Apr 3, 1991Dec 21, 1993Frazier Charles HMethod and apparatus for inspection of gears
US5307676 *Aug 12, 1992May 3, 1994Gei Systems, Inc.Controllable gear testing system
US5392644 *Dec 20, 1993Feb 28, 1995Frazier; Charles H.Method and apparatus for inspection of gears
US5538462 *Mar 15, 1994Jul 23, 1996The Gleason WorksLapping compound supply system for a gear finishing machine
US5609058 *May 31, 1994Mar 11, 1997The Gleason WorksMethod of determining backlash
US5901454 *Sep 2, 1997May 11, 1999The Gleason WorksMethod of meshing gears
US6120355 *Sep 3, 1998Sep 19, 2000The Gleason WorksMethod and apparatus for lapping gears
US6217421Jan 6, 2000Apr 17, 2001The Gleason WorksMethod of lapping gears
US6481508Dec 5, 2000Nov 19, 2002The Gleason WorksSpindle for machine tool
US8795028Oct 4, 2005Aug 5, 2014The Gleason WorksMagnetic spindle for machine tool
US20060073766 *Oct 4, 2005Apr 6, 2006The Gleason WorksMagnetic spindle for machine tool
EP1332823A1 *Jul 31, 2001Aug 6, 2003Aisin Aw Co., Ltd.Gear, and method and device for finishing tooth face of gear
WO1994004903A1 *Aug 11, 1993Mar 3, 1994Gei Sysatems IncControllable gear testing system
WO2000013834A1 *Sep 2, 1999Mar 16, 2000Gleason WorksMethod and apparatus for lapping or testing gears
Classifications
U.S. Classification451/5, 73/162, 451/114, 29/90.6, 451/47
International ClassificationB23F19/02, B23F23/04
Cooperative ClassificationB23F19/025, B23F23/04
European ClassificationB23F23/04, B23F19/02B