Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3718906 A
Publication typeGrant
Publication dateFeb 27, 1973
Filing dateJun 1, 1971
Priority dateJun 1, 1971
Publication numberUS 3718906 A, US 3718906A, US-A-3718906, US3718906 A, US3718906A
InventorsR Lightner
Original AssigneeR Lightner
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Vending system for remotely accessible stored information
US 3718906 A
Abstract
A vending system includes a central station at which various information stored on master recordings can be selectively accessed by purchasers from any of multiple remote vending machines, the accessed information being reproduced on cartridge-type storage media at that vending machine. The cartridge, upon receiving all of the selected information, is ejected from the vending machine for the permanent use of the purchaser. In a preferred embodiment the master recording medium comprises a plurality of endless master tapes continuously driven by a common capstan. The master tapes may contain commercially recorded music which is selectively transferred to a magnetic tape cassette at a vending machine. The master tapes may contain complete albums of recordings which are automatically produced on the cassette, or alternatively may contain a variety of solo recordings which can be individually selected to create a new album of the purchaser's choice.
Images(8)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1 1 Lightner [54] VENDING SYSTEM FOR REMOTELY ACCESSIBLE STORED INFORMATION [76] Inventor: Robert W. Lightner, 85 N. Atlantic Avenue, Cocoa Beach, Fla. 32931 [22] Filed: June 1, 1971 [21] Appl. No.: 148,714

[52] U.S. Cl. ..340/l47 R, 179/2 TV, 179/63 CC, 179/63 MA, 179/1002 E, 194/15 [51] Int. Cl.....Gl lb 15/02, H04m 17/02, H04q 9/00 [58] Field of Search ..340/l47 R, 147 A, 149 A, 162, 340/174.l R, 174.1 CC, 147; l78/6.6 A;

179/1002 E, 2 R, 2 A, 63 MA, 6.3 CC;

1 1 Feb. 27, 1973 [57] ABSTRACT A vending system includes a central station at which various information stored on master recordings can be selectively accessed by purchasers from any of multiple remote vending machines, the accessed information being reproduced on cartridge-type storage media at that vending machine. The cartridge, upon receiving all of the selected information, is ejected from the vending machine for the permanent use of the purchaser. In a preferred embodiment the master recording medium comprises a plurality of endless master tapes continuously driven by a commoncapstan. The master tapes may contain commercially recorded music which is selectively transferred to a magnetic tape cassette at a vending machine. The master tapes may contain complete albums of References Cited recordings which are automatically produced on the cassette, or alternatively may contain a variety of solo UNITED STATES PATENTS recordings which can be individually selected to 3,609,227 9 1971 Kuljian ..l78/6.6 A Create a new album of the purchasers 3,444,334 5/1969 Clark ..l94/l5 3,169,624 2/1965 Baker et al. ..194/15 23 Chums 14 Drawmg Primary ExaminervDonald J. Yusko Att0meyRose & Edell CDMPUTEQ MQSTEQ TQPE svsrem f f1'[ 11 f 5 ,111, 35 iitr ua iltiu s r ziiill 4113) c 1413) 40 $9 t l CTUQEPHDNE SPEUQL XY llllDEBHND SlllllCl-llNG CENTRAL OFFlCE EXCHHNGE I Dim. UNES LU wrunwuuua mm i F DlRL one; L5 5 2 5 PlCTUREPHDNE r12u111 "I E Q I I [r5 d E PATENTEDFEBZYIBYK 3,718,906

SHEET 30F 8 I \NVENTDZ EDBEET u) UGHTNER QQN & w

PATENTED FEB27I973 SHEET 50F 8 I I i .11

INVENTDE. ROBERT w. UGHTNER g3 Qg m 5&3

wdnm.

ATTUPNEYS VENDING SYSTEM FOR REMOTELY ACCESSIBLE STORED INFORMATION BACKGROUND OF THE INVENTION The present invention relates to a method and apparatus employing a vending machine concept to permit large scale rapid dissemination of centrally stored information. More particularly, the present invention relates to a system wherein purchasers at various vending machine locations can obtain recordings of selected information stored at a central station. The preferred embodiment of the present invention is described herein as utilized for the sale of commercial audio recordings; it is to be understood however that the present system is applicable to the distribution and sale of virtually any stored information, be it audio, video, etc.

The commercial recording industry, while immensely profitable, has a number of logistics problems. For example, the recording companies often cannot produce and distribute sufficient copies of extremely popular recording within a period of time that is fast enough to take advantage of the popularity peak for the recording. Invariably there are lost sales by virtue of the fact that some consumers cannot obtain copies of a recording until after the popularity of that recording has ebbed. Another problem for the recording companies is the large investment required in materials, labor and equipment for reproducing thousands and sometimes millions of copies of a recording.

On another scale, the retailer of commercial recordings, in order to provide his customers with a large selection, must have a considerable inventory investment. Quite often, because of changes in the popularity of various types of music, the retailer is left with stock that can only be sold below the retailers cost.

Another phase of the problem in the recording industry may be viewed from the point of view of the consumer. Often, in the case of very popular recordings, the consumer must wait to obtain his copy because the retailer is temporarily sold out. Another problem faced by the consumer is his lack of choice in selecting the recordings he wishes to purchase. Specifically, the vast majority of recordings are albums containing a number of musical selections. If the consumer wishes to obtain copies of only one or two of the selections in an album, he is often forced to purchase the entire album because the desired selections are not available as single records. From the consumers point of view it would be highly desirable to permit him to group various individual recordings to form an album of his own choosing.

It is therefore a broad object of the present invention to provide a system and method for distributing recorded information to consumers wherein the aforementioned problems are eliminated.

It is another object of the present invention to provide a system and method whereby a recording company can place its product on the market almost immediately while only producing a relatively small number of recording copies.

It is another object of the present invention to provide a system and method for distributing commercjal recordings to the public which permits the retailer to avoid large investments in record copies.

It is still another object of the present invention to provide a system and method for distributing recordings to the public wherein the consumer can always obtain a copy of a currently popular recording.

It is still another object of the present invention to provide a system and method for distributing recordings to the public which permit the consumer to group individual recorded selections into an album of his own choice.

It is another object of the present invention to provide a system and method for rapidly and efficiently disseminating advertising messages.

SUMMARY OF THE INVENTION In accordance with the present invention, a central computer master tape center is installed in each major market area and services a multiplicity of remote vending machines distributed throughout that area. The master tape center includes storage media, such as endless tapes, on which a large selection of recordings can be easily and rapidly stored and changed. The master tape center communicates with the various vending machines by means of any suitable transmission media. Each vending machine offers to the consumer a selection of anything stored in the master tape center. The vending machine includes a high speed duplicator and a quantity of recordable media, such as blank tape cassettes. The data selected by the consumer is transmitted from the master tape center to the vending machine where it is copied by the duplicator onto the cassette which is then ejected from the machine. Payment by the consumer may be in the form of currency, tokens, or credit cards which permit the consumer to maintain an account that is maintained current by a computer at the master tape center.

In a preferred embodiment of the invention, the master tape center includes multiple endless tapes which are arranged to be continuously driven by a common capstan. Each tape is individually accessible from any vending machine serviced by the master tape center.

BRIEF DESCRIPTION OF THE DRAWINGS The above'and still further objects, features and advantages of the present invention will become apparent upon consideration of the following detailed description of one specific embodiment thereof, especially when taken in conjunction with the accompanying drawings, wherein:

FIG. 1 is a functional block diagram of a preferred embodiment of the present invention;

FIG. 2 is a front view in plan of a master tape transport cavity rack employed in the system of FIG. 1;

FIG. 3 is a top view in plan of a single master tape transport assembly utilized in the rack of FIG. 2;

FIGS. 4 and 4a are diagrammatic illustrations of the cassette changer employed in the system of FIG. 1, wherein the modifications of a commercially available cassette changer are specifically represented;

FIG. 5 is a side view in plan of a cassette vending machine mechanism employed in the present invention;

FIGS. 6 and 7 are top and bottom views respectively of a cassette storage magazine turret employed in the mechanism of FIG. 5;

FIG. 8 is a partial view in perspective of the mechanism of FIG. wherein the loading of cassettes into a duplicator is diagrammatically illustrated;

FIG. 9 is a functional block diagram illustrating transmission and multiplexing of signals between the master tape station and the vending machines'in the system of FIG. 1;

FIG. 10 is a logic diagram illustrating functional operation at each vending machine in the system of FIG. 1;

FIG. 11 is a functional block diagram illustrating the operation of control circuits located at the master tape center of the system of FIG. 1;

FIG. 12 is a functional block diagram of an alternative approach to signal transmission between the master tape center and the various vending machines; and

FIG. 13 is a functional block diagram illustrating a 7 second alternative approach to signal transmission between the master tape center and the various vending machines.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring specifically to FIG. 1 of the accompanying drawings there is illustrated a system comprising a multiplicity of vending machines 10(1), 10(2), 10(n), all serviced by a common master tape system 11 and a common computer system 12. Signal transmission and switching between the vending machines 10 and the computer and master tape systems is effected by unit 13, which in the preferred embodiment represents an American Telephone .& Telegraph special wide band XY picture phone switching exchange, such as is presently employed in the Pittsburgh, Pennsylvania area for picture phone transmission. The picture phone transmission system responds to dialed instructions entered at each vending machine to connect that vending machine to a selected master tape so that the contents of the latter can be transmitted to the vending machine. Appropriate interface circuits 14(a), 14(b), 14(c) .I4(N), are employed to render the system compatible with the signal requirements for the picture phone system.

Each vendingmachine 10 includes a touch tone dialing device 15 from which standard telephone dial lines extend to the central picture phone office exchange 13. In additiona picture phone trunk line extends from each vending machine 10 to the central office exchange 13.

The master tape system includes a plurality of endless tapes, each associated with a respective playback head, as described below. Each playback head communicates with the central office exchange 13 by means of an appropriate picture phone trunk line and an interface circuit'14. The computer system communicates with central office exchange 13 via a plurality of dial lines, one dial line for each master tape in master tape system 1 l. I

The standard telephone dial lines control the special I of buttons at touch tone device 15 in order to select which master tape, or portion thereof, he wishes to have reproduced on a blank cassette located at the vending machine.

Each of the master tapes may comprise one album of recorded selections, each master tape running continuously to permit multiple access to every album from any of vending machines 10. Tone signals, recorded after each selection in every album, signal vending machines waiting to receive that album so that reproduction may commence between selections rather than in the middle of a selection. Some of the master tapes, .rather than have complete albums recorded thereon, store only one selection; this permits a customer at a vending machine to select that song, in

addition to other singularly recorded selections, to

compose an album of his favorite selections.

The finished product cassette ejected from the vending machine may be of any format including two channel stereo quarter track format, or four channel quadraphonic four track in-line format, depending upon the program format on the master tapes. The electronics and heads for both systems are preferably four channels so that either format may be employed in the loading of the desired master tape. In a two channel, quarter track format the two stereo channels are duplicated simultaneously at the vending machine for both directions of playback. This cuts the duplicating played back at the same time in the quadraphonic for-- mat. For such a system it is preferable that the standard C-60 cassette minutes) be employed. Clearly, any length cassette or other tape cartridge may be utilized.

Referring now to FIGS. 2 and 3 of the accompanying drawings, the master tape system includes a plurality of flat rectangular master tape transport units 21 which are adapted to be stacked in a tape transport cavity rack 20. By way of example only, rack 20 is illustrated as being capable of receiving thirty transport units 21, each at a respective shelf 22; however, it is to be understood that any number of transport units 21 may be stacked in a single cavity rack 20. I

Master tape transport unit 21 includes a section of endless tape 23 stored in a bin 24 having an egress opening 25 and an ingress opening 26 between which a section of tape 23 extends exteriorly of bin 24. A master tape transport path extending between egress opening 25 and ingress opening 26 includes the following elements: A guide channel 27 defined between a portion of the wall of bin 24 and the exterior wall of transport unit 21; a series of tape guides 28; a four channel playback head 29; and pinch roller 30. Pinch roller 30 is urged into driving position by spring 32 attached to pinch roller pivot arm 31. The four output channels from playback head 29 are electrically connected to respective contact pins 33 extending outwardly from the rear edge of the transport unit 21.

The rear edge of transport unit 21 includes a recessed portion which extends to the point at which master tape 23 passes pinch roller 30. This permits the master tape to be engaged between the pinch roller 30 and a capstan 34 when the master tape transport unit 21 is slid into rack in one of shelves 22. Capstan 34, as viewed in FIG. 2, extends along the entire vertical length of raclt 20 so as to engage each of the master tapes installed in the rack. A capstan drive motor 36 provides continuous rotary drive for capstan 34. A capstan shield 35 surrounds a portion of the capstan periphery and prevents master tape 23 from wrapping around the capstan or pinch roller 30. A connector strip 37 extends vertically along the rear interior wall of rack 20 and includes a series of four female connectors each adapted to receive a set of four contact pins 33 from a respective master tape transport unit 21 mounted in the rack. The output signals from each master tape transport unit are amplified and multiplexed in the manner described hereinbelow.

Each of the remote vending machines includes a cassette changer 40 of the same general type as Norelco Model No. 2502. However, the Norelco cassette change is modified as illustrated in FIGS. 4 and 4a for purposes of its utilization in the present invention. Specifically the changes to the cassette changer are as follows: l the playback head is removed and replaced by a four channel cassette duplicator head 41; (2) a second motor M2 is provided along with existing motor M1; (3) the drive belt 43 connected to the cassette duplicator fly wheel 44 is moved from motor M1 to the newly added motor M2; (4) a pause solenoid 45 is added; (5) the eject button is removed; and (6) the eject relay, formerly actuated by the eject button, is driven by logic circuitry illustrated in detail in FIG. 10. Motor M2 thus drives capstan 46 which in turn drives idler 47 to drive the take up reel 48 of the cassette currently in the duplicator 49. Motor M1 is left to drive the changer mechanism alone in the same manner as in the N orelco cassette changer.

Operation of the vending machine is more clearly understood with reference to FIGS. 5, 6, 7 and 8. More specifically, the vending machine includes a frame having a base plate 54 below which is mounted substantially all of the electronic circuits required for operation of the vending machine. A generally circular turret frame 53 is supported above and spaced from base plate 54. Turret frame 53 has a plurality of holes 60 defined therethrough and forming a circle about the center of the frame. A flat circular turret member 50 is rotatably supported by turret frame 53 for rotation about an axis extending through the centers of both turret member 50 and turret frame 53. A plurality ofindex holes 61 are defined through turret member 50 and form a circle of size identical to the circle formed by guide holes 60. The guide holes are equal in number to the index holes and in the example illustrated fifteen of each set of holes are provided.

A plurality of rectangular holes 52 are defined through turret member 50 and form a circular path adjacent the periphery of the turret member. The number of rectangular holes 52 is equal to the number of index holes 61. The size of rectangular holes 52 is slightly greater than the size of a tape cassette to be employed with the vending machine of the present invention. Extending upwardly from each rectangular hole 52 is a cassette storage magazine 63 arranged to support a stack of tape cassettes. The bottom cassette in each stack is supported on the upper surface of turret frame 53 and slides along that surface as turret member rotates. For this purpose, the spacing between turret member 50 and turret frame 53 is less than the thickness of a cassette. A single rectangular hole 62, also slightly larger than the size of a cassette, is provided in turret frame 53 as best illustrated in FIG. 7. When turret member 50 is rotated so that a stack of casettes overlies hole 62 in turret frame 53, the lowermost cassette in the stack is free to fall through the turret frame. Located immediately below rectangular hole 62 is the duplicator mechanism 49 which is arranged to receive cassettes from the turret member.

A turret timing solenoid 55 is disposed beneath turret frame 53 and includes an armature in the form of turret alignment rod 56. Alignment rod 56 extends upwardly through turret frame 53 and turret member 50 through a pair of aligned holes 60, 61. In this manner rod 56 prevents relative rotation between the turret member and the turret frame. When solenoid 55 is energized rod 56 is axially retracted a distance sufficient to clear turret member 50 and thereby permit rotation of turret member 50 relative to frame 53. A flange 58 is secured to rod 56 at a location below frame 53 and acts to compress a spring 57 against the main frame of solenoid 55. Retraction of rod 56 upon energization of the solenoid is accomplished against the bias of spring 57 which continually urges the rod upwardly.

When flange 58 is retracted with rod 56 it actuates a microswitch 59 to supply energization current to motor M3. In addition flange 58 is arranged to actuate a motor lever 64 when solenoid 55 is energized, the lever in turn actuating a tension rod 65 to pull turret motor M3 toward turret 50 against the action of bias spring 66. This causes turret drive wheel 51 to peripherally engage the turret member 50 to effect a rimdrive operation.

A channel 66 of rectangular cross section extends downwardly from a rectangular hole 62 in turret frame 53 toward the cassette duplicator mechanism 49 and thereby provides a loading guide channel for the duplicator. A cassette sensing switch 67 is arranged in guide channel 66 to detect the presence or absence of a cassette in the storage magazine 63 aligned with duplicator 40.

When a storage magazine is aligned over opening 62 and guide channel 66, the lowermost cassette is in position to be recorded upon whereas the second lowermost cassette actuates cassette sense switch 67. This removes a ground signal from solenoid 55, maintaining the solenoid deenergized with turret alignment rod 56 engaging an appropriate one of index holes 61 in turret 50. When the duplication of information on the cassette in the duplicator is completed, a signal, generated in the manner described hereinbelow in relation to FIG. 10, actuates the eject mechanism to cause the full cassette to be ejected via port 68 and be taken by the consumer. Ejection of the cassette is effected in the same manner as in the Norelco Model 2502 Cassette Changer when the eject button therein is actuated.

When the last cassette of the storage magazine 63 is in the duplicator, the cassette sensing switch 67 is released to provide a ground for turret timing solenoid 55. The latter is energized thereby, causing alignment rod 56 to retract and unlock turret 50 relative to frame 53. In addition flange 58 actuates microswitch 59 and lever 64 to energize motor M3 and bring motor drive wheel 51 into engagement with turret 50. The turret is rotated at the rate of approximately one-sixth revolution per minute. Approximately one half inch before the next storage magazine 63 is aligned with hole 62 and guide channel 66, the lowermost cassette in that magazine drops into channel 66 to actuate switch 67. This removes the ground signal from solenoid 55 which nevertheless is maintained in a condition with rod 56 retracted due to the fact that the rod is not yet aligned with an index hole 61. The turret therefore continues to rotate, as driven by motor M3, until index hole 61 is aligned with rod 56 which thereupon is pushed by spring 57 through index hole 61 to lock the turret in place.

In the manner described in the preceding paragraphs, turret member 50 is sequentially stepped one magazine position at a time as each storage magazine 63 is emptied.

Audio signal transmission between a master tape playback head and a vending machine is illustrated functionally in FIG. 9. The four audio output signals from a typical playback head 29 at the master tape center are applied to respective playback amplifiers 71. Each of amplifiers 71 may comprise a Telex Model TDA-I and is preferably mounted integrally with the master tape transport cavity rack 20 of FIG. 2. One set of amplifiers 71 is provided for each master tape. Transmission from the master tape center is assumed to be accomplished by means of American Telephone and Telegraph picture phone trunks. To save the number of lines which must be switched, the four amplified playback signals are multiplexed into a single line for each master tape. Audio playback channel Number 1 is FM-modulated on a 276 KHz carrier at modulator 72. Channels Number 2 and Number 3 are time division modulated with a 76 KHz clock at modulator 73. Channel Number 4 is FM-modulated on a 368 KHZ carrier at modulator 74. The three output signals from modulators 72, 73 and 74 are resistively mixed at mixer 75 and terminated at zero db level at American Telephone and Telegraph picture phone PBF interface unit 76. The composite signal is transmitted through an American Telephone & Telegraph picture phone wide band trunk, as described in relation to FIG. 1, to the picture phone wide band switching central office exchange 13. The composite signal is then switched to the appropriate calling picture phone trunks and transmitted to the vending machine stations. Each station terminates the received signal in American Telephone and Telegraph picture phone PBF interface unit 77 which in turn delivers the signal to a decoder unit 78 which separates the 276 KHz carrier, the 368 KHz carrier and the 76 KHz time divided signals. The 276 KHZ signal is demodulated by FM-demodulator 82 to restore the channel Number 1 audio signal. Likewise the 368 KHZ signal is demodulated by FM-demodulator 84 to restore the channel Number 4 signal. The channels Number 2 and Number 3 signals are restored by time division demodulator 83. The four demodulated audio signals are then delivered to signal conditioning circuits 81 which by way of example may be Dolby Model 320 signal conditioners. The conditioned signals are then delivered to record amplifiers 85 before being applied to the vending machine duplicator head 41. Amplifiers 85 may be Telex Model TDA-l amplifiers.

The demodulated channel Number 4 signal, in addition to providing audio information from one of the master tape tracks, serves a control function in that it also carriers an 80 Hz tone which is recorded between selections on the master tape. This signal is employed in FIG. 10, in the manner described below, as a start/stop control signal.

Referring now to FIG. 10 of the accompanying drawings there is illustrated a logic circuit employed in each vending machine to control operation in response to deposit of currency or insertion of a credit cardinto the vending machine by a consumer. For purposes of illustration only, a positive logic convention is employed in FIG. 10 whereby a relatively positive signal is considered binary 1 and a relative negative signal is considered binary 0. Initiation of operation at a vending machine occurs upon deposit of currency in a currency receiver 91 or insertion of a credit card in credit card terminal 92. Currency receiver 91 is a conventional currency receiver of the type which gives a positive voltage signal upon receipt of a preestablished amount of currency. Credit card terminal 92 is also conventional and may for example be the type manufactured by IBM as Model 2730-1. Assuming first the receipt of the proper amount of currency at receiver 91, a binary 1 signal is applied to the preset terminal of flip-flop 93 to force a binary 1 signal at the Q output terminal of that flip-flop. Flip-flop 93, as well as all of the flip-flops described herein, may be of the type manufactured by Texas Instruments Model SN7476. The binary 1 Q signal from flip-flop 93 actuates relay driver 94, which is simply a binary inverter, to energize the power relay 95. Energization of power relay 95 closes the normally open contacts of that relay to apply power to the electronics and control circuits of the vending machine. Application of power to the vending machine circuits energizes line relay 96 through a path provided by the normally closed contacts of line interrupt relay 97. Energization of line switch relay 96 connects the telephone dial lines for the vending machine to a conventional touch tone dialing device 15. In addition the dial tone from the telephone dial lines is connected through contacts of relay 96 to a pair of dial tone band pass filters 101 and 102, which filters include detection circuits which provide binary 1 output signals whenever a signal at the standard dial tone frequency is received. The output signals from filters 101 and 102 actuate AND gate 103 which in turn actuates relay driver 104 to energize dial tone relay 105. When relay 105 is energized its normally open contacts close to light the dial for selection" lamp 106 on the front panel of the vending machine. The customer is now able to push an appropriate combination of push buttons at touch tone device 15 to select whichever master tape he wishes duplicated at the vending machine. A number code for each master tape will normally be provided at each vending machine to facilitate selection by the customer.

In addition to turning on the power and actuating the touch tone device 15 insertion of the proper amount of currency in currency receiver 91 generates an enable signal which is applied to an 80 Hertz band pass filter 111. The enable signal effectively provides power to the band pass filter rendering it responsive to pass signals within a band centered about 80 Hertz. The input signal to the 80 Hertz filter is the start/stop control signal derived from input channel Number 4 in FIG. 9. There is an 80 Hertz control tone recorded between selections on each master tape. In order to prevent initiation of master tape duplication in the middle of a selection, the 80 Hertz tone, in the manner to be described below, permits access to the master tape by the vending machine. Thus the currency receiver 91, by virtue of its generation of the enable signal, puts the vending machine in a mode whereby it is awaiting access to the master tape selected at touch tone device 15.

Operation of the vending machine by credit card is substantially the same as that described for currency, with the exception that credit card operation requires credit checking and billing operations at the computer 12 before the vending machine is permitted access to the selected master tape. These credit checking and billing operations are described below in reference to FIG. 11. For purposes of describing the remainder of FIG. 10 it is assumed that the proper amount of currency has been received by receiver 91 or that a valid credit card has been inserted in credit card terminal 92. In either case, both currency receiver 91 and credit card terminal 92 generate the start and enable signals mentioned above.

If the vending machine is awaiting access to a selected master tape, receipt of the 80 Hertz tone signal at filter 1 11 is detected by detector 1 12 to provide a binary 1 signal to preset flip-flop 113. The resulting binary 1 Q output signal from flip-flop 113 actuates relay driver 114 to energize pause relay 115. This closes the normally opened contacts of relay 115 to remove energization voltage from pause solenoid 45, causing the latter to release whereby capstan idler 47 is biased into engagement with capstan 46 (see FIG. 4a) and take up reel 48 to drive the latter and start the duplicator tape in motion. The recorded information transmitted by the selected master tape is thereby duplicated on the cassette currently in duplicator 49.

The transition from binary to binary 1 at flip-flop 113 actuates a second time delay 116 which, 5 seconds later, presets flip-flop 117, thereby priming AND gate 118. The 5 second delay before setting flipflop 117 is necessary to prevent the clear leader portion of the cassette tape 120 to proceed past light source 122 and aligned photo ,cell 121 before AND gate 118 is primed. More specifically, there is clear (transparent) leader at both ends of the cassette tape 120. Light from lamp 122 passes through the clear leader to actuate photo cell 121, thereby rendering the resistance of the photo cell low. The actuated photo cell thereby provides a binary 1 end of tape signal to AND gate 118 which is thereby actuated when primed by flip-flop 117. If the clear leader at the beginning of the cassette tape 120 were permitted to actuate AND gate 118, the latter would clear flip-flop 1 13 to eventually disengage capstan idler 47 from the take up reel in the duplicator and thereby stop the tape before reproduction can begin. Once the clear leader portion of tape is transported past photo cell 121 the end of tape signal is maintained binary 0 and AND 1 18 is inhibited.

Assuming the consumer wishes to duplicate an entire album recorded on a single master tape, duplicating of the master tape contents continues until the clear leader at the end of the cassette tape is detected by the photocell 121. It is assumed of course that the album on the master tape is of sufficient length to approximately fill the cassette. When the end of tape clear leader is detected AND gate 118 is actuated and provides a binary 1 signal to clear flip-flops 113 and 117. The clear pulse for both of these flip-flops is of relatively short duration since the clearing of flip-flop 117 provides a binary 0 Q output signal therefrom which disables AND gate 118.

Clearing of flip-flop 1 13 deactivates relay driver 114 to de-energize pause relay 115. The normally open contacts of relay 115 serve to complete the energization path for pause solenoid 45 which retracts its armature to remove the capstan idler 47 from contact with the take up reel in duplicator 49. Tape transport in the duplicator is thereby stopped. The end of tape pulse provided by AND gate 118 presets flip-flop 123 which responds by providing a binary 1 Q output signal. This Q output signal is applied to a 2 second delay circuit 124 which, 2 seconds later, clears flip-flop 123 so that the binary 1 state of the 0 output signal is permitted to subsist for only 2 seconds. During that 2 second interval the binary 1 Q output signal actuates relay driver 125 to energize the eject relay 126 which operates latch 127 at the duplicator to eject the cassette through ejection port 68.

The end of tape output pulse from AND gate 118 also clears flip-flop 93 to de-energize power relay 95. Power is thereby removed from the control circuits in the vending machine until currency or a credit card is once again received. Removal of power de-energizes the line switch relay 96 to break contact between touch tone device 15 and the telephone dial line.

Assume now that the consumer, once having inserted the proper credit card or proper amount of currency, wishes to compose his own album from specially prepared solo selections on various ones of the master tapes. On these master tapes each selection is followed by a Hertz control tone which, after a suitable interval, is in turn followed by the 80 Hertz control tone. If duplication has been initiated in the manner described above, before the end of tape signal terminates duplication, a 140 Hertz control tone is received after the first selection has been duplicated. This tone is received on the start/stop control signal line from FIG. 9 and is passed by the M0 Hertz band pass filter 131 to AND gate 139. The latter is controlled by the Q output signal of flip-flop 113 which will normally be binary 0 at this time. AND gate 139, therefore, is not enabled by a 140 Hz tone until an 80 Hz tone has been received. The first 140 Hz tone following an 80 Hz tone is then passed by gate 139. The passed tone is detected at detector 132 and applies a binary 1 signal to one input terminal of AND gate 133. In addition, the output signal from detector 132 is applied to the J and K input terminals of flip-flop 134, and to the CLK input terminals of each of flip-flops 134, 135, 136,

and 137. These four flip-flops are connected as a binary counter which is preset by each end of tape signal from AND gate 118 to a count of twelve. Each detected 140 Hertz tone at detector 132 adds a count to the counter. Since a count of twelve is preset into the counter, the Q output signal from the most significant bit stage 137 is binary 1 when the first I40 Hertz tone is detected. Consequently both input signals to AND gate 133 are binary 1 and the gate is actuated to clear flip-flop 113. Clearing of flip-flop 113, as described above, retracts capstan idler 47 from the take up reel in the duplicator to inhibit transport of the cassette tape. In addition, clearing of flip-flop 113 provides a binary l 6 to one shot multivibrator 141 which provides a binary one pulse of seconds duration to actuate relay driver 142 for that period. Line interrupt relay 97 is therefore momentarily energized to in turn de-energize the line switch relay 96 and remove the telephone dial lines from the vending machine circuits for the five second period of one shot multivibrator 141. After the five seconds the output signal from one shot multivibrator 141 goes to binary 0, inhibiting line interrupt line relay 97 to thereby re-energize line switch relay 96. The telephone dial lines are once again connected to the circuit, the dial tone returns, and the dial for selection lamp 106 is lit in the manner described above. The consumer may then choose his next selection by pressing the proper combination of buttons at the touch tone device 15. When the master tape containing the selection is connected to the vending machine by the switching circuitry, the circuitry awaits the next 80 Hertz tone from that tape. If that master tape is in the middle of a selection when the vending machine is connected, the 140 Hz stop tone at the end of the selection is precluded from having any effect by AND gate 139. Specifically, gate 139 is inhibited by flip-flop 113 until the next 80 Hz start tone is received. When the 80 Hz tone is received flip-flop 113 is preset once again to prime AND gate 139 for the next 140 Hz control tone. In addition, flip-flop 113 initiates cassette tape transport and primes the end-of-tape AND gate 1 18.

At the end of the current selection the 140 Hertz tone appears once again to suspend cassette tape transport in the manner described above. In addition the 140 Hertz tone adds a count to the binary counter comprising flip-flops 134 through 137. Operation proceeds as described to permit the consumer to make a series of selections. At the end of the fourth selection the 140 Hertz tone recycles the counter comprising flip-flops 134 through 137 to all zero states. Thus at the end of the fifth selection AND gate 133 is disabled by the binary Q signal from flip-flop 137. The I40 Hertz tone at the end of the fifth selection is therefore unable to clear flip-flop 113. Instead, the cassette tape is permitted to run to the end at which point photo cell 121 detects the clear leader and disconnects the vending machine from the master tape center in the manner described above.

Considering the operation of the system in response to insertion of a credit card in terminal 92, the start signal presets flip-flop 93 to energize power relay 95 and apply power to the system. Line switch relay 96 is energized by the applied power to in turn apply the telephone dial lines to touch tone device 15. Telephone line coupling to the computer is illustrated in FIG. 11 and is effected by a data coupler circuit 151 and terminal control unit 152, one each for each computer telephone line. The data coupler unit 151 may be a conventional Western Electric CBS Model and the terminal control unit 152 may for example be the IBM Model 2968-9 unit. A common audio response unit 153 for all of the telephone lines at the computer responds to a call up from a vending machine by sending an interrogate pulse over the telephone lines to the credit card terminal 92 at the vending machine. The credit card terminal responds by reading the magnetic strip on the inserted credit card and transmits the numbers in digital form back over the telephone line to audio response unit 153. The computer 12 checks the received credit card number and verifies the status of the card. If the credit card is verified as a valid card, audio response unit 153 transmits an indication to the credit card terminal via the telephone dial lines. The credit card terminal responds by generating the enable signal to actuate the Hertz band pass filter 111 and permit duplication to proceed upon receipt by the vending machine of the next 80 Hertz control tone. In addition the computer adds the cost of the album or selections being recorded to the appropriate file in the computer storage disks 154 and 155. The accumulated billings for each customer can be accessed and billed at a specified period of each month. In addition the computer stores the number of the album or selections duplicated for internal records for payment of royalties to recording companies. Another important feature of the system is its capability of providing instantaneous popularity ratings for the various records. These ratings are easily computed by computer 12.

Computer 12 is preferably an IBM 360 computer, Model 25. It utilizes a key board printer 156 which is preferably IBM Model No. 1052, a card reader 157, which for example may be IBM Model I402, and a line printer 158, which for example may be IBM Model No. 1403, are employed in conjunction with computer 12. Storage disks 154 and 155 may for example be IBM Model No. 2311. 1

In the foregoing description a four track system is assumed whereby each master tape contains four recorded tracks and each vending machine cassette contains four recorded tracks. The recorded format may be two channel stereo or four channel quadraphonic as desired. Those master tapes containing a complete album are provided with 80 Hertz tone signals between each selection as described above. Those master tapes from which individual selections may be chosen to compose a unique album have only the one selection stored repetitively on that tape. For the album tapes the two channel stereo programs are specially arranged so that the two tracks on the one side of the album have a selection of approximately the same timed length as the selection recorded on the ad-' jacent two tracks of the other album side. This feature permits access to all four tracks simultaneously at a master tape location between selections. It is to be noted that all four tracks are transmitted to the vending station simultaneously to minimize the duplicating time. Since the cassette which receives the master tape information must be turned over when playing back different sides of the album, the simultaneous four track duplication requires that two of the tracks be duplicated while running backwards. In duplicating there is no quality deterioration if tracks are running backwards.

Where the four channel quadraphonic format is used, it is obvious that the relative lengths of adjacent track pairs takes care of itself automatically since the same selection is recorded on all four tracks.

For the two channel stereo format the standard C-30 cassette can be employed at the vending machines. In the four channel quadraphonic system, playing time of the finished tape is half that for the two channel stereo format; in such case the standard C-60 cassette may be employed.

The standard master tape uses the Dolby A-Parameter Noise Reduction System and is recorded at 3% ips real time and played on the master transport at ips. The cassette duplicator slave recorder in the vending machine converts the information to the B-Parameter Dolby Noise Reduction System which is compatible with consumer tape players and records at 7%ips. The vending process time would be 3% minutes on a C-30 cassette. Using the new cromium dioxide tape and the Dolby A-Parameter Noise Reduction System, the master tape is recorded at 1% ips real time speed and played on the master transport at 15 ips. The cassette duplicator slave recorder in the vending machine would run at 15 ips. The vending process time for a C-30 cassette would be l"/a minutes. The masters may also be recorded using fhe B-Parameter Dolby Noise Reduction System in which case conversion processing would not be required in the vendor duplicator, but the quality of reproduction would not be quite as high as in the A-Parameter master processed to B-Parameter finished product cassette. Crystal ferrite record, reproduce heads are used in this system to compensate for the increased wear factor using the higher performance, more abrasive cromium dioxide tape running at higher speeds. Standard Telex 235 Series duplicator electronics designs may be used in both systems. Special line matching transformers are metered, adjustable output voltage preamps are used to meet AT&T transmission specifications to interface with AT&T transmission lines. The speed can be increased to 60 ips with present technology applied by any qualified audio design engineer using CATV transmission cable, privately installed wideband coaxial cable or AT&T wideband facilities if new technology in transmission makes it economically feasible. Duplicator process time would be less than 30 seconds on a C30 cassette.

It will be appreciated, of course, that the multiplexing frequencies specified in relation to FIG. 9 are intended to be by way of example only and not limiting on the scope of the invention. The specified frequencies, in fact have been correlated with the illustrative duplicating speed mentioned in the preceding paragraph to minimize distortion. The utilization of different duplicating speeds will usually require a suitable change in the multiplexing frequencies.

In addition, the use of the AT&T picture phone system, as that system presently exists, requires that the transmitted signals be in analog form due to the relatively limited system bandwidth. The projected color picture phone system has a wider bandwidth than the present black-and-white system; consequently, the projected picture phone system will be able to handle digital signal transmission whereby digital to analog and analog to digital converter would be incorporated in a conventional manner in the system of the present invention.

The program format, tape size, and cartridge style may obviously be varied as desired. For example, eight channel eight-track cartridge duplicating is possible. Such a system would in effect require the doubling of the electronics in the system described above for four channel duplicating. Whereas the four channel cassette masters employ half inch tape, the eight track cartridge masters would employ l inch tape. In fact, master tape transports can be expanded to any tape width desired or any number of channels desired. The important factor is not the number of channels or the program format but rather the concept of remotely vending cartridge-type storage components on which centrally stored information is duplicated on command. Naturally, for the eight track vending machine the operation would be substantially the same as for the four track machine described above except that the four track cassette duplicator would be replaced by an eight track cartridge duplicator, the turret storage magazines would be enlarged to accommodate the larger eight track cartridges, the multiplexing equipment would be expanded to include eight multiplexed channels, and the vending machine audio circuits would be effectively doubled in number.

In addition to variations in the format and configuration of the storage media, signal transmission between the vending machine and the central station can be effected in a number of alternative ways. For example, reference being made to FIG. 12, alternative microwave transmission may be effected by using the Jerrold SRL-l microwave system or equivalent. This system may be employed in point to point transmission when transmitting four channels on each microwave link for as many as 8 miles without the necessity for relay stations. The four signal channels delivered from each master tape at tape center 11 are applied to respective Jerrold Model SRL-l exciters 161, 162, 163 and 164. The resulting four output signals are applied to the Jerrold Model SRL-l transmitter and transmitted by a microwave link 165. The transmitted signal is received by Jerrold Model SRL-3 receiver converter unit 166 where it is separated into four channels which are delivered to four standard VHF tuners 167, 168, 169 and 170. The tuner output signals are then applied to the vending machine in the same manner described above for the picture phone transmission system.

Alternatively, and reference is made to FIG. 13, CATV transmission may be employed for the vending machine system of the present invention. The present system may use existing CATV cable facilities without interferring with existing TV programs by connecting each master tape channel to a respective FM modulator such as the Jerrold AFM-2 FM modulator, designated by the numerals 171, 172, 173 and 174 in FIG. 13. The output signals from the FM modulators are combined and transmitted via CATV cable 175 to the appropriate vending machine location where the signal is applied to four FM tuners 176, 177, 178 and 179. The PM tuners may for example be McIntosh Model MR77 tuners utilized in their monaural mode (i.e., multiplex switched off) and selected because of their excellent phase linearity at high frequencies. Standard FM broadcast frequencies of 88 to l08 MHz are employed for transmission in the approach of F l6. 13. The channels are placed 200 KHz apart thereby permitting 50 channels for each CATV system.

The central master tape center may be expanded to include any number of master tapes containing any mix of programs desired or necessitated by market conditions. The cartridges or video cassettes may be vended by employing the same concepts described herein. Under such circumstances the master tape transport head would be replaced with a moving rotary helicalscan head for increased frequency response, the capstan speed would be changed to meet video tape speed format and the electronics would be changed to video type electronic systems. The vending machine duplicator transports would be changed in the same manner.

Of course, the most important concept of the present invention is the remote vending of centrally stored information, with payment being made at the vending location. For purposes of the present invention, the term payment is intended to main deposit of currency and/or use of an appropriate credit identification element, such as a credit card. In addition, it is contemplated that advertising messages may be included on vended cassette or cartridge, thereby providing another revenue-raising aspect of the system. Such advertising messages would be recorded on the master tapes along with the commercial recordings or other information.

While I have described and illustrated specific embodiments of my invention, it will be clear that variations of the details of construction which are specifically illustrated and described may be resorted to without departing from the true spirit and scope of the invention as defined in the appended claims.

I claim:

1. An information transmission and vending system, comprising:

a master storage medium located at a central station and containing a plurality of stored information segments;

a plurality of vending machines, each located at a respective location remote from said central station;

a signal transmission link for connecting said master storage medium to one or more of said vending machines on call;

means for transmitting selected information segments via said transmission link to calling vending machines;

wherein each vending machine includesf a plurality of blank cartridge-type storage elements;

a duplicator responsive to information segments transmitted to said vending machine for duplicating the transmitted information segments on a blank cartridge-type storage element;

a selector unit actuable to provide coded signals identifying selected information segments at said central station and calling for connection between said vending machine and said master storage medium;

ejection means for ejecting from said vending machine a cartridge-type storage element when the latter has a predetermined number of said information segments duplicated thereon; and

payment detection means for inhibiting duplication of selected information segments at said vending machine in the absence of payment in a prescribed manner.

2. The system according to claim 1 wherein said master storage medium comprises a plurality of endless tapes, each have different information segments recorded thereon, said central station additionally including: a storage rack for said plurality of master tapes, a plurality of playbackheads, one head for each master tape, and a common drive mechanism for continuously driving all of said master tapes past its playback head.

3. The system according to claim 1 wherein said cartridge-type storage elements are tape cassettes.

4. The system according to claim 2 wherein each of said endless tapes includes a plurality of recording channels, wherein each of said playback heads includes a like plurality of channels, one channel for each recording channel on a master tape, wherein said blank cartridge-type storage elements are respective tape cartridges having a plurality of recording channels, one such channel for each recording channel on a master tape, and wherein said means for transmitting includes multiplexing means for simultaneously transmitting signals recorded on all recording channels of the selected master tape to respective recording channels on a tape cartridge at a vending machine.

5. An information vending system, comprising:

a central station, including:

a plurality of endless master tapes on which information is recorded;

a playback head for each master tape for converting information recorded on said tape to infor' mation signals; and

a common driver mechanism for continuously driving all of said master tapes past their playback heads;

a plurality of remote stations, each including a vending machine comprising:

a plurality of blank tape cartridges;

a duplicator responsive to reception of information signals at said vending machine for duplicating recorded information from said endless master tapes on a blank cartridge;

a selector unit, actuable to indicate which of said master tapes is to have its contents duplicated at said vending machine;

means for ejecting cartridges from said vending machine when said cartridges have information duplicated thereon; and

payment detector means for inhibiting duplication by said duplicator in the absence of payment in the prescribed manner at said remote location;

and

central switching means responsive to actuation of said selector unit at each remote location for transmitting information signals from the playback head of a selected master tape to the vending machine selecting that master tape. 6. The system according to claim 5 wherein the information recorded on at least some of said master tapes is an album of commercial audio recordings, wherein an entire selected album is transferred to a blank cartridge at a selecting vending machine.

7. The system according to claim 6 wherein a start control signal is recorded between successive audio recordings on said master tapes, and wherein said vending machine includes means to inhibit duplicating of received information by said duplicator until said start control signal is received at said vending machine.

8. The system according to claim 7 wherein the information recorded on at least some of said master tapes is a single commercial audio recording, recorded repetitively with said start control signal recorded before each repetition and a stop control signal recorded after each repetition, and wherein said vending machine included means for disabling said duplicator upon receipt of said stop control signal and enabling said duplicator upon receipt of said start control signal.

9. The system according to claim 6 wherein said payment detector means includes a credit card terminal and remote data processing means for detecting the validity of credit cards inserted in said terminal by comparing indicia on said card against indicia stored at said data processing means.

10. The system according to claim 9 wherein said data processing means comprises: means for compiling charges incurred against each credit card inserted in said terminal; and means for totalizing the number of times each album is selected for vending.

11. The system according to claim wherein said selector unit is a standard telephone touch tone dialing unit.

12. The method of vending at remote locations commercial recordings which are stored at a central location comprising the steps of:

storing a plurality of blank tape cartridges at each remote location; detecting payment tendered at each remote location; generating coded signals in response to selection of said remote location of a recording to be vended;

transmitting the selected recording from said central station to said remote location in response to the generated coded signals;

upon detection of payment tendered, positioning one of the stored blank tape cartridges in position to receive the transmitted recordings;

duplicating on the positioned tape cartridge the selected recording transmitted from said central station; and

ejecting the tape cartridge containing the duplicated recording at said remote location.

13. The method according to claim 12 further comprising the steps of:

maintaining a record of the number of times each recording is selected; and

providing periodic popularity ratings for said recordings on the basis of said maintained record.

14. A system for vending, at remote locations, information stored at a central station and recording the vended information on a blank tape cartridge at said remote location, said system comprising:

a central station, including:

a plurality of endless plural-channel master tapes on which information is recorded;

a plural channel playback head for each master tape for simultaneously converting information recorded on the plural channels of said tape to respective plural information signals; and

a common driver mechanism for driving all of said master tapes past their playback heads;

a plurality of remote stations, each including a vending machine comprising:

a duplicator responsive to reception of said respective plural information signals at said vending machine for duplicating the recorded information from said endless master tapes on said blank cartridge;

a selector unit, actuable to indicate which of said master tapes is to have its contents duplicated at said vending machine;

means for ejecting cartridges from said vending machine when said cartridges have information duplicated thereon; and

payment detector means for inhibiting duplication by said duplicator in the absence of payment in the prescribed manner at said remote location;

and

common transmission means responsive to actuation of said selector unit at each remote location for transmitting said respective plural information signals from the playback head of the selected master tape to the vending machine selecting that master tape.

15. The method of vending, at remote locations, commercial recordings which are stored at a central location, said method including the steps of:

detecting the insertion of a credit card into a credit card terminal at a remote vending location;

transmitting indicia associated with the inserted credit card to said central station;

processing the transmitted indicia to determine validity of the inserted credit card and to charge a stored account associated with a valid inserted credit card;

upon determination that an inserted credit card is valid, enabling equipment at said remote vending location to permit generation of coded signals in response to selection of a recording to be vended;

transmitting the selected recording from said central station to said remote location in response to the generated coded signals;

duplicating on the positioned tape cartridge the selected recording transmitted from said central station; and

ejecting the tape cartridge containing the duplicated recording at said remote location.

16. The method according to claim 15 further comprising the step of:

storing a plurality of blank tape cartridges at each remote vending location; and

upon detection of a valid credit card into the credit card terminal of a remote vending location, automatically positioning one of the stored blank tape cartridges to receive the selected recording to be transmitted from said central station;

wherein said step of ejecting includes ejecting the positioned tape cartridge after duplication of the selected recording is completed.

17. A vending system for transmitting selected remotely stored information onto blank storage cartridges, said system comprising:

a master storage medium located at a central station and containing a plurality of stored information segments;

a plurality of vending machines, each located at a respective location remote from said central station;

a signal transmission link for connecting said master storage medium to one or more of said vending machines on call;

means for transmitting selected information segments via said transmission link to calling vending machines;

wherein each vending machine includes:

a duplicator responsive to information segments transmitted to said vending machine for duplicating the transmitted information segments on blank storage cartridges;

a selector unit actuable to provide coded signals identifying selected information segments at said central station and calling for connection between said vending machine and said master storage medium; and

payment detection means for inhibiting duplication of selected information segments at said vending machine in the absence of payment in a prescribed manner.

18. The system according to claim 17 wherein tapes, a plurality of playback heads, one head for each master tape, and a common drive mechanism for continuously driving all of said master tapes past its playback head, and wherein said storage cartridges are tape cartridges.

21. The system according to claim 17 wherein said selector unit is a touch tone dialing unit.

22. The system according to claim 17 wherein said means for transmitting includes a CATV cable.

23. The system according to claim 17 further comprising interface means for connecting said system to a data processor capable of monitoring the number of times each information segment is selected and computing billing information related to the selection of each information segment.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3169624 *Jun 20, 1960Feb 16, 1965Auto Photo CompanyAutomatic coin-controlled sound recording apparatus
US3444334 *Mar 24, 1966May 13, 1969Clark Charles WilliamCoin-controlled sound record producing apparatus
US3609227 *Sep 9, 1968Sep 28, 1971AmpexRandom access audio/video information retrieval system
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3985217 *Aug 11, 1975Oct 12, 1976Nsm Apparatebau Gmbh KommanditgesellschaftControl system for a coin-operated musical machine
US4071716 *Oct 20, 1975Jan 31, 1978U.S. Philips CorporationDictation system
US4141045 *Feb 18, 1977Feb 20, 1979Sheehan Daniel LRandom selection control system for recording tape cartridges
US4227220 *May 2, 1977Oct 7, 1980Hill BrownTape recording system
US4370649 *May 19, 1981Jan 25, 1983Fuerle Gerard APayment responsive data display network
US4414467 *Jun 29, 1981Nov 8, 1983Video Corporation Of AmericaVending ordering terminal
US4499568 *Dec 13, 1982Feb 12, 1985Jacques GremilletProcess for the teledistribution of recorded information and a system for performing this process
US4521857 *May 17, 1982Jun 4, 1985Avimage, Inc.Aviation weather information dissemination system
US4593376 *Apr 21, 1983Jun 3, 1986Volk Larry NSystem for vending program cartridges which have circuitry for inhibiting program usage after preset time interval expires
US4597058 *Jun 3, 1983Jun 24, 1986Romox, Inc.Cartridge programming system
US4647989 *Mar 18, 1983Mar 3, 1987Geddes Eric JVideo cassette selection machine
US4654799 *May 15, 1985Mar 31, 1987Brother Kogyo Kabushiki KaishaSoftware vending system
US4667802 *Oct 1, 1984May 26, 1987Verduin Lee CVideo jukebox
US4672554 *May 8, 1984Jun 9, 1987Brother Kogyo Kabushiki KaishaSoftware vending instrument
US4674055 *May 29, 1984Jun 16, 1987Brother Kogyo Kabushiki KaishaSoftware vending system
US4725977 *Feb 28, 1986Feb 16, 1988Cpt, Ltd.Cartridge programming system and method using a central and local program library
US4789863 *Jan 13, 1988Dec 6, 1988Bush Thomas APay per view entertainment system
US4789907 *Oct 15, 1986Dec 6, 1988Peter FischettiVideo cassette recording and/or viewing vending system
US4812629 *Apr 23, 1987Mar 14, 1989Term-Tronics, IncorporatedMethod and apparatus for vending
US4845636 *Oct 17, 1986Jul 4, 1989Walker Mark ERemote transaction system
US4866661 *Mar 26, 1986Sep 12, 1989Prins Maurits L DeComputer controlled rental and sale system and method for a supermarket and the like
US4949187 *Dec 16, 1988Aug 14, 1990Cohen Jason MVideo communications system having a remotely controlled central source of video and audio data
US5007518 *Feb 13, 1989Apr 16, 1991Sam CrivelloApparatus for renting articles
US5191573 *Sep 18, 1990Mar 2, 1993Hair Arthur RMethod for transmitting a desired digital video or audio signal
US5237157 *Oct 6, 1992Aug 17, 1993Intouch Group, Inc.Kiosk apparatus and method for point of preview and for compilation of market data
US5309355 *Sep 3, 1993May 3, 1994Lockwood Lawrence BAutomated sales system
US5539635 *Jul 19, 1994Jul 23, 1996Larson, Jr.; Ernest J.Radio station program identifier and distribution system
US5576951 *Mar 16, 1994Nov 19, 1996Lockwood; Lawrence B.Computer search system for retrieving information
US5675734 *Feb 27, 1996Oct 7, 1997Parsec Sight/Sound, Inc.System for transmitting desired digital video or audio signals
US5761485 *Dec 1, 1995Jun 2, 1998Munyan; Daniel E.Personal electronic book system
US5794217 *Dec 3, 1996Aug 11, 1998Newleaf Entertainment CorporationApparatus and method for an on demand data delivery system for the preview, selection, retrieval and reproduction at a remote location of previously recorded or programmed materials
US5900608 *Dec 16, 1997May 4, 1999Iida; TakahitoMethod of purchasing personal recording media, system for purchasing personal recording media, and media recorded with personal recording media purchasing program
US5907600 *Apr 27, 1995May 25, 1999Aspect Telecommunications CorporationProduct registration system
US5941363 *Jul 31, 1996Aug 24, 1999Proactive Vending Technology, LlcMethod of monitoring a vending machine
US5956034 *Aug 13, 1996Sep 21, 1999Softbook Press, Inc.Method and apparatus for viewing electronic reading materials
US5963916 *Oct 31, 1996Oct 5, 1999Intouch Group, Inc.Network apparatus and method for preview of music products and compilation of market data
US5966440 *Jun 6, 1995Oct 12, 1999Parsec Sight/Sound, Inc.System and method for transmitting desired digital video or digital audio signals
US6195667Oct 16, 1998Feb 27, 2001Softbook Press, Inc.On-line menu updating for an electronic book
US6250452Jun 9, 1999Jun 26, 2001Cimetrics, Inc.Vending data collection system
US6275934Oct 16, 1998Aug 14, 2001Soft Book Press, Inc.Authentication for information exchange over a communication network
US6314474Oct 16, 1998Nov 6, 2001Softbook Press, Inc.Efficient information exchange between an electronic book and a cartridge
US6327579Oct 14, 1999Dec 4, 2001Christopher M. CrawfordOnline computer services including help desk, anti-virus and/or application service features
US6351750Oct 16, 1998Feb 26, 2002Softbook Press, Inc.Dynamic conversion of byte ordering for use on different processor platforms
US6363418Oct 16, 1998Mar 26, 2002Softbook Press, Inc.On-line image caching control for efficient image display
US6411943Aug 24, 2000Jun 25, 2002Christopher M. CrawfordInternet online backup system provides remote storage for customers using IDs and passwords which were interactively established when signing up for backup services
US6766946Sep 11, 2002Jul 27, 2004Dentsu, Inc.System for granting permission of user's personal information to third party
US6772340Mar 15, 2000Aug 3, 2004Microsoft CorporationDigital rights management system operating on computing device and having black box tied to computing device
US6775655Nov 24, 1999Aug 10, 2004Microsoft CorporationRendering digital content in an encrypted rights-protected form
US6816596Mar 15, 2000Nov 9, 2004Microsoft CorporationEncrypting a digital object based on a key ID selected therefor
US6829708Mar 15, 2000Dec 7, 2004Microsoft CorporationSpecifying security for an element by assigning a scaled value representative of the relative security thereof
US6915377 *Jul 17, 2001Jul 5, 2005Sony CorporationRecording/reproduction apparatus and group-based editing method
US6942143Dec 3, 2003Sep 13, 2005Dentsu, Inc.System and method for accessing broadcast media in data communication with a broadcast receiving device
US6948073Jun 27, 2001Sep 20, 2005Microsoft CorporationProtecting decrypted compressed content and decrypted decompressed content at a digital rights management client
US6973444Jan 13, 2000Dec 6, 2005Microsoft CorporationMethod for interdependently validating a digital content package and a corresponding digital license
US7010808Aug 25, 2000Mar 7, 2006Microsoft CorporationBinding digital content to a portable storage device or the like in a digital rights management (DRM) system
US7024393Jan 13, 2000Apr 4, 2006Microsoft CorporationStructural of digital rights management (DRM) system
US7032819Jul 26, 2004Apr 25, 2006Dentsu, Inc.Method and system for purchasing personal recording media
US7039615Sep 28, 2000May 2, 2006Microsoft CorporationRetail transactions involving digital content in a digital rights management (DRM) system
US7051005Jan 13, 2000May 23, 2006Microsoft CorporationMethod for obtaining a black box for performing decryption and encryption functions in a digital rights management (DRM) system
US7073063Jun 27, 2001Jul 4, 2006Microsoft CorporationBinding a digital license to a portable device or the like in a digital rights management (DRM) system and checking out/checking in the digital license to/from the portable device or the like
US7080051Mar 12, 2002Jul 18, 2006Crawford Christopher MInternet download systems and methods providing software to internet computer users for local execution
US7080233Mar 17, 2005Jul 18, 2006Sony CorporationRecording/playback apparatus and editing method
US7080410Jul 7, 2005Jul 18, 2006Microsoft CorporationProtecting decrypted compressed content and decrypted decompressed content at a digital rights management client
US7103574Apr 12, 1999Sep 5, 2006Microsoft CorporationEnforcement architecture and method for digital rights management
US7136838Jan 13, 2000Nov 14, 2006Microsoft CorporationDigital license and method for obtaining/providing a digital license
US7149722Sep 28, 2000Dec 12, 2006Microsoft CorporationRetail transactions involving distributed and super-distributed digital content in a digital rights management (DRM) system
US7162745Jul 7, 2005Jan 9, 2007Microsoft CorporationProtecting decrypted compressed content and decrypted decompressed content at a digital rights management client
US7181300 *Jul 18, 2001Feb 20, 2007Gerald V RobbinsSingle use media device
US7218991Nov 22, 2004May 15, 2007Walker Digital, LlcSystem for vending physical and information items
US7231669Feb 27, 2006Jun 12, 2007Microsoft CorporationBinding content to a portable storage device or the like in a digital rights management (DRM) system
US7233912Mar 11, 2002Jun 19, 2007Walker Digital, LlcMethod and apparatus for vending a combination of products
US7239708Jun 27, 2001Jul 3, 2007Microsoft CorporationProtecting decrypted compressed content and decrypted decompressed content at a digital rights management client
US7319759Mar 15, 2000Jan 15, 2008Microsoft CorporationProducing a new black box for a digital rights management (DRM) system
US7325105Mar 17, 2005Jan 29, 2008Sony CorporationRecording/playback apparatus and editing method
US7353209Mar 15, 2000Apr 1, 2008Microsoft CorporationReleasing decrypted digital content to an authenticated path
US7383205Jan 13, 2000Jun 3, 2008Microsoft CorporationStructure of a digital content package
US7386891May 10, 2006Jun 10, 2008Microsoft CorporationBinding a digital license to a portable device or the like in a digital rights management (DRM) system and checking out/checking in the digital license to/from the portable device or the like
US7412061Nov 5, 2004Aug 12, 2008Microsoft CorporationEncrypting a digital object on a key ID selected therefor
US7437318Mar 28, 2002Oct 14, 2008Gemstar Ebook Group LimitedSystems and methods for electronic off-line catalog
US7497381Nov 23, 2005Mar 3, 2009Dentsu Inc.Resolving station for system for permitting access to media selections
US7499769Jun 23, 2006Mar 3, 2009Walker Digital, LlcProducts and processes for vending a plurality of products via defined groups
US7529927Nov 3, 2004May 5, 2009Microsoft CorporationSpecifying security for an element by assigning a scaled value representative of the relative security thereof
US7546277Oct 9, 1997Jun 9, 2009Walker Digital, LlcMethod and apparatus for dynamically managing vending machine inventory prices
US7549051Mar 10, 2005Jun 16, 2009Microsoft CorporationLong-life digital certification for publishing long-life digital content or the like in content rights management system or the like
US7577496May 8, 2007Aug 18, 2009Walker Digital, LlcSystem for vending physical and information items
US7624451May 19, 2005Nov 24, 2009Microsoft CorporationBinding a digital license to a portable or the like in a digital rights management (DMR) system and checking out/checking in the digital license to/from the portable device or the like
US7657910Mar 3, 2000Feb 2, 2010E-Cast Inc.Distributed electronic entertainment method and apparatus
US7673321Oct 23, 2002Mar 2, 2010Paul YurtAudio and video transmission and receiving system
US7680743May 15, 2002Mar 16, 2010Microsoft CorporationSoftware application protection by way of a digital rights management (DRM) system
US7680744Apr 28, 2005Mar 16, 2010Microsoft CorporationMethod for interdependently validating a digital content package and a corresponding digital license
US7693280Apr 22, 2005Apr 6, 2010Microsoft CorporationRights management system for streamed multimedia content
US7711658Oct 29, 2007May 4, 2010Walker Digital, LlcMethod and apparatus for dynamically managing vending machine inventory prices
US7716745Jun 9, 2008May 11, 2010Microsoft CorporationBinding a digital license to a portable device or the like in a digital rights management (DRM) system and checking out/checking in the digital license to/from the portable device or the like
US7726562May 8, 2007Jun 1, 2010Walker Digital, LlcSystem for vending physical and information items
US7757077Nov 5, 2004Jul 13, 2010Microsoft CorporationSpecifying security for an element by assigning a scaled value representative of the relative security thereof
US7788496Oct 8, 2003Aug 31, 2010Microsoft CorporationFirst computer process and second computer process proxy-executing code on behalf thereof
US7818773Nov 11, 2002Oct 19, 2010Acacia Media Technologies CorporationAudio and video transmission and receiving system
US7826923Sep 8, 2006Nov 2, 2010Walker Digital, LlcProducts and processes for vending a plurality of products
US7856404Apr 14, 2005Dec 21, 2010Microsoft CorporationPlaylist burning in rights-management context
US7865265Oct 23, 2007Jan 4, 2011Walker Digital, LlcProducts and processes for vending a plurality of products via defined groups
US7877412May 9, 2005Jan 25, 2011Homer Gregg SRechargeable media distribution and play system
US7890428Feb 4, 2005Feb 15, 2011Microsoft CorporationFlexible licensing architecture for licensing digital application
US7894936Oct 15, 2004Feb 22, 2011Walker Digital, LlcProducts and processes for managing the prices of vending machine inventory
US7912581Oct 23, 2007Mar 22, 2011Walker Digital, LlcProducts and processes for vending a plurality of products via defined groups
US7925591Mar 28, 2006Apr 12, 2011Microsoft CorporationRetail transactions involving digital content in a digital rights management (DRM) system
US7979911May 27, 2005Jul 12, 2011Microsoft CorporationFirst computer process and second computer process proxy-executing code from third computer process on behalf of first process
US8005757Nov 5, 2004Aug 23, 2011Microsoft CorporationSpecifiying security for an element by assigning a scaled value representative of the relative security thereof
US8050982Oct 28, 2005Nov 1, 2011Priceplay, Inc.Systems and methods for transacting business over a global communications network such as the internet
US8068933Feb 10, 2009Nov 29, 2011Walker Digital, LlcProducts and processes for vending a plurality of products via defined groups
US8091142Apr 26, 2005Jan 3, 2012Microsoft CorporationSupplementary trust model for software licensing/commercial digital distribution policy
US8099482Oct 1, 2004Jan 17, 2012E-Cast Inc.Prioritized content download for an entertainment device
US8103592Nov 14, 2005Jan 24, 2012Microsoft CorporationFirst computer process and second computer process proxy-executing code on behalf of first process
US8140398Sep 24, 2004Mar 20, 2012Boesjes Eimar MApparatus and methods for inventory, sale, and delivery of digitally transferable goods
US8266060 *Jan 12, 2011Sep 11, 2012Panasonic CorporationContent usage rule management system
US8290874Apr 22, 2005Oct 16, 2012Microsoft CorporationRights management system for streamed multimedia content
US8321690Aug 11, 2005Nov 27, 2012Microsoft CorporationProtecting digital media of various content types
US8325916Feb 8, 2010Dec 4, 2012Microsoft CorporationEncryption scheme for streamed multimedia content protected by rights management system
US8347078Dec 20, 2004Jan 1, 2013Microsoft CorporationDevice certificate individualization
US8380634 *Dec 21, 2011Feb 19, 2013Microsoft CorporationFirst computer process and second computer process proxy-executing code on behalf of first process
US8438645Apr 27, 2005May 7, 2013Microsoft CorporationSecure clock with grace periods
US8494917Sep 20, 2011Jul 23, 2013Priceplay.Com, Inc.Systems and methods for transacting business over a global communications network such as the internet
US8571949Mar 20, 2012Oct 29, 2013Amazon Technologies, Inc.Apparatus and methods for inventory, sale, and delivery of digitally transferable goods
US8700535Mar 21, 2008Apr 15, 2014Microsoft CorporationIssuing a publisher use license off-line in a digital rights management (DRM) system
US8712863Mar 15, 2013Apr 29, 2014Amazon Technologies, Inc.Apparatus and methods for inventory, sale, and delivery of digitally transferable goods
US8719171Jul 8, 2010May 6, 2014Microsoft CorporationIssuing a publisher use license off-line in a digital rights management (DRM) system
US8725646Apr 15, 2005May 13, 2014Microsoft CorporationOutput protection levels
US8738536Apr 14, 2005May 27, 2014Microsoft CorporationLicensing content for use on portable device
US8744969Oct 2, 2007Jun 3, 2014Microsoft CorporationReleasing decrypted digital content to an authenticated path
US8781969Jul 13, 2010Jul 15, 2014Microsoft CorporationExtensible media rights
US20110112941 *Jan 12, 2011May 12, 2011Takaaki NambaContent usage rule management system
US20120096566 *Dec 21, 2011Apr 19, 2012Microsoft CorporationFirst computer process and second computer process proxy-executing code on behalf of first process
USRE35184 *Jul 3, 1991Mar 19, 1996Walker; Mark E.Remote transaction system
DE2651155A1 *Nov 9, 1976May 18, 1978Robert Merrill HughesMuenzenbetaetigtes aufnahmegeraet
EP0082077A1 *Dec 10, 1982Jun 22, 1983Jacques GremilletMethod of teledistributing recorded information, particularly pieces of music, and system for carrying it out
EP0383775A1 *Jul 22, 1988Aug 29, 1990Thomas A BushA pay per view entertainment system.
EP1241611A2 *Feb 16, 2002Sep 18, 2002Alps Electric (North America), Inc.Storage medium storing program for direct electronic purchasing of online information
Classifications
U.S. Classification379/77, 725/118, 360/69, 379/101.1, G9B/15.135, 379/87, 725/92, 379/91.2, 340/5.9, 379/83, 235/381, 360/92.1, 194/205, 360/15, 348/E07.71, 725/100
International ClassificationG07F17/30, G11B5/00, G11B15/68, H04N7/173
Cooperative ClassificationG07F17/305, H04N7/17318, G11B5/00, G11B15/68, H04N2007/1739
European ClassificationG11B5/00, G11B15/68, G07F17/30B, H04N7/173B2