Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3720090 A
Publication typeGrant
Publication dateMar 13, 1973
Filing dateFeb 9, 1971
Priority dateDec 30, 1968
Publication numberUS 3720090 A, US 3720090A, US-A-3720090, US3720090 A, US3720090A
InventorsP Fiore, R Halpert
Original AssigneeTexas Instruments Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Switch with improved means and method for calibration
US 3720090 A
Abstract
A pressure responsive device including a primary subassembly of a casing member having a cavity sealed by a snap-acting diaphragm member of either mono or bi-metal. An annular calibration-stop member is located adjacent to the diaphragm and is deformed in either of two directions to change the calibration of the diaphragm member. The device is shown operatively connected to an electric switch.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

0 United States Patent 11 1 1111 3,72meo llalpert et ai. Will/larch l3, W73

[ SWITCH WKTH HMPROVED MEANS [56} References Cited AND METHQD FOR CALIBRATION UNITED STATES PATENTS [75] Inventors: Robert T. Halpert, Providence;

3,302,269 2/1967 Cooper et al. ..200/83 R Cumberland both of 3,588,395 6/1971 Hersey ....200 83 s 3,239,827 3/1966 Werner et al. ....73 4 R x [73] Assignee: Texas Instruments Incorporated, 3'516'279 6/1970 Maz'arka 1 "73/4 R Dallas Tex. 2,953,929 9/1960 Kautz ..73/4 R X [22] Filed: Feb. 9, 1971 Primary ExaminerLouis R. Prince [21] A l NO 114 074 Assistant Examiner Denis E. Corr pp Attorney-John A. Haug Related US. Application Data [57] ABSTRACT [62] Division of Ser. No. 787,639, Dec. 30, 1968, Pat. No.

3 534 1 3 A pressure responsive device including a prlmary subassembly of a casing member having a cavity sealed by [52] U.S. Cl. ..73/4 R a pg i phr gm m m r of either mono or [51] Int. Cl. ..Go1127/oo bi-metalannular calibration-Stop member is 5 Field f Search 73 4 R, 40 200 33 R, 3 5 located adjacent to the diaphragm and is deformed in either of two directions to change the calibration of the diaphragm member. The device is shown operatively connected to an electric switch.

3 Claims, 1 Drawing Figure SWITCH WITH IMPROVED MEANS AND METHOD FOR CALIBRATION This is a division of application Ser. No. 787,639, filed Dec. 30, 1968 now U.S. Pat. No. 3,584,168.

BACKGROUND OF INVENTION This invention relates generally to condition responsive devices, and methods of making them, and in particular with regard to certain more specific features to pressure responsive devices particularly adapted for actuation of electrical switches.

Among the several objectsof the invention may be noted the provision of pressure responsive devices which are particularly adapted for miniaturization and light weight hermetically sealed constructions, and methods of making the same; the provision of such devices which include improved calibration means while enabling the pressure sensing means to withstand relatively large overpressures without incurring deleterious changes in calibration; the provision of such pressure responsive devices, and methods of making the same, which can be more easily and inexpensively calibrated than prior art devices; the provision of new and improved pressure responsive devices, and methods of making the same, which employ a diaphragm member which seals a compartment or cavity in the device; and a provision of new and improved devices which are responsive to a combination of predetermined pressure and temperature conditions. Other objects will be in part apparent and in part pointed hereinafter.

The invention accordingly comprises the elements and combinations of elements, steps and sequence of steps, features and structures of manipulation, and arrangements of parts, all of which will be exemplified in the structures and methods hereinafter described, and the scope of the application of which will be indicated in the appended claims.

In the accompanying drawings, in which a preferred embodiment of the invention is illustrated, the sole figure is an axial cross-section of a pressure responsive device according to the present invention.

Dimensions of certain of the parts as shown in the drawings, and relative movements between parts, have been modified and/or exaggerated for the purposes of clarity of illustration.

The pressure responsive devices embodying the invention have many useful applications wherein it is desirable to provide a sudden or rapid actuation force whenever the pressure from an independent source reaches either one or two selected limit values. For example, a pressure responsive or combined temperature pressure device according to this invention, may be used in connection with an electrical switch or with a valve or other mechanism or device for which actuation is desired in response to predetermined changes in pressure.-

The relative simplicity and relatively small number of parts comprising the pressure responsive device according to the present invention, advantageously permits miniaturization and light weight construction. Devices of this general type are known in the art and are disclosed and claimed in co-assigned U.S. Pat. Nos. 3,302,269 and 3,365,557 which issued Feb. 7, 1967 and Jan. 23, 1968 respectively. As disclosed in these patents, calibration is effected by employing precisioned formed parts, as by machining. The invention disclosed and claimed herein permits the use of inexpensive stamped parts to effect calibration as will be explained below.

Referring now more particularly to the drawings, switch 10 comprises a cylindrical cup-shaped member 112 formed of a conventional molded phenolic material, electrically insulating, and is formed with apertures 14, 16 for reception therein of support member 18 and stationary contact 20 respectively. Movable contact arm 22 of electrically conductive material having good spring characteristics, such as beryllium nickel, is cantilever mounted to support member 18 as by riveting at 24. Arm 22 is formed with a dimple 26, for a purpose to be described below, and mounts on its free end movable contact 30. A boss 28 is formed in the bottom wall of base 12 so that when support member 12 and movable contact arm 22 are inserted through aperture 14, they are biased against the boss to effect a given angle so that a predetermined contact force will exist between contacts 20 and 30. To improve electrical conductivity while minimizing additional expense, stationary contact 20', which also serves as part of the terminal structure, is preferably provided with a layer 32 of highly conductive material, such as silver alloy. The outer ends of support 18 and stationary contact 20 pass through apertures 34, 36 of terminal members 38, 40 respectively, and are headed over to firmly lock the contact assembly in the housing and to provide electrical connection to the switch via leads L1, L2. Leads L1, L2 are clinched in tabs 42, 44 respectively, which are in turn welded to terminal members 38, 4M) respectively. To mitigate the deleterious effects of arcing, ribs 46 are formed in base member 12 to prevent tracking of vaporized contact material by providing an arc shadow, a common expedient employed in the art.

A disc 50, generally plate-shaped of electrically insulating material, is formed with a seating groove 52 about its periphery and is received in the distal portion of wall 54 of base 12. Disc 50 slidably mounts in a centrally located bore 56 provided with a motion transfer pin 58 of electrically insulating material, such as a ceramic or glass material, and isolates the electrical switch from diaphragm area. Pin 58 may be formed with projection 60 on one end which contacts dimple 26 in movable arm 22 to enhance smooth transfer of motion from pin 58 to movable arm 22.

A cavity 64 is formed by recessing disc 50 at 60 and 62 to provide clearance for diaphragm 76 to snap from the position shown to the opposite configuration, and for calibration-stop element 74.

Tubular member 66 which may be formed of a conventional metallic material, is formed with a radially outwardly extending flange 68 and is placed over the distal wall 54 of base 12 and attached thereto, as by crimping, at 70. It will be noted that a small flange 72 is provided on distal wall 54 to permit locking of the tubular member 66 to base 12. Mounted on flange 68 are calibration-stop member 74, imperforate circular diaphragm member 76 and cover 78, all hermetically secured at their periphery as by welding at 80. Cover 78 is dished out at 82 to provide a cavity 88 sealed by diaphragm 76 and provided with bore 84 for reception therein of a port fitting 86 which is hermetically attached thereto. Port fitting 86 permits attachment to a pressure source which it is desired to monitor.

Although it is preferred that cover 78, diaphragm 76, calibration-stop member 74 and tubular member 66 be welded together at their marginal periphery, it will be understood that other means may be employed to clamp and seal the diaphragm member between the upper and lower casing members.

Diaphragm 76 is shown as a bimetallic member but can also be formed of a monometallic member such as stainless steel. This diaphragm is formed into a snapacting disc by means known in the art; basically, it involves forming a non-developable surface by permanently deforming the disc.

During operation of the device when a monometallic diaphragm 76 is employed, it snaps from the position shown in the figure to the opposite curvature when a predetermined amount of pressure is introduced into chamber 88 through port fitting 86.

The diaphragm will snap back to its original position when the pressure decreases a predetermined amount. This differential, i.e., the difference in pressure between that amount at which the diaphragm snaps in a first direction and that amount at which the diaphragm will return to its original position, is controlled by calibrating in the following manner.

First, the device is partly assembled by hermetically attaching cover 78, diaphragm 76, calibration-stop member 74 and tubular member 66 together as by welding about their periphery as described above, with port fitting 86 mounted on cover 78 as by brazing or resistance welding. If it is desirable to increase the differential, that is, to lower the pressure at which the diaphragm will snap back to its original position, sufficient pressure is introduced through port fitting 86 to snap the diaphragm and deform the calibration-stop member 74. On the other hand, if it is desired to narrow the differential, i.e., increase the amount of pressure at which the diaphragm will snap back to its original position, a force is exerted against the side of member 74 remote from the diaphragm (as by a tool) and it is deformed toward the diaphragm.

It will be understood that the pressure exerted on the diaphragm to effect calibration is far greater than the pressures which the diaphragm will be subjected to during operation of the device, so that member 74 during operation also effectively acts as a stop member preventing a change in the calibration of the diaphragm. Considerable care must be taken to select the proper material for calibration-stop member 74. It has been found that heat treating permits the use of member 74 effectively as a calibration member (so that it can be deformed beyond its elastic limit) as well as a stop member (so that it will retain its configuration during operation). One example which has worked well as A.l.S.l. type 304 stainless steel, hydrogen annealed after being formed to achieve a depth hardness of ll-150 DPH (Diamond Pyramid Hardness) with a 500 gram load. It has also been found preferable to initially form the annular member 74 in a slightly concave configuration (somewhere between the solid and dotted lines shown in the drawings) in applications where a wide differential is desired.

After calibration, the switch mechanism contained in member 12 is fixedly attached to tubular member 66 at 70 by crimping to complete the assembly.

Our use ofa pressure switch built in accordance with the invention is to deactivate an electrical circuit over a particular pressure range. Port fitting 86 is attached to the pressure source to be mounted and when the-pressure rises to a predetermined level, P,, diaphragm 76 snaps from the convex curvature shown in the Figure through center to a concave curvature thereby transmitting motion through pin 58 to dimple 26 on movable arm 22, causing movable contact 30 to disengage from stationary contact 20. Calibration-stop member 74 is sufficiently rigid that operating pressures above P, will not affect the calibration of the diaphragm. When the pressure drops to a second level P determined by the amount member 74 was deformed during calibration, the diaphragm will snap back to its convex position shown in the drawing and the spring bias of movable arm 22 will cause contacts 30, 20 to re-engage.

It is within the purview of the invention to locate stationary contact 20 on the opposite side of movable arm 22 if it is desired to cause circuit closing rather than circuit opening when the diaphragm snaps to the concave configuration, or, if desired, an additional circuit can be controlled (double throw) by placing a stationary contact in base 12 for engagement by movable contact arm 22 when diaphragm 76 snaps to the concave configuration while still maintaining the location of stationary contact 20 as shown.

If a bimetallic diaphragm (as shown) is employed in the device, the device will respond to temperature as well as pressure. That is, the diaphragm will snap through center when specific combinations of pressure and temperature conditions exist.

While it is preferred that the cavities 88, 64 be hermetically sealed from each other, which sealing is advantageously accomplished by the sealing action of the diaphragm member according to the present invention, it should be understood that there may be some cases in which these two cavities need only be adequately sealed against entry of the pressure creating medium during the calibration operation. In such cases, the parts may be sealed and clamped against the marginal periphery of the diaphragm member by means other than welding, e.g., flange 68 could be extended and clamped over the aligned portion of cover 78.

In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained. The cost of making devices employing marginally held diaphragms is materially reduced and assembly greatly facilitated since the calibration-stop member 74 is merely a stamped part compared to the precision machined elements used for calibration in prior art devices.

It is to be understood that the invention is not limited in its application to the details of construction and arrangement of parts illustrated in the accompanying drawings, since the invention is capable of other embodiments and of being practiced or carried out in various ways. Also, it is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation.

As many changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings, shall be interpreted as illustrative and not in a limiting sense, and it is also intended that the appended claims shall cover all such equivalent variations as come within the true spirit and scope of the invention.

lclaim:

l. A method of calibrating a snap-acting diaphragm comprising the steps of forming a chamber in a housing; except for a port to admit pressure in and out of the chamber, sealing the chamber with a snap-acting diaphragm by attaching it about its periphery to the housing; mounting an annular calibration-stop member next to and face to face with the diaphragm; and deforming the calibration-stop member beyond its elastic limit to change the level of pressure at which the diaphragm will snap back to its original position.

2. A method according to claim 1 including the step of deforming the calibration-stop member by admitting

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2953929 *Sep 26, 1958Sep 27, 1960Honeywell Regulator CoDifferential adjustment
US3239827 *Jan 12, 1960Mar 8, 1966Rosemount Eng Co LtdHigh precision pressure standard
US3302269 *Feb 2, 1965Feb 7, 1967Texas Instruments IncMethods of making condition responsive devices
US3516279 *Feb 23, 1967Jun 23, 1970Alphamatic CorpMethod for adjusting a pressure operated switch utilizing the nonlinear properties of a biasing means
US3588395 *Sep 27, 1968Jun 28, 1971Ranco IncFluid pressure responsive device
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4469923 *Dec 10, 1982Sep 4, 1984Texas Instruments IncorporatedPressure responsive switch with discrete pressure responsive unit
US4573398 *Nov 5, 1984Mar 4, 1986Ranco IncorporatedPressure control device and method of making the same
US4588886 *Nov 14, 1983May 13, 1986Thermo-O-Disc IncorporatedFiber optics condition sensor and method of making same
US4638721 *Jul 24, 1980Jan 27, 1987Texas Instruments IncorporatedPressure responsive device
US4718278 *Apr 30, 1986Jan 12, 1988Hi-Stat Manufacturing Co., Inc.Pressure transducer with improved calibration
US5198631 *Sep 11, 1991Mar 30, 1993General Electric CompanyPressure responsive control device
US5300741 *Jan 4, 1993Apr 5, 1994General Electric CompanyPressure responsive control device
US5524333 *Mar 10, 1995Jun 11, 1996General Electric CompanyMethod of assembling a pressure responsive control device
US6170316 *Apr 21, 1999Jan 9, 2001Clinton L. AldrichPressure and vacuum switch testing tool
US6343414Sep 22, 1999Feb 5, 2002General Electric CompanySnap-disk formation process and machine
US6450153May 5, 2000Sep 17, 2002Siemens Canada LimitedIntegrated pressure management apparatus providing an on-board diagnostic
US6453942May 5, 2000Sep 24, 2002Siemens Canada LimitedHousing for integrated pressure management apparatus
US6460566Mar 31, 2000Oct 8, 2002Siemens Canada LimitedIntegrated pressure management system for a fuel system
US6470861May 5, 2000Oct 29, 2002Siemens Canada LimitedFluid flow through an integrated pressure management apparatus
US6470908Apr 5, 2000Oct 29, 2002Siemens Canada LimitedPressure operable device for an integrated pressure management apparatus
US6474313May 5, 2000Nov 5, 2002Siemens Canada LimitedConnection between an integrated pressure management apparatus and a vapor collection canister
US6474314Mar 31, 2000Nov 5, 2002Siemens Canada LimitedFuel system with intergrated pressure management
US6478045Apr 5, 2000Nov 12, 2002Siemens Canada LimitedSolenoid for an integrated pressure management apparatus
US6484555Apr 5, 2000Nov 26, 2002Siemens Canada LimitedMethod of calibrating an integrated pressure management apparatus
US6502560May 5, 2000Jan 7, 2003Siemens Canada LimitedIntegrated pressure management apparatus having electronic control circuit
US6505514Apr 5, 2000Jan 14, 2003Siemens Canada LimitedSensor arrangement for an integrated pressure management apparatus
US6585230Aug 1, 2002Jul 1, 2003Siemens Canada LimitedHousing for an integrated pressure management apparatus
US6640620Dec 21, 2001Nov 4, 2003Siemens Canada LimitedAutomotive evaporative leak detection system
US6672138Dec 21, 2001Jan 6, 2004Siemens Canada LimitedTemperature correction method and subsystem for automotive evaporative leak detection systems
US6708552Jun 29, 2001Mar 23, 2004Siemens Automotive Inc.Sensor arrangement for an integrated pressure management apparatus
US6840232Oct 28, 2002Jan 11, 2005Siemens Vdo Automotive Inc.Fluid flow through an integrated pressure management apparatus
US6910500Mar 22, 2002Jun 28, 2005Siemens Vdo Automotive Inc.Integrated pressure management system for a fuel system
US6931919Jun 29, 2001Aug 23, 2005Siemens Vdo Automotive Inc.Diagnostic apparatus and method for an evaporative control system including an integrated pressure management apparatus
US6948481Mar 8, 2004Sep 27, 2005Siemens Vdo Automotive Inc.Electrical connections for an integrated pressure management apparatus
US6983641May 5, 2000Jan 10, 2006Siemens Vdo Automotive Inc.Method of managing pressure in a fuel system
US7025084Mar 22, 2002Apr 11, 2006Siemens Vdo Automotive Inc.Integrated pressure management system for a fuel system
US7040301Mar 22, 2002May 9, 2006Siemens Vdo Automotive Inc.Fuel system with integrated pressure management
US7086276Jun 28, 2004Aug 8, 2006Siemens Vdo Automotive Inc.Temperature correction method and subsystem for automotive evaporative leak detection systems
US7121267Mar 8, 2004Oct 17, 2006Siemens Vdo Automotive, Inc.Poppet for an integrated pressure management apparatus and fuel system and method of minimizing resonance
US7441439Jan 26, 2007Oct 28, 2008Richard Dean Mc FarlandPortable pressure switch calibration and diagnostic tool
DE2703283A1 *Jan 27, 1977Aug 18, 1977Smiths Industries LtdDruckempfindliches diaphragma
EP0501759A1 *Feb 25, 1992Sep 2, 1992Texas Instruments IncorporatedDual condition responsive switch apparatus
EP1030335A2 *Dec 17, 1999Aug 23, 2000Fujikoki CorporationPressure switch
Classifications
U.S. Classification73/1.71
International ClassificationH01H35/34, G01L9/00
Cooperative ClassificationG01L9/00, H01H35/343
European ClassificationG01L9/00, H01H35/34B