Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3720235 A
Publication typeGrant
Publication dateMar 13, 1973
Filing dateSep 30, 1970
Priority dateSep 30, 1970
Publication numberUS 3720235 A, US 3720235A, US-A-3720235, US3720235 A, US3720235A
InventorsJ Schrock
Original AssigneeMoore & Co Samuel
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Composite tubing
US 3720235 A
Abstract
A tube adapted to convey fluids under pressure and to be distorted without kinking and blocking of fluid flow therethrough has a resinous core tubing provided with internal longitudinal ribs. The tube is provided with a fibrous reinforcing member disposed about the core tube and an outer sheath if it is to convey fluids under pressure of 500 p.s.i. or more.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1 Schrock mlMarch 13, 1973 1 COMPOSITE TUBING [75] Inventor: James Douglas Schrock, Ravena,

Ohio

[73] Assignee: Samuel Moore 8: Company, Mantua, Ohio [22] Filed: Sept. 30, 1970 [21] App1.No.: 76,766

[52] US. Cl. ..138/l37,138/108,138/177, 138/178, 285/242, 285/259, 285/330 [51] Int. Cl ..F16l1l/04 [58] Field of Search ..138/38, 39,108,109,118, 138/123-127,137,138,177,178,122,133, 111; 74/501 P; 285/242, 259, 330

[56] 7 References Cited UNITED STATESJEAIENTS 3,581,776 6/1971 Sheaham ..l38/178 X 3,240,233 3/1966 Johnston ..138/118 X 3,581,523 6/1971 Bartholomew ....74/501 P X 3,310,447 3/1967 Matthews ..l38/125 X 3,078,109 2/1963 Jackson et a1. ..285/259 X Primary Examiner-Houston S. Bell, Jr. AttorneyC1elle W. Upchurch [57] ABSTRACT A tube adapted to convey fluids under pressure and to be distorted without kinking and blocking of fluid flow therethrough has a resinous core tubing provided with internal longitudinal ribs. The tube is provided with a fibrous reinforcing member disposed about the core tube and an outer sheath if it is to convey fluids under pressure of 500 psi. or more.

' 564mm niatviii rigiiie PATENTEDMR 1 31973 SHEET 10F 2 INVENTOR. ill/n55 D. SHROCK TORNEY COMPOSITE TUBING This invention relates generally to tubing and more particularly to tubing which is adapted to convey fluids under pressure and to be used in breathing hoses or umbilicals.

It has been proposed heretofore to make tubing having a thermoplastic resinous or plastic core and fibrous reinforcing material disposed thereabout. Tubing having a nylon core and a nylon outer sheath is disclosed, for example, in U.S. Pat. No. 3,062,241. A composite tube having a polyurethane core and a polyurethane sheath is disclosed in U.S. Pat. No. 3,116,760. Although such disclosed tubings are adapted to convey fluids at high pressures they have the disadvantage of sometimes kinking with blockage of fluid flow therethrough when they are twisted, bent or otherwise distorted.

A tube having a single odd shaped projection integral.

with the wall and extending into the bore of the tube is disclosed in U.S. Pat. No. 1,928,992. Such a tube is not practical for commercial production because of difficulty of extruding a tubing having projection of such odd shapes.

It is therefore an object of this invention to provide a tubing adapted to convey fluids under pressure which can be distorted by twisting, bending or the like without kinking and blocking of fluid flow therethrough and is adapted for extrusion in commercial quantities. Another object of the invention is to provide a high pressure tubing which will not kink and block fluid flow even when lying in a tortuous path. Still another object of the invention is to provide a composite tubing adapted to be used as a breathing hose. One of the more specific objects of the invention is to provide a composite tubing having a resinous core tubing, a sheath and an intermediate fibrous reinforcing member which is adapted to bend and twist without kinking and blocking of fluid flow therethrough.

Other objects will become apparent from the following description with reference to the accompanying drawing in which:

FIG. 1 is a perspective view of a length of tubing forming one embodiment of the invention;

FIG. 2 illustrates in cross-section the embodiment of FIG. 1 in a compressed state;

FIG. 3 illustrates an embodiment of a composite tubing provided by the invention;

FIG. 4 is a cross-section taken along the line 4-4 of FIG..3;

FIG. 5 is a fragmentary view, partially cut away and partially in longitudinal section, of an embodiment of a breathing hose of the invention;

FIG. 6 illustrates in a diagrammatic plan view an assembly of apparatus suitable for making tubing of the type illustrated in FIG. 1;

FIG. 7 is a diagrammatic plan view illustrating apparatus suitable for disposing a fibrous reinforcing member about a core tubing; and

a FIG. 8 is a diagrammatic plan view of apparatus suitable for enclosing a braided core tube in a sheath.

The foregoing objects and others are accomplished in accordance with this invention, generally speaking, by providing an extruded synthetic resinous or plastic tubing with internal peripherially spaced ribs which are integral with the wall of the tubing, extend longitudinally substantially throughout the length of the bore in the tubing and provide a bore cross-sectional configuration which does not become blocked against fluid flow when the tubing is distorted. The ribbed tubing may be enclosed by a fibrous reinforcing material tightly wound thereabout to increase the resistance of the tube wall to fluid pressure. An extruded plastic sheath may be provided about the fibrous material. It has been found that tubing having a bore with a cross sectional configuration defined by a plurality of spaced ribs on the inner surface of the tube wall can be pinched, twisted, bent or otherwise deformed to compress the tube wall without the bore becoming completely closed against fluid flow. It is preferred that the tubing have an odd number of 3, 5, 7 or more inter nal ribs to reduce the chances of ribs becomin Pressed into and filling radially opposite grooves and substantially blocking fluid flow therethrough. It is also preferred that the ribs have a frusto-triangular crosssection with the base adjacent to and integral with the tube wall and with the apex protruding into the bore of the tube. The tube provided by this invention is flexible and is particularly advantageous for use in breathing hose which must extend a considerable distance over land or under water because it can be twisted and otherwise distorted as it is moved about without danger of the fluid passageway becoming blocked against fluid flow.

The flexible tube having longitudinal internal ribs may be formed by extrusion of any suitable synthetic resin or plastic but a thermoplastic polyurethane is preferred. Examples of other suitable resins include nylon 11, ethylene vinyl acetate, polyethylene, polyvinyl chloride, synthetic rubbers and the like. Any of these resins and various others which can be extruded may be used provided that the tube extruded therefrom has a modulus as determined with a Tinius Olsen Stiffness Tester following ASTM D 747-Cantilever Beam Stiffness Test of from about 2,000 to about 100,000 pounds per square inch. The hardness of the extruded tubing should be from about Shore D 38 to about 55. The synthetic resin extruded to form the sheath may be any one of the aforesaid resins and may be the same resin as used to make the tubing having the internal ribs or it may be one of the other suitable resins.

It is preferred that a thermoplastic substantially nonporous polyurethane having a modulus of from about 7,000 to about 17,000 p.s.i. be used to extrude the ribbed tubing and also the sheath. The polyurethane may be a polyesterurethane, for example, one prepared by the process and from the compositions disclosed in U.S. Pat. No. 3,214,411 or it may be a poly(alkylene ether)urethane of the type disclosed in British specification No. 1,024,381 published Mar. 30, 1966 or a polycaprolactoneester urethane similar to that disclosed in U.S.Pat. No.3,523,101. V

In order to fabricate a high strength or high pressure tubing capable of containing fluids under pressures of 500 p.s.i. or more, the ribbed tubing may be enclosed in a reinforcing fibrous member tightly wound thereabout. The fibrous material may be cotton, nylon, rayon or the like but it is preferred that it be a polyalkyleneterephthalate such as polyethyleneterephthalate. The fibers sold commercially as Dacron" maybe used. Preferably, the fibrous material is of the braided type and the yarns making up the braided fabric are composed of a plurality of filaments which are moveable with respect to each other.

The components making up the wall of the tubing must be able to elongate or move longitudinally with respect to each other as the tubing becomes distorted. This relative movement or elongation can be provided for by not securing any of the layers of the wall together or by using only an adhesive which has at least as great a modulus as that of the core tube, reinforcing member and sheath. If the tubing is to be used in a breathing hose it is preferred to omit all adhesives and solvents to be sure that odors and harmful fumes will be avoided in the fluid conveyed therethrough.

One of the preferred embodiments for conveying fluids under pressure other than for survival purposes has its core tube and sheath bound to the adjacent reinforcing member. Preferably, two layers of fibrous material form the reinforcing member and the core is stuck to the layer adjacent it while the sheath is adhesively bound to the layer adjacent it but the two layers of fibrous material are not bound together.

Any suitable solvent for the polyurethane such as dimethyl formamide, dimethyl acetamide, N-methyl pyrrolidone or the like may be applied to the surface of the core tubing to soften it and to make it tacky. The fibrous reinforcing material is then wound about the wet tubing and the two become bound together.

Any suitable adhesive which forms a film upon drying which has a modulus equal to or less than that of the sheath may be used for binding the sheath to the adjacent fibrous layer. Epoxy resin and polyurethane adhesives have given the best results so far and are preferred. The polyurethane adhesive may be prepared by mixing a liquid prepolymer with a suitable chain extender and solvent therefor. For example, an adhesive which forms a dried film of polyurethane having the proper modulus and prepared as described in U.S. Pat. No. 3,373,143 may be used. A formulation using about 77 percent Epon 872, an epoxy resin available from the Shell Oil Co., about 10 percent butyral lactone and about 13 percent of amine curing agent available commercially from Shell Oil Co., as Epon V-40 may be used. Adiprene L100, a polytetramethylane ether urethane having terminal-NCO groups, may be mixed with a diamine curing agent such as di(chlorophenyl)methane diamine in a ratio of about 80-95 parts Adiprene L100 to 5 to parts curing agent to form a suitable adhesive. The particular composition of the adhesive is not critical as long as it produces a dried film having the required modulus.

The fibrous material used for the reinforcing member may be cotton, nylon, rayon or the like but it is preferred to use a poly(alkylane terephthalate)ester fiber such as the ones sold commercially as Dacron." Preferably the fibrous material is of the braided type and the yarns making up the braided fabric are composed of a plurality of filaments which are movable with respect to each other.

Referring now to the drawing, one embodiment of the invention is illustrated in FIG. 1. Extruded polyurethane tubing 10 having a Shore A hardness of about 70 and a modulus of about 7,000 p.s.i. has five internal longitudinally extending ribs 13 separated by grooves 14. As shown in FIG. 2, even when tubing 10 is compressed until ribs 13 project into radially opposite grooves 14, fluid passageways still extend through the tubing. Nylon 11 having a modulus of about 43,000 p.s.i. may be substituted for the polyurethane in making a similarly advantageous tube 10.

The composite tubing of FIGS. 3 and 4 has a core tubing 10, a Dacron" braid reinforcing member 12 and a sheath 11. Core tubing 10 and sheath 11 are extruded polyurethane having a hardness of about Shore D 55 and a modulus of about 7,000 p.s.i. Core tubing 10 may be bound to reinforcing member 12 by softening it with a suitable solvent for a thermoplastic polyurethane such as methyl pyrrolidone, dimethyl formamide, dimethyl acetamide or the like and winding the fibrous material thereabout while the core tubing is tacky. The sheath may be bound to the reinforcing member with an adhesive which has a modulus equal to or less than the modulus of the sheath. If the tubing is to be used as a breathing hose, solvents and adhesives are preferably avoided to insure that they will not be present and contaminate the fluid conveyed therethrough.

One embodiment of a breathing hose is shown in FIG. 5. Composite tubing 1 has an extruded resinous core tubing 10. Five ribs and grooves are evenly spaced about the periphery of the inner surface of the tube wall and extend radially into the bore of tubing 1. A fibrous member 12 is disposed about tubing 10 and reinforces it against rupture by fluid pressure. Extruded resinous sheath l1 encloses tubing 10 and member 12. A coupling or fitting 42 is disposed about one end of tubing 1 and has a longitudinally extending bore 45 which communicates with the bore of tubing 1. That portion of coupling 42 enclosed by tubing 1 has five external ribs 43 of substantially the same configuration as grooves 14 but the ribs 43 are slightly larger in crosssection than grooves 14. Each rib 43 is held tightly within a groove 14. Fitting 44 is disposed tightly about hose 1 and presses tubing 10 against coupling 42 to prevent the two from becoming separated while the hose is in use. Tubing 1 may be provided with a similar coupler on its opposite end.

An apparatus which may be used for making tubing 10 is illustrated in FIG. 6. Pellets of a thermoplastic polyurethane or of another thermoplastic resin which has been indicated as suitable herein may be heated and dried in hopper 16. The dried pellets are transferred to extruder 17 which may be of any conventional type and are forced out of cross-head 19 through die orifice 18 which imparts thereto the cross-sectional configuration shown in FIG. 4.

The hot tube 10 emerging from die 18 passes through water quench bath 20 to cool and set the polyurethane. A second water bath 22 may be used if required to cool the tubing to about 20C. or room temperature. Tubing 1 may be pulled through bath 20 with a suitable haul off device 21. Tubing l is wound on reel 23 of windup mechanism 24.

As shown in FIG. 7, tubing 10 may have a fibrous member 12 disposed thereabout to reinforce it and to adapt it for use at high pressures. Reel 23 is mounted on payoff stand 25 which may be of conventional design. Tubing 10 passes through a solvent bath 26 where it is wet with N-methyl pyrrolodene or other solvent for the resin. The wet tubing 10 passes through a drier 27 to remove excess solvent and leave a tacky surface on the tubing 10. The tacky tubing is wound with one or more layers of a reinforcing braid of Dacron by braiding mechanism 28 and is then wound on reel 29. In some embodiments, the drier may be omitted.

The braided tubing on reel 29 may be covered with a sheath 11 as illustrated in FIG. 8. Reel 29 is mounted on pay off stand 30. Tubing passes from reel 29 through an adhesive applicator 31 containing an adhesive of the type described hereinbefore. The adhesive coated braided tube is dried in hot air drier 32 to gel the adhesive. Tensioning device 33 may be of conventional design and may be used to maintain a constant tension on the tubing as it is pulled off reel 29.

Hopper 34 contains pellets of thermoplastic polyurethane which are heated and dried before they are transferred to extruder 35. The pellets are forced through die 37 of cross-head 36 to form a sheath 11 which encloses braided tubing 10. Water bath 38 cools tubing 1 as it passes therethrough. Haul off mechanism 39, like mechanism 21, may be of the caterpiller type. The cooled sheathed tubing 1 is wound on reel 40 of coiler mechanism 41.

If the tubing 1 is to be used as a breathinghose, solvent bath 26 and adhesive bath 32 are by passed. Driers 27 and 32 may also be by passed. Tubing 1 may be withdrawn from reel 40, cut to length and assembled by conventional means with suitable couplings or other fittings.

As pointed out above it is preferred that an odd number of frusto-triangularly shaped ribs 13 be provided on the inner wall of tube 10 but an even number may be used. Likewise, the shape of the cross-section of ribs 13 may be triangular, arcuate or other suitable shape but the frusto-triangular shape provides the best assurance against blockage of fluid flow.

Tube wall thickness and the thickness of the reinforcing member and of the sheath will vary with tube diameter. In a tubing having an inside diameter of about one-half inch, the core tubing may have a wall thickness adjacent the grooves of about 0.035 inch, the fibrous member about 0.025 inch in its compressed state between the core and sheath and the sheath may be about 0.03 inch thick. Corresponding thicknesses may be used as the tubing diameter increases or decreases. The volume of the ribs on the tube wall may vary from tube to tube but in a tubing having a one-half inch internal diameter it is preferred that the total volume of the ribs be about 35 to 40 percent of the volume of the bore in the core tubing. The dimensions of the ribs in a tube may be the same or different. Preferably, tubing 10 is symmetrical in cross-section and has its ribs evenly spaced around its periphery.

The tubing provided by this invention has been found less likely to kink and block fluid flow therethrough than the conventional tubing having a smooth inner core wall. The most improved resistance to kinking is obtained by combining a polyurethane core and sheath having the physical properties specified herein. The tubing can be used to advantage as a breathing hose or to convey liquid or gas under pressure.

Although the invention has been described in detail for the purpose of illustration, it is to be understood that such detail is solely for that urposeand that variatrons can be made therein by tom skilled in the art without departing from the spirit and scope of the invention except as it may be limited by the claims.

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

1. A fluid conveying assembly comprising a hollow tube formed of an elastomericmaterial with a bore therethrough, the interior of said tube having circumferentially spaced, longitudinally extending integral ribs which project inwardly and thus form grooves therebetween, said ribs and grooves having a configuration whereby upon compression of the tube about any diameter thereof the interior surfaces of the grooves and ribs on one side of said any diameter will not form a surface complementary with the interior surface of the grooves and ribs on the other side of said any diameter and the tube will remain open for the passage of fluid therethrough and a coupling member having a bore which communicates with the bore of the tube and external circumferentially spaced longitudinally extending ribs about its periphery equal in number to the number of said grooves between the ribs on the tube wall, each rib of the coupling member being disposed snugly in a groove of the core tubing, and means for pressing the tube wall firmly against the coupling member.

2. The assembly of claim 1 further characterized in that the number of ribs is a positive whole odd integer in excess of one.

3. The assembly of claim 1 wherein the ribs on the tube wall are frusto-triangularly shaped in cross-section with their bases adjacent the remainder of the tube wall and the grooves are rectilinear in cross-section.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3078109 *Aug 25, 1958Feb 19, 1963SuperflexitEnd fitting for a helical convoluted hose
US3240233 *Feb 12, 1962Mar 15, 1966Archibald P JohnstonGuiding conduit for wire or the like
US3310447 *Apr 24, 1963Mar 21, 1967Moore & Co SamuelComposite tubing method of manufacture
US3581523 *Feb 24, 1969Jun 1, 1971Merit Plastics IncFlexible cable assembly
US3581776 *Oct 2, 1968Jun 1, 1971Dow Chemical CoPipe insulation structure
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3911963 *Nov 16, 1973Oct 14, 1975SbvMethod of manufacture of an elongated enclosure of revolution
US4191168 *Nov 2, 1977Mar 4, 1980Allen Peyton SSolar energy converting apparatus
US4192352 *Aug 1, 1975Mar 11, 1980Hitachi, Ltd.Insulator for covering electric conductors
US4313629 *Jul 14, 1980Feb 2, 1982Champion Spark Plug CompanyHose connector
US4324571 *Mar 25, 1981Apr 13, 1982Johnson Jr Allen SBag-type filter apparatus with air diffuser having extended bag support
US4620564 *Jan 18, 1985Nov 4, 1986Mediplast AbDevice for regulating the flow rate in a tube
US4821768 *Mar 13, 1984Apr 18, 1989Schlumberger Industries, S.A.Tranquillizer device for requlating the flow profile of fluid
US4867485 *Aug 5, 1988Sep 19, 1989Colorite Plastics Co.Kink impeding hose and coupling
US5215450 *Mar 14, 1991Jun 1, 1993Yehuda TamariInnovative pumping system for peristaltic pumps
US5265597 *Jul 1, 1992Nov 30, 1993Puritan-Bennett CorporationPassenger oxygen mask having a plurality of fingers and recesses for mounting the mask to an oxygen bag
US5315748 *May 12, 1992May 31, 1994Plastic Specialties And Technologies, Inc.Making a kink impeding hose
US5360291 *Apr 2, 1992Nov 1, 1994Miral Industries Co., Ltd.Method for laying cable or hose in channel and channel therefor
US5494374 *Nov 1, 1993Feb 27, 1996Youngs; AndrewSecondary containment flexible underground piping system
US5611373 *Apr 27, 1995Mar 18, 1997Handy & Harman Automotive Group, Inc.Vapor barrier layer of metal coated polyethylene terephthalate material
US5662144 *Jan 18, 1996Sep 2, 1997Baxter Healthcare CorporationEasy clamp tubing and a method for clamping the tubing
US5678609 *Mar 6, 1995Oct 21, 1997Arnco CorporationAerial duct with ribbed liner
US5682925 *Jul 23, 1996Nov 4, 1997Plastic Specialties And Technologies Inc.Kink resistant hose for spraying water
US5718952 *Oct 17, 1994Feb 17, 1998Deutsche Aerospace AhHollow structural member
US5865216 *Nov 8, 1995Feb 2, 1999Advanced Polymer Technology, Inc.System for housing secondarily contained flexible piping
US5918643 *May 13, 1997Jul 6, 1999Form RitePlastic tube with varying layer thickness
US5972143 *Nov 7, 1997Oct 26, 1999Stevens; Robert C.Angiographic catheter with unitary body and tip sections and method for making same from a continuous feedstock
US6029660 *Dec 12, 1997Feb 29, 2000Resmed LimitedSubstance delivery apparatus
US6044844 *Dec 2, 1997Apr 4, 2000Resmed LimitedMask and harness assembly
US6112746 *Jan 31, 1997Sep 5, 2000Resmed LimitedNasal mask and mask cushion therefor
US6119693 *Jan 16, 1998Sep 19, 2000Resmed LimitedForehead support for facial mask
US6123071 *Sep 26, 1996Sep 26, 2000Resmed LimitedFacial masks for assisted respiration or CPAP
US6123082 *Oct 3, 1997Sep 26, 2000Resmed LimitedDevice for preventing or reducing the passage of air through the mouth
US6135108 *Sep 10, 1998Oct 24, 2000Vital Signs Inc.Apparatus enabling fluid flow
US6165196 *Sep 25, 1998Dec 26, 2000Corvascular Surgical Systems, Inc.Perfusion-occlusion apparatus
US6185859 *Jul 12, 1999Feb 13, 2001Texan CorporationTubing made from resilient plastics and devices made therefrom
US6357441Jul 16, 1997Mar 19, 2002Resmed LimitedNasal mask and mask cushion therefor
US6417457 *Jun 7, 2000Jul 9, 2002NexansElectrical subsea cable
US6463931Jun 30, 2000Oct 15, 2002Resmed LimitedForehead support for facial mask
US6494207Dec 2, 1997Dec 17, 2002Resmed LimitedHarness assembly for a nasal mask
US6513526May 21, 1999Feb 4, 2003Resmed LimitedFull-face mask and mask cushion therefor
US6557556May 13, 2002May 6, 2003Resmed LimitedForehead support for facial mask
US6561190Feb 10, 1998May 13, 2003Resmed LimitedMask and a vent assembly therefor
US6561191Dec 1, 1999May 13, 2003Resmed LimitedMask and a vent assembly therefor
US6581602Feb 8, 2002Jun 24, 2003Resmed LimitedNasal mask and mask cushion therefor
US6616651Nov 17, 2000Sep 9, 2003Robert C. StevensIntravascular microcatheter with embedded helical coil reinforcement member and methods and apparatus for making same
US6634358May 8, 2000Oct 21, 2003Resmed LimitedNasal mask cushion assembly
US6679298Dec 23, 2002Jan 20, 2004CoflexipCollapsible flexible pipe
US6691708Aug 29, 2002Feb 17, 2004Resmed LimitedForehead support for facial mask
US6701927Jun 11, 2002Mar 9, 2004Resmed LimitedFull-face mask and mask cushion therefor
US6860269Oct 4, 2002Mar 1, 2005Resmed LimitedForehead support for facial mask
US6871649Dec 6, 2001Mar 29, 2005Resmed LimitedNasal mask cushion assembly
US6973929Dec 17, 2002Dec 13, 2005Resmed LimitedForehead support for a facial mask
US6997188Sep 15, 2003Feb 14, 2006Resmed LimitedForehead support for facial mask
US7000614Mar 14, 2002Feb 21, 2006Map Medizin-Technologie GmbhBreathing mask arrangement and a forehead support device for same
US7007696May 16, 2002Mar 7, 2006Tiara Medical Systems, Inc.Mask cushion and method of using same
US7036508Apr 30, 2002May 2, 2006Resmed LimitedHarness assembly for a nasal mask
US7069933Nov 12, 2003Jul 4, 2006Resmed LimitedBreathing mask and mask cushion therefor
US7100610Oct 16, 2001Sep 5, 2006Map Medizintechnologie GmbhBreathing mask for feeding a breathing gas to a mask user and discharge device for discharging breathing gas
US7178527Feb 11, 2002Feb 20, 2007Resmed LimitedNasal mask and mask cushion therefor
US7207335Feb 12, 2003Apr 24, 2007Resmed LimitedMask and vent assembly therefor
US7234466Nov 4, 2003Jun 26, 2007Resmed LimitedForehead support for facial mask
US7243651Sep 7, 2004Jul 17, 2007Resmed LimitedCushion and mask therefor
US7290546Mar 22, 2003Nov 6, 2007Invacare CorporationNasal mask
US7302950 *Mar 12, 2003Dec 4, 2007Resmed LimitedPatient interface for respiratory apparatus
US7320323Oct 22, 2002Jan 22, 2008Map Medizin-Technologie GmbhBreathing mask device and application device and frontal support device thereof
US7322379Feb 7, 2005Jan 29, 2008Evans Daniel CFlexible kink-resistant hoses
US7351009 *Nov 26, 2003Apr 1, 2008Corning Cable Systems LlcFiber optic installation structures in a paved surface, ducts, and methods therefor
US7406965May 5, 2004Aug 5, 2008Resmed LimitedForehead support for facial mask
US7472704Mar 2, 2005Jan 6, 2009Resmed LimitedForehead support for facial mask
US7503327Apr 9, 2004Mar 17, 2009Resmed LimitedMask with integral cushion and forehead piece
US7578260 *Jun 28, 2005Aug 25, 2009Lauren Agrisystems, Ltd.Milking liner
US7601256Aug 25, 2006Oct 13, 2009Next-Ro, Inc.Reverse osmosis filtration systems
US7610916Aug 28, 2006Nov 3, 2009Resmed LimitedForehead support for facial mask
US7621274Jun 23, 2003Nov 24, 2009Invacare CorporationNasal mask
US7637287 *Nov 11, 2003Dec 29, 2009Lss Life Support Systems AgAnti-buckling device for thin-walled fluid ducts
US7654263May 13, 2005Feb 2, 2010Map Medizin-Technologie GmbhBreathing mask arrangement and a forehead support device for same
US7726511 *Aug 25, 2006Jun 1, 2010Next-Ro, Inc.Reverse osmosis filtration system storage tanks
US7762259Dec 17, 2007Jul 27, 2010Resmed LimitedMask with integral cushion and forehead piece
US7763171May 6, 2008Jul 27, 2010Next-Ro, Inc.Reverse osmosis filtration system storage tanks
US7775209Jul 25, 2006Aug 17, 2010Map Medizintechnologie GmbhBreathing mask for feeding a breathing gas to a mask user and discharge device for discharging breathing gas
US7845354Nov 19, 2002Dec 7, 2010Resmed LimitedMask and vent assembly therefor
US7882837Aug 19, 2005Feb 8, 2011Resmed LimitedForehead support for facial mask
US7926487Apr 28, 2006Apr 19, 2011Resmed LimitedRespiratory mask having gas washout vent and gas washout vent assembly for a respiratory mask
US7931023Jan 29, 2007Apr 26, 2011Resmed LimitedPatient interface assembly for CPAP respiratory apparatus
US7942149Jan 5, 2009May 17, 2011Resmed LimitedForehead support for a facial mask
US7942150Apr 8, 2005May 17, 2011Resmed LimitedNasal assembly
US7950392Jul 13, 2007May 31, 2011Resmed LimitedCushion and mask therefor
US7967014Apr 25, 2006Jun 28, 2011Map Medizin-Technologie GmbhApplication device for breathing mask arrangement
US7992559Nov 28, 2007Aug 9, 2011Map Medizin-Technologie GmbhBreathing mask arrangement as well as an application device and a forehead support device for same
US8028698Sep 17, 2007Oct 4, 2011Invacare CorporationBreathing mask
US8056505Dec 8, 2009Nov 15, 2011Lauren Agrisystems, Ltd.Vent for milking liner
US8056561May 12, 2006Nov 15, 2011Resmed LimitedFull-face mask and mask cushion therefor
US8122886Dec 27, 2006Feb 28, 2012Resmed LimitedRespiratory mask assembly with vent
US8186348Sep 23, 2009May 29, 2012Resmed LimitedForehead support for facial mask
US8201520Mar 31, 2008Jun 19, 2012Rick Meritt Investments, Ltd.Animal feeding apparatus
US8210180Jun 30, 2010Jul 3, 2012Resmed LimitedMask with integral cushion and forehead piece
US8302561Aug 11, 2009Nov 6, 2012Lauren Agrisystems, Ltd.Teat cup shell
US8353294Mar 21, 2011Jan 15, 2013Resmed LimitedRespiratory mask assembly
US8371301Jul 9, 2010Feb 12, 2013Resmed R&D Germany GmbhBreathing mask for feeding a breathing gas to a mask user and discharge device for discharging breathing gas
US8402972Aug 27, 2009Mar 26, 2013Resmed R&D Germany GmbhBreathing mask arrangement and a forehead support device for same
US8409386Feb 22, 2011Apr 2, 2013Next-Ro, Inc.Storage tank assemblies and methods for water on water reverse osmosis systems
US8479738May 20, 2011Jul 9, 2013Resmed R&D Germany GmbhBreathing mask arrangement as well as an application device and a forehead support device for same
US8485192Jun 29, 2012Jul 16, 2013Resmed LimitedCushion for patient interface
US8505535Dec 23, 2009Aug 13, 2013Resmed LimitedMask system
US8517023Jan 29, 2008Aug 27, 2013Resmed LimitedMask system with interchangeable headgear connectors
US8522783May 16, 2011Sep 3, 2013Resmed LimitedCushion and mask therefor
US8522784Jan 23, 2013Sep 3, 2013Resmed LimitedMask system
US8522785Aug 5, 2003Sep 3, 2013Resmed LimitedInextensible headgear and CPAP or ventilator mask assembly with the same
US8528558Mar 15, 2011Sep 10, 2013Resmed LimitedRespiratory mask having washout vent and gas washout vent assembly for a respiratory mask
US8528561Jan 18, 2013Sep 10, 2013Resmed LimitedMask system
US8550081Nov 29, 2012Oct 8, 2013Resmed LimitedCushion for patient interface
US8550082Nov 29, 2012Oct 8, 2013Resmed LimitedCushion for patient interface
US8550083Nov 29, 2012Oct 8, 2013Resmed LimitedCushion for patient interface
US8550084Feb 27, 2009Oct 8, 2013Resmed LimitedMask system
US8555885Nov 29, 2012Oct 15, 2013Resmed LimitedCushion for patient interface
US8567404Nov 14, 2012Oct 29, 2013Resmed LimitedCushion for patient interface
US8573213Nov 14, 2012Nov 5, 2013Resmed LimitedCushion for patient interface
US8573214Nov 28, 2012Nov 5, 2013Resmed LimitedCushion for patient interface
US8573215Nov 29, 2012Nov 5, 2013Resmed LimitedCushion for patient interface
US8578935Nov 29, 2012Nov 12, 2013Resmed LimitedCushion for patient interface
US8613280Nov 14, 2012Dec 24, 2013Resmed LimitedCushion for patient interface
US8613281Nov 29, 2012Dec 24, 2013Resmed LimitedCushion for patient interface
US8616211Nov 29, 2012Dec 31, 2013Resmed LimitedCushion for patient interface
US8636006Jan 3, 2007Jan 28, 2014Resmed LimitedMask
US8646450Mar 29, 2011Feb 11, 2014Resmed LimitedForehead support for a facial mask
US8677937Oct 31, 2011Mar 25, 2014Lauren AgriSystems LLCMilking liner
US8690904 *Aug 18, 2007Apr 8, 2014Jeffrey GrayzelPercutaneous access conduit
US8746250Jan 28, 2013Jun 10, 2014Resmed R&D Germany GmbhBreathing mask for feeding a breathing gas to a mask user and discharge device for discharging breathing gas
US8757162Nov 2, 2010Jun 24, 2014Resmed LimitedNasal assembly
US8794239Jun 19, 2012Aug 5, 2014Resmed LimitedMask with integral cushion and forehead piece
US20070288046 *Aug 18, 2007Dec 13, 2007Jeffrey GrayzelPercutaneous access conduit and methods
US20120279401 *May 6, 2011Nov 8, 2012Prince Castle LLCEgg Scrambler for Preparing Scrambled Eggs
USRE37114Dec 19, 1996Mar 27, 2001Advanced Polymer Technology, Inc.Secondary containment flexible underground piping system
DE3151563A1 *Dec 28, 1981Sep 2, 1982Thomas & Betts CorpDreireihiger verbinder fuer einen mengenanschluss von flachkabel sowie verfahren zur herstellung des verbinders
EP0415297A1 *Aug 25, 1990Mar 6, 1991KUNSTSTOFFWERK VOERDE HUECK & SCHADEExtruded non-buckling passing-through mountable discharge respectively ventilation hose for installation in cavities of automotive bodies
EP0611914A1 *Jan 31, 1994Aug 24, 1994Richard LionelFlexible duct to be installed underground behind a mobile boring machine
EP0844426A1 *Aug 3, 1989May 27, 1998Plastic Specialties And Technologies Investments, Inc.Kink impeding hose for spraying water
WO1990001654A1 *Aug 3, 1989Feb 22, 1990Plastic Specialties & TechKink impeding hose for spraying water
WO1993015785A1 *Feb 12, 1993Aug 19, 1993Navarre Biomedical LtdKink resistant tubing apparatus
WO1993020372A1 *Mar 25, 1993Oct 14, 1993Advanced Polymer TechnologySecondary containment flexible underground piping system
WO1996034222A1 *Apr 26, 1996Oct 31, 1996Handy & HarmanLaminated fuel line and connector
WO2003056225A1 *Dec 11, 2002Jul 10, 2003CoflexipFlattenable flexible pipe
WO2003095882A1 *May 13, 2003Nov 20, 2003Scargill Paul NigelKink impeding hosepipe
WO2005054905A2 *Nov 22, 2004Jun 16, 2005Corning Cable Sys LlcFiber optic installation structures in a paved surface, ducts, and methods therefor
WO2011121349A1 *Mar 29, 2011Oct 6, 2011Miniflex LimitedSub-duct for cables
WO2012077114A1 *Dec 7, 2011Jun 14, 2012Oridion Medical 1987 Ltd.Kink-resistant gas delivery tube
WO2014096658A1 *Dec 16, 2013Jun 26, 2014Valeo Systemes De Controle MoteurValve, particularly an exhaust gas recirculation valve
Classifications
U.S. Classification138/137, 138/178, 138/119, 128/204.18, 138/108, 138/45, 138/46, 138/177, 285/242, 285/259, 128/912, 285/330
International ClassificationF16L11/12
Cooperative ClassificationF16L11/121, Y10S128/912
European ClassificationF16L11/12B
Legal Events
DateCodeEventDescription
Jun 15, 1987ASAssignment
Owner name: FLUROCARBON COMPANY, THE, 27611 LA PAZ ROAD, LAGUA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:EATON CORPORATION, A CORP. OF OH;REEL/FRAME:004748/0429
Effective date: 19870529
Owner name: FLUROCARBON COMPANY, THE, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EATON CORPORATION, A CORP. OF OH;REEL/FRAME:004748/0429