Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3722002 A
Publication typeGrant
Publication dateMar 27, 1973
Filing dateJan 17, 1972
Priority dateMar 3, 1971
Publication numberUS 3722002 A, US 3722002A, US-A-3722002, US3722002 A, US3722002A
InventorsJ Charnley
Original AssigneeThackray C F Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Acetabular sockets
US 3722002 A
Abstract
An acetabular socket having an inner face for receiving the head of a femoral prosthetic component, said inner face being of hemispherical shape extended by a part-cylindrical section of radius equal to the radius of the hemisphere, the axial length of a first circumferential part of the part-cylindrical section being greater than that of a second circumferential part of the part-cylindrical section. Said socket is designed for mounting in the pelvis with the first circumferential part at the posterior to limit backward movement of the femoral prosthetic component, while the shorter, second circumferential part at the anterior allows a good range of forward flexion of the femoral prosthetic component.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 Charnley 1 51 Mar. 27, 1973 ACETABULAR SOCKETS [75] Inventor: John Charnley, Hale, England [73] Assignee: Chas. F. Thackray Limited, Leeds, Yorkshire, England 22 Filed: Jan. 17,1972 211 A 1.No.;218,443'

30 Foreign Application Priority Data Mar. 3, 1971 Great Britain ..'.-...5,89l/71 {52] us. 01. ..3/1, 128/92 C [51 Int. Cl. ..A61r 1/24 [58] Field of Search....,..3/l; 128/92 C, 92 CA, 92 R; 287/87, 90 R [56] References Cited v UNITED STATES PATENTS 2,668,531 2/1954 I-Iaboush ..128/92 CA 3,067,740 12/1962 Haboush... .....128/92 CA 3,608,096 9/1971 Link ..3/1

FOREIGN PATENTS OR'APPLICATIQNS 1,047,640 7/1953 France .l ..l28/92C OTHER PUBLICATIONS The Direction of the Resultant Force In Total Prosthetic Replacement of the Hip Joint" by R.-A.

'Elson et al., Medical & Biological Engineering, Vol. 6,

No. 1,.Ianuary 1968, pp. 19-27.

Primary Examiner-Richard A. Gaudet Assistant EtaminerRonald L. F rinks. Attorney-Richard K. Stevens et al.

[ ABSTRACT An acetabular socket having an inner face for receiving the head of a femoral prosthetic component, said inner face being of hemispherical shape extended by a part-cylindrical section of radius equal to the radius of the hemisphere, the axial length of a first circumferential part of the part-cylindrical section being greater than that of a second circumferential part of the part-cylindrical section. Said socket is designed for mounting in the pelvis with the first circumferential part at the posterior to limit backward movement of the femoral prosthetic component, while the shorter, second circumferential part at the anterior allows a good range of forward flexion of the femoral prosthetic component.

i 11 Claims, 3 Drawing Figures ACETABULAR SOCKETS This invention relates to acetabular sockets used in the surgical operation of total hip prosthesis.

Conventional sockets have a substantially hemispherical inner face for receiving the head of the femoral component, this face being symmetrical about the axis of the socket. The socket is conventionally mounted in the human pelvis so that it is tilted forwardly by from l to 15. This tilting enhances the range of flexion of the hip by delaying contact between the neck of the femoral component and the rim of the socket after the 90 position of flexion of the hip has been passed; and it also increases the projection of the posterior wall of the socket to deter dislocation of the hip in a backwards direction. However, the arrangement suffers from the disadvantages that it favors dislocation of the femoral head by external rotation and that it reduces the area of contact under pressure between the femoral head and the socket when the leg is in the neutral position.

The object of this invention is to provide a socket which may be mounted in the pelvis without tilting so that the aforesaid disadvantages are avoided, while still retaining the advantages of the conventional arrangement.

According to the present invention an acetabular socket is formed with an inner face of hemispherical shape extended by a part-cylindrical section of radius equal to the radius of the hemisphere, the axial length of a first circumferential part of the part-cylindrical section being greater than that of a second circumferential part of the part-cylindrical section.

In use this socket is positioned in the pelvis without any tilting, and with said longer first circumferential part forming the posterior wall of the socket. This provides a posterior wall with sufficient projection to deter backwards dislocation of the hip while allowing a good range of forward flexion. The disadvantages obtained with a tilt mounted socket are avoided.

The angular extent of said first circumferential part should, in most cases, be no more than 180 and no less' than 90, and is preferably about 120. An angular extent of about 120 allows the socket to be used for either a right or left hip prosthesis, an angular extent much greater than this necessitates the provision of left and right sockets of slightly different shape. The extra extent of axial length of said first circumferential part is conveniently from 2 to mm, and preferably about 4 A specific embodiment of a socket according to the invention will now be described in more detail, by way of example, with reference to the accompanying drawings in which:

FIG. 1 is a cross-section through the socket. FIG. 2 is an elevation in the direction of the arrow II; and

FIG. 3 is an elevation in the direction of the arrow III.

The socket is manufactured, as is conventional, from a dense plastics material, and its convex surface 1 is formed with grooves 2 to 5 to assist keying the socket into the cement securing it to the pelvis and a further groove 6 for receiving a substantially semicircular radio-opaque marker having radially inturned ends for location in holes 6a. The socket has an outwardly extending flange 7 formed with serrations 8 which again assist keying to the cement.

5 of forward flexion. The forward and backward limit The socket is formed with an inner face 9 which is partly hemispherical about a center 10, the limit of the hemisphere being the plane 11, and partly cylindrical,

the part-cylindrical section extending from the plane 1 1 towards an end face 12 of the socket.

A. first circumferential part of the part-cylindrical section terminates in an edge having a central arcuate section 14 (subtending an angle (9 at the axis of the socket) lying in a first plane perpendicular to said axis and two end sections 15 and 16 (subtending angles 6 and 0 respectively at the axis of the socket) each inclined at an angle to said plane. A second circumferential part of the part-cylindrical section terminates in an arcuate edge 13 (subtending an angle 6 at the axis of the socket) lying in a second plane perpendicular to said axis. The axial length of the central section of the first circumferential part is d and the axial length of the second circumferential part is d The distance d is greater than the distance d i.e. the axial length of the first circumferential part is greater than that of the second circumferential'part. The difference between d, and d i.e. the perpendicular distance between the first and second plane is preferablyfrom 2 mm. to 10 mm. and, in this particular example, is 3.5 mm. The inclined end sections 15 and 16 are provided to-avoid a sharp step between the edges 13 and 14.

The part 17 of the end face 12 of the socket into which the first, 'longer cylindrical section opens is formed in a plane perpendicular to the axis of the socket. The part 18 of the face, into which the second, shorter cylindrical section opens is cut to form a wall inclined at an angle0 to the axis of the socket. The two parts 17 and 18 are joined by triangular inclined face sections 19 and 20 making a smooth transition between the two major parts.

Exemplary values for the angles and distances given, for a socket capable of being used in either the left or right side of an adult of average size are as follows:

It will be understood that these angles and distances are onlyexemplary, and that they may be changed as' required.

In use, a socket according to the invention is installed in the pelvis without tilting and with the first, longer cylindrical section subtending angle 0 forming the posterior wall of the socket. When the femoral prosthesis is fitted in the socket it will be seen that this wall limits backward movement of the prosthesis, whereas the shorter, tapered anterior wall allows a good range positions of the femoral prosthesis are shown in chain dotted lines F and B respectively in FIG. 1, and it will be noted that in the forward position F the limit is set by contact of the neck of the prosthesis with the inner edge 13 of the socket rather than the outer edge 21. This ensures a smaller leverage action at the maximum forward position, and reduces the distance that the head of the prosthesis will move out of the socket.

Although the drawings show the presently preferred way of putting the invention into practice, other formations of the socket are also possible.

What I claim is:

. 3. An acetabular socket according to claim 2 in.

which the subtended angle is about 120.

4. An acetabular socket according to claim 1 in which the second circumferential part terminates in an arcuate edge lying in a second plane perpendicular to the axis of the socket and the firstcircumferential part has an edge the central arcuate section of which lies in a second plane perpendicular to said axis and the two end sections of which extend from the central section to the respective ends of the edge of the second circumferential part at acute angles to said planes.

5. An acetabular socket according to claim 4 in which the perpendicular distance between said planes is from 2 mm. to 10mm.

6. An acetabular socket according to claim 5 in which the perpendicular distance between said planes is about 3.5 mm. 7

7. An acetabular-socket according to claim 4 in which the angle subtended at the axis of the socket by each end section of the edge of the first circumferential part is about 8. An acetabular socket according to claim 4 in which the end face of the socket into which the inner face opens has a first part extending radially outwardly from the central section of the edge of the first circumferential part, said first part lying in a plane perpendicular to the axis of the socket, and a second part ex: tending radially outwardly from the edge of the second circumferential :part and inclined at anacute angle to the axis of the socket.

9. An acetabular socket according to claim 8 in which said acute angle of the second circumferential part is about 70.

10. An acetabular socket according to claim 8 in which said first and second parts of said end face are I joined at each of their ends by triangular face sections each bounded by a junction line with said first part, a junction line with said second part and a respective one of said end sections of said edge of said first circumferential part. 11. An acetabular socket according to claim 10 in which said end face of said socket is bounded by an annular flange lying in the plane of said first part of said end face, the radiallyouter edge of said flange being formed with serrations.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2668531 *Feb 15, 1952Feb 9, 1954Haboush Edward JProsthesis for hip joint
US3067740 *Sep 8, 1959Dec 11, 1962Edward J HaboushHip joint prosthesis
US3608096 *Jan 23, 1970Sep 28, 1971Waldemar LinkHip joint socket for artificial hips
FR1047640A * Title not available
Non-Patent Citations
Reference
1 *The Direction of the Resultant Force In Total Prosthetic Replacement of the Hip Joint by R. A. Elson et al., Medical & Biological Engineering, Vol. 6, No. 1, January 1968, pp. 19 27.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3866248 *Apr 8, 1974Feb 18, 1975Abcor IncCement restrictor for total hip operations
US3882550 *Aug 13, 1973May 13, 1975Oscobal Ag Chirurgische InstrSocket for hip joint prosthesis
US3891997 *Mar 11, 1974Jul 1, 1975Jean Jules Marie Ernes HerbertHip-joint prosthesis
US3922726 *Aug 20, 1974Dec 2, 1975Sergio Sandrolini CortesiJoint prosthesis
US4623352 *Mar 7, 1984Nov 18, 1986Indong OhProtrusio cup
US4822370 *Jun 20, 1988Apr 18, 1989Orthoplant EndoprothetikHip joint femoral prosthesis
US4883490 *Mar 7, 1984Nov 28, 1989Indong OhAcetabular cup
US4978356 *Feb 1, 1989Dec 18, 1990Joint Medical Products CorporationBall and socket bearing for artificial joint
US5217499 *May 15, 1991Jun 8, 1993Minnesota Mining And Manufacturing CompanyRim-bearing acetabular component of hip joint prosthesis
US6042611 *Apr 18, 1997Mar 28, 2000Joint Medical Products CorporationBall and socket bearing for artificial joint
US6352559Mar 3, 1987Mar 5, 2002Btg International LimitedEndoprosthetic bone joint devices
US6520995 *Jan 10, 2002Feb 18, 2003Btg International LimitedEndoprosthetic bone joint devices
US6527808Oct 11, 2000Mar 4, 2003Zimmer Technology, Inc.Constrained socket for use with a ball-and-socket joint
US7135044Mar 9, 2004Nov 14, 2006Howmedics Osteonics Corp.Modular prosthesis kits
US7615083May 3, 2005Nov 10, 2009Orthowaz, Ltd.Biologically reabsorbable acetabular constraining components and materials for use with a hip replacement prosthesis and bioreabsorbable materials to augment hip replacement stability and function
US7766971Dec 12, 2007Aug 3, 2010Exactech, Inc.Constrained liner locking ring and polyethylene liner congruency feature
USRE38409May 6, 1988Jan 27, 2004Joint Medical Products CorporationBall and socket bearing for artificial joint
Classifications
U.S. Classification623/22.32
International ClassificationA61F2/00, A61F2/36, A61F2/30, A61F2/32, A61F2/34, A61F2/46
Cooperative ClassificationA61F2250/0098, A61F2002/4631, A61F2002/3008, A61F2/34, A61F2/32, A61F2002/3433, A61F2002/3082, A61F2002/3493, A61F2002/3611
European ClassificationA61F2/34