Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3722858 A
Publication typeGrant
Publication dateMar 27, 1973
Filing dateDec 15, 1970
Priority dateDec 29, 1969
Also published asDE2063589A1, DE2063589B2, DE2063589C3
Publication numberUS 3722858 A, US 3722858A, US-A-3722858, US3722858 A, US3722858A
InventorsMoriyama Y, Sugimoto M
Original AssigneeNorio Nomura
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Flow regulating device
US 3722858 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

aten n 1 Mates Sugimoto et a1.

[54] FLOW REGULATING DEVICE [75] Inventors: Masashi Sugimoto, Nagoya; Yoshiki Moriyama, Okazaki, both of Japan [73] Assignee: Norio Nomura, Anjo-shi, Japan [22] Filed: Dec. 15, 1970 [21] Appl. No.: 98,311

[30] Foreign Application Priority Data Dec. 29, 1969 Japan ..44/1407 [52] U.S. Cl. "251/209, 251/175, 251/212 [51] Int. Cl. ..F16k 5/10, F161: 5/18 [58] Field of Search ..251/209, 208, 175, 212; 137/6253 [56] References Cited UNITED STATES PATENTS 2,115,675 4/1938 Tremmel ..251/209 1,638,152 8/1927 Gabriel..... ..251/209 1,141,276 6/1915 Smith ..251/209 X 3,298,396 1/1967 Gressman et al. ..251/209 X 948,036 2/1910 Best ..251/209 X 2,564,223 8/1951 Longl... ..251/209 Fallon ..25 11209 X FOREIGN PATENTS OR APPLICATIONS 197,051 4/1958 Austria ..137/625.3

Primary Examiner-Arnold Rosenthal Attorney-Berman, Davidson & Berman [57] ABSTRACT A flow regulating valve for hydraulic systems including a housing having inlet and outlet ports anda port crossing bore, a sleeve mounted in the bore of the housing and provided with a first opening communicating with the inlet port and a second opening on the opposite side communicating with the outlet port,

' the walls of the second opening forming knife edges at 5 Claims, 8 Drawing Figures Patented March 27, 1973 3,722,858

INVENTORS, MASASH/ sum/14070,

YOJH/K/ Mom mMA,

ATTORNEY8.

FLOW REGULATING DEVICE BACKGROUND OF THE INVENTION 1 FIELD OF THE INVENTION The present invention relates to a flow regulating valve for use in pressure fluid, or hydraulic systems, such as hydraulically operated apparatus, machine tools, and the like, and more particularly to a flow regulating valve which is capable of maintaining a constant flow at a uniform rate regardless of changes of viscosity of the operating fluid by changes of ambient temperature.

2. DESCRIPTION OF THE PRIOR ART Hydraulic systems for apparatus and machine tools of recent design have been reduced in dimension, and these require small diameter, high pressure, hydraulic actuators and flow regulating valves capable of controlling precisely very small flow rates of operating fluid, regardless of changes in ambient temperature.

In the prior art, a flow regulating valve has been introduced which tries to meet the above requirements, and which comprises two hollow cylinders coaxially coupled to each other tightly, but slidably, or rotatably. One of the cylinders is provided with an opening in the circumference, the opening being a curved triangle forming an isoceles triangle when the cylinder surface is developed into a plane. Each side of the triangular opening terminates as a knife edge. The other cylinder has an oblong opening on the circumference and each side of the oblong is also knife edged. When the two hollow cylinders are rotated with respect to each other, the triangular and oblong openings overlap to form an orifice having its complete outline bounded by a sharp edge, the rate of flow of the pressure fluid being controlled by changes in the size of this sharp-edged orifice.

The conventional flow regulating valve briefly described above, however, has a drawback in that there is considerable leakage of operating fluid from portions of the device other than the sharp-edged orifice, said other portions including the circumferential space extending from the sharp-edged orifice between the two hollow cylinders. Moreover, the amount of leakage is greatly affected by changes in the rate of flow of the operating fluid through the sharp-edged orifice. It is very difficult to precisely control flow rates of the operating fluid because of the leakage, particularly when a very low flow rate of the fluid to be passed is determined by a small opening of the sharp-edged orifice.

a further disadvantage of the above-described conventional flow regulating valve is that the opening in one cylinder is formed with knife edges at the bases of sloping walls which are tapered wider toward the inlet port side. Consequently, the slopes of the knife edge walls become the main wetted perimeters in controlling low flow rates of the operating fluid. This increases the undesirable effect of changing the flow due to the viscosity of the operating fluid moving along the knife edge slops, and prevents precise control of low rates of flow of pressure fluid through the valve.

SUMMARY OF THE INVENTION The present invention provides a flow regulating valve which is capable of maintaining a substantially precisely regulated flow rate regardless of changes in viscosity of the pressure fluid caused by changes of ambient temperature, and regardless of high, or low, rates of flow of the pressure fluid. The valve embodies a housing having inlet and outlet ports, a hollow sleeve within the housing and having openings in communication with said ports, and a throttle spool mounted within the sleeve and provided with a cavity of decreasing size communicating at its larger end with the inlet opening of the sleeve, and at its smaller end with the outlet opening of the sleeve, so that relative movement of the sleeve and throttle spool serves to adjust the size of a sharp-edged orifice defined by the overlap of the reduced end of the cavity of the spool with the outlet opening of the sleeve. With this construction, the defects and disadvantages of the above described conventional valve are overcome, and precise regulation of the flow of the pressure fluid is attained.

A first important object of the invention is, therefore, to provide a flow regulating valve which is capable of minimizing the leakage of operating fluid from portions of the valve other than its sharp-edged orifice, so that a substantially constant and precisely regulated pressure fluid flow is obtained with good temperature compensating effect, and regardless of changes of ambient temperature, and even at very low rate of flow of the pressure fluid through the device.

It is a second important object of the invention to provide a flow regulating valve, having the above mentioned characteristics, wherein the effect of the viscosity of the operating fluid, flowing along the wetted perimeters of the sharp-edge orifice, or changes of such viscosity, is much lessened, or minimized, in controlling the rate of flow of the pressurefluid through the valve.

Another important object of the invention is to provide a flow regulating valve, having the above mentioned characteristics, wherein adjustment of the flow of the operating fluid can easily be accomplished and wherein no re-adjustment is required due to changes in viscosity of the pressure fluid.

A still further object of the invention is to provide a flow regulating valve, having the above described characteristics, whose construction is much simplified and thereby the cost of fabrication is greatly lowered, while the efficiency of operation is considerably increased.

BRIEF DESCRIPTION OF THE DRAWING The novel features that are considered characteristic of the invention are set forth with particularity in the appended claims. The invention, itself, however, both as to its organization and its method of operation, together with additional objects and advantages thereof, will best be understood from the following description of a specific embodiment when read in connection with the accompanying drawing, wherein like reference characters indicate like parts throughout the several Figures, and in which:

FIG. 1 is a central vertical section of a preferred embodiment of the present invention;

FIG. 2 is a fragmentary, enlarged, sectional view of the embodiment shown in FIG. 1;

FIG. 3 is a cross-sectional view taken along line 3-3 of FIG. 1, and looking in the direction of the arrows;

FIG. 4 is a perspective view of the throttle spool forming the core of the regulator shown in FIG. 1;

FIG. is a perspective view of the sleeve which surrounds the throttle spool of FIG. 4;

FIG. 6 depicts a cross-sectional view corresponding to FIG. 3, but with the throttle spool turned so that the sharp-edged orifice defined by the throttle spool and sleeve has the smallest opening thereof;

FIG. 7 is a fragmentary perspective view to an enlarged scale of the sharp-edged orifice corresponding with the condition shown in FIG. 6; and

FIG. 8 is a cross-sectional view corresponding to FIG. 3, but with the throttle spool turned so that the sharp-edged orifice defined by the spool and sleeve has the largest opening thereof.

DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawing, and more Particularly to FIGS. 1 3, the regulating valve, according to the present invention, comprises a housing 1 provided with an inlet port A at the upper side, an outlet port B at the lower side, and a stepped cylindrical bore 2 communicating with the inlet and outlet ports. A sleeve 3, of pipe-shape, is mounted within the bore 2 of the'housing and fixedly secured by a key 5. The sleeve has an axial bore 4, and as best shown in FIG. 5, a collar 3a at one end, a round hole 6 which opens to inlet port A of the housing through one side, and a triangular opening 7 cut through the wall of the sleeve, at the side opposite the round hole 6, so as to communicate with the outlet port B of the housing. All three sides 8 of the triangular opening 7 taper inwardly from the outer surface to the inner surface of the sleeve 3 to form knife edges at the inner surface of the sleeve, as best shown in FIG. 7.

A solid, cylindrical throttle spool 9, which is best shown in FIG. 4, is rotatably engaged within the axial bore 4 of the sleeve 3. The throttle spool is provided with a small diameter portion 10 at one end, a cylindrical cavity 11 with a spherical end portion passing from one side toward the other, and a circular hole 12 tapering inwardly from the spherical end portion of cavity 1 l to form a knife edge opening 13 at said other side of the spool. The pressure plate 14, having a hole 15 concentric with the axis of the throttle spool, is secured on the housing 1 to fix the axial positions of the sleeve 3 and the throttle spool 9. An adjusting dial 17 is secured by a pin 16 tothe small diameter portion l0 of the throttle spool 9, said Small diameter portion 10 jutting out of the housing 1 through the hole 15 of the pressure plate 14.

The tapered hole 12, of the spool 9, and the triangular opening 7, of the sleeve 3, overlap, as seen in FIG. 7, to form a sharp-edged orifice R, whose size is adjustable by turning the throttle spool by means of the dial 17. Unnumbered O-rings are provided, as shown in FIG. 1, to seal the throttle spool to the sleeve and the sleeve to the housing so as to prevent leakage of pres-- sure fluid therefrom and restrict the flow of pressure fluid to the ports, openings and orifices mentioned above. The ports and orifices in the housing, sleeve and throttle spool are so designed as to have the sleeve 3 and the throttle spool 9 urged toward the outlet port B of the housing 1 by pressure fluid delivered into the cavity 11 from the Inlet port A.

The above described regulator operates in the following manner. Pressure fluid delivered to the inlet port A, of the housing, flows into the round hole 6 of the sleeve 3, and into the cavity 11, of the throttle spool 9. The pressure fluid is finally discharged through the outlet port B of the housing after the quantity per unit time, or rate of flow, is reduced by the hole 12 tapering inwardly from the spherical cavity at the bottom end of cavity 11 into the knife edge opening 13, and the sharpedged orifice R, defined by overlap of opening 13 with the triangular knife-edged hole 7 in the sleeve 3. The quantity of pressure fluid discharged from the outlet port B in a given unit of time is controlled by rotation of the adjusting dial 17 to change the size of the orifice R. The pressure fluid urges the sleeve 3 and the throttle spool 9 toward the outlet port B, and at the outlet port B side, the spaces between the cylindrical bore 2 of the housing and the outer surface of the sleeve 3, and between the bore 4 of the sleeve 3 and the throttle spool 9 become very small to minimize possible leakage from places other than the sharp-edged orifice R.

The sloping sides 8, of the triangular opening 7, which terminate in knife edges, form the major wetted perimetrical edges along whose lengths the pressure fluid contacts the orifice R. Since these walls 8 taper, or widen toward the outlet port B, the effect of the viscosity of the pressure fluid on the rate of flOw through the device is minimized. Similarly, the effect of the viscosity of the pressure fluid in controlling the rate of flOw while the pressure fluid moves along the tapered sidewall of the hole 22 in the throttle spool, is also very small since the wetted perimeter of this tapered hole and its knife edge 13 is very small in area. Consequently, very precise adjustment can be made to the rate of flow of the pressure fluid even when such rate is extremely small, as for example, between 30cc. and cc. per minute.

FIG. 7 depicts the position of the various parts and the size of the sharp-edged orifice R when a very small rate of flow of the pressure fluid, as from 30cc. 100cc. per minute, passes out through outlet port B.

FIG. 8 depicts the size of the sharp-edged orifice R when it is largest and the flow rate Of the pressure fluid is greatest. It is obvious that in discharging'pressure fluid at a maximum rate, the same precise adjustment as for low flow rate is obtainable since the effects of viscosity and of leakage, from places other than through the sharp-edged orifice R, are smaller, the sleeve 3 and the throttle spool 9 being urged with greater force toward the outlet port B, as shown in FIG. 8

Although a certain specific embodiment of the invention has been shown and described, it is obvious that many modifications thereof are possible. The invention, therefore, is not intended to be restricted to the exact showing of the drawing and description thereof, but is considered to include reasonable and obvious equivalents.

What is claimed is:

l. A flow regulating valve for pressure fluid systems, comprising a housing having inlet and outlet ports and a bore crossing said ports, a sleeve mounted in said bore and provided with a first opening in 'one side communicatingwith said inlet port and a triangular opening in the opposite side communicating with said outlet port, said triangular opening having tapered walls sloping outwardly toward the outlet port and terminating in knife edges at the inner surface of the sleeve, a throttle spool mounted movably in the bore of said sleeve and having a cavity of decreasing size passing through the spool for communicating at its larger end with said inlet port and said first opening of the sleeve, and at its reduced end with said outlet port and said triangular opening of the sleeve, said cavity terminating in its reduced end in a hole of circular shape, and means for relatively moving said throttle spool and sleeve with respect to one another to form a sharp-edged orifice of adjustable size defined by the overlap of said circular hole at the reduced end of said cavity with said triangular opening of the sleeve, said throttle spool being urged toward the outlet port side of the sleeve by fluid pressure acting essentially on said cavity of the throttle spool.

2. A flow regulating valve according to claim' 1, wherein said bore of said housing is cylindrical, said sleeve being also cylindrical with a cylindrical bore therein, said throttle spool being a cylinder, and said means for relatively moving said sleeve and throttle spool comprises means for rotating one with respect to the other.

3. A flow regulating valve as set forth in claim 1, wherein said sleeve is fixed unmovably within said housing and said throttle spool is movable within said bore of said sleeve.

4. A flow regulating valve according to claim 1, wherein said circular hole at the reduced end of the throttle cavity is defined by a knife edge.

5. A flow regulating valve according to claim 4, wherein said cavity of said throttle spool is cylindrical for a major portion of its volume and decreases in size for a minor portion of its volume terminating in said circularhole, the knife edge of said circular hole being formed by an annular slope tapering inwardly toward said outlet port of the housing.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5755683 *Jun 7, 1995May 26, 1998Deka Products Limited PartnershipStopcock valve
US5817068 *Jan 16, 1997Oct 6, 1998Urrutia; HectorApparatus for controlling flow of biological/medical fluids to and from a patient
US6165154 *Aug 22, 1997Dec 26, 2000Deka Products Limited PartnershipCassette for intravenous-line flow-control system
US6364857Nov 17, 2000Apr 2, 2002Deka Products Limited PartnershipCassette for intravenous-line flow-control system
US6464667Jul 22, 1999Oct 15, 2002Deka Products Limited PartnershipMethod and cassette for delivering intravenous drugs
US6709417Nov 17, 2000Mar 23, 2004Deka Products Limited PartnershipValve for intravenous-line flow-control system
US7214210Mar 16, 2004May 8, 2007Deka Products Limited PartnershipCassette and method for drug preparation and delivery
US7354190Oct 30, 2003Apr 8, 2008Deka Products Limited PartnershipTwo-stage mixing system, apparatus, and method
US7461968Oct 30, 2003Dec 9, 2008Deka Products Limited PartnershipSystem, device, and method for mixing liquids
US7530797 *Jul 5, 2005May 12, 2009Kabushiki Kaisha Toyota JidoshokkiVariable displacement compressor
US7632078Oct 30, 2003Dec 15, 2009Deka Products Limited PartnershipPump cassette bank
US7632080Oct 30, 2003Dec 15, 2009Deka Products Limited PartnershipBezel assembly for pneumatic control
US7662139Oct 30, 2003Feb 16, 2010Deka Products Limited PartnershipPump cassette with spiking assembly
US7927060 *Feb 3, 2006Apr 19, 2011Bayne Machine Works, Inc.Priority hydraulic flow diverter control assembly
US8087638 *Aug 1, 2008Jan 3, 2012Fisher Controls International, LlcApparatus to control a fluid flow characteristic of fluid regulator bypass valves
US8158102Oct 30, 2003Apr 17, 2012Deka Products Limited PartnershipSystem, device, and method for mixing a substance with a liquid
US20040176724 *Mar 16, 2004Sep 9, 2004Kamen Dean L,Cassette and method for drug preparation and delivery
US20050094483 *Oct 30, 2003May 5, 2005Deka Products Limited PartnershipTwo-stage mixing system, apparatus, and method
US20050094485 *Oct 30, 2003May 5, 2005Deka Products Limited PartnershipSystem, device, and method for mixing liquids
US20050095141 *Oct 30, 2003May 5, 2005Deka Products Limited PartnershipSystem and method for pumping fluid using a pump cassette
US20050095152 *Oct 30, 2003May 5, 2005Deka Products Limited PartnershipDoor locking mechanism
US20050095153 *Oct 30, 2003May 5, 2005Deka Products Limited PartnershipPump cassette bank
US20050095154 *Oct 30, 2003May 5, 2005Deka Products Limited PartnershipBezel assembly for pneumatic control
US20050095576 *Oct 30, 2003May 5, 2005Deka Products Limited PartnershipSystem, device, and method for mixing a substance with a liquid
CN102105729BMay 21, 2009Jun 26, 2013费希尔控制国际公司Apparatus to control a fluid flow characteristic of fluid regulator bypass valves
Classifications
U.S. Classification251/209, 251/212, 251/175
International ClassificationF16K5/00, F15B21/04, F15B21/00, F16K5/10, F16K5/04
Cooperative ClassificationF15B21/045, F16K5/10, F16K5/0407
European ClassificationF16K5/04B, F15B21/04E, F16K5/10