Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3724502 A
Publication typeGrant
Publication dateApr 3, 1973
Filing dateNov 27, 1970
Priority dateNov 27, 1970
Publication numberUS 3724502 A, US 3724502A, US-A-3724502, US3724502 A, US3724502A
InventorsBrockway R, Hayner P
Original AssigneeSanders Associates Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Gas pressure reducing restrictors
US 3724502 A
Abstract
A restrictor for reducing the pressure of a fluid comprises essentially many layers of wire mesh in the path of fluid flow and some arrangement for defining a flow path which increases in cross sectional area either continuously or in steps in the direction of flow. Such a path may be defined, for example, by a tapered housing enclosing the layers of mesh, an interiorly stepped housing or a number of constrictions of various sizes positioned within a uniform housing.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Hayner et al.

54] GAS PRESSURE REDUCING RESTRICTORS [75] Inventors: Paul F. Hayner, Lexington, Mass; Richard J. Brockway, Amherst, N.H.

[73] Assignee: Sanders Associates, Inc., Nashua,

[22] Filed: Nov. 27, 1970 [21] Appl. No.: 93,193

[52] US. Cl ..l38/41,138/44 [51] Ill!- Cl ..F15d 1/02 [58] Field Of Search "1 38/40, 41, 44, 42

[56] 2 References Cited UNITED sTATEs PATENTS 1,404,652 1/1922 Rohnow ..l38/4l X 1 Apr. 3, 1973 3,191,630 6/1965 Demyan ...13s/42 Primary ExaminerHerbert F. Ross Attorney-Louis Etlinger [57] ABSTRACT A restrictor for reducing the pressure of a fluid com prises essentially many layers of wire mesh in the path of fluid flow and some arrangement for defining a flow path which increases in cross sectional area either continuously or in steps in the direction of flow. Such a path may be defined, for example, by a tapered housing enclosing the layers of mesh, an interiorly stepped housing or a number of constrictions of various sizes positioned within a uniform housing.

4 Claims, 5 Drawing Figures PATENTEUAPR 3 I975 FIG.2

INVENTORS PAUL F. HAYN ER RICHARD J. BROCKWAY ATTORNEY GAS PRESSURE REDUCING RESTRICTORS FIELD OF THE INVENTION This invention relates generally to fluid flow restrictors for reducing the pressure of a fluid and particularly to such restrictors which operate quietly.

BACKGROUND In the art of hydraulics it is frequently necessary to reduce the pressure of a fluid. Such pressure reduction is frequently accomplished by passing the fluid through a single sharp edged orifice. Such a restrictor generates very high fluid velocities. Such 'high velocities cause OBJECTS OF THEINVENTION It is a general object of the present invention to provide an improved fluid flow restrictor.

Another object is. to. provid a restrictor which is quiet in operation.

Another objectistoprovide a restrictor which can be manufactured easily and inexpensively.

SUMMARY OF THE INVENTION Briefly stated, a restrictor in accordancewith the invention comprises a plurality. of layers of crossed or woven wire mesh positioned in the path of fluid flow, together with an arrangement, such as a tapered or stepped housing, for constraining the fluid to flow through the layers along a path, the cross-sectional area of which increases, either continuously or in steps.

i BRIEF DESCRIPTIONOF THE DRAWING DESCRIPTION OF PREFERRED EMBODIMENTS Referring first to FIG. 1, a tapered. housing 11 defines a fluid flow path, the cross sectional area of which increases in the direction of flow, that is, from the inlet 12 at the bottom to: the outlet 13 at the top. The crosssection of the housing 11 at right angles to that shown in FIG. 1 is preferably, although not necessarily, circular sothat the housing 11 is in the shape of a hollow frustum of a cone. Theinterior is filled with a plurality of layers of wire mesh 14, each positioned 26 is in steps rather than continuous.

transversely to the direction of fluid flow, each circular in shape, and each of a slightly different size so as to fit within the housing 11. Although the mesh may be of crossed wires or small rods, it is preferred at present to use a mesh of woven wire as shown.

Each passageway in the wire mesh constitutes a small restrictor and these restrictors are, collectively, arranged in various series and parallel combinations because of the random orientation of the mesh and the stacking of one layer upon another. As the fluid flows from the inlet 12 to the outlet 13, its pressure is reduced as it flows through each passageway. However, the pressure drop through any one passageway is not sufficient to generate high velocity and noise. Any turbulence is quickly dissipated in heating the fluid. If the restrictor is used for a gaseous fluid such as steam or air, the increased cross-sectional area in the direction of flow is a very important feature because it provides an increasing volume for thegas which expands as its pressure is reduced. Such an increasing cross sectional area is also very useful in the case of liquids because it provides for a low exit velocity. whichis conducive to low noise. 7

A restrictor such as shown in FIG. 1 may be made quite easily. For example, one may cut many pieces of wire mesh into circles of the same diameter and stack them one upon another. They may then be brazed to hold them together and the. resulting stack may be machined into a frustro-conical shape. The stack may then be inserted into ahousing such as the housing 111 of FIG. 1. v I

, Referring now to FIG. 2, there is shown another embodiment of the invention in which a generally cylindrical housing 21. is formed witha plurality of axial bores 22, 23, 24, and 25. The lowermost bore 22 constitutes the inlet and the remaining bores are of increasing diameter up to the outlet 26. Thebores 23, 24 and 25 are each filled with a plurality of layers of wire mesh such as the layer 27 shown in connection with'bore 23. Each layer is the appropriate diameter to substantially fit its associatedbore. The lowermost bore 22, constituting the inlet, is long enough axially, to constitute support for the wire mesh within the bore 23. Although but three different diameter stacks of wire mesh have been shown, it is obvious that the housing21 may be made with many more bores. Operation is substantially the same as the embodiment of FIG. 1, except that the increasing cross-sectional area from inlet 22 to outlet Another embodiment of the invention is shown in FIG. 3 wherein a housing 31 is in the form ofa hollow frustum of a cone. The housing is preferably formed in two parts divided along. the conical axis. The two portions are formed with a plurality of concentric grooves 32-36 inclusive, each .of which supports one or more layers of wire mesh such as the Iayer37 shown in the groove 36. After the wire mesh is inserted the two sections of the housing are, of course, fastened together. Operation of this embodiment is also similar tothat of FIG. 1 except that there is a space between the various layers of wire mesh.

Yet another embodiment of the invention is shown in FIG. 4 wherein the housing 41 is again in the form of a hollow frustum of a cone. A plurality of washers such as those shown at 42 and 43 are arranged within the housing 41 and are of such size as to engage the inner surfaces at various positions along the axis as shown. One or more layers of wire mesh, such as layer 44, is positioned above the washer 43 and also positioned between each adjacent pair of washers. Preferably the washers are close enough together so that the layers in between may all be of the same diameter. Operation of this embodiment is substantially the same as that of the previously described embodiments.

Yet another embodiment of the invention is shown in FIG. wherein a generally hollow cylindrical housing 51 has a disc 52 of substantially the same diameter fastened to the bottom thereof and formed with a central bore 53 to define the inlet of the device. Above the disc 52 are a plurality of layers 54 of wire mesh. Above these layers is another disc 55 formed with a central opening larger than the opening 53. This disc may simply rest on the layers 54 or alternatively may be fastened to the interior of the housing 51. Above this disc 55 are another plurality of layers 56 of wire mesh and above them is another disc 57 with a still larger diameter opening. Above this disc is yet another layer 58 of wire mesh. Although but three separate layers of wire mesh have been shown, it is obvious that the number may be increased as desired. Operation is substantially the same as that of the previously described embodiments. It is to be noted that in each case there is defined an inlet and an outlet and a fluid path, the cross-sectional area of which increases, either continuously or in steps, in the direction of fluid flow. In each case a plurality of layers of wire mesh are inserted transverse to the direction of flow so that pressure may be reduced gradually without creating noise as explained more fully in connection with FIG. 1. Each embodiment may be used with either gaseous or liquid fluids. In each embodiment it has been assumed that the cross section at right angles to that shown is circular and while a circular cross section is preferred at present, it is not essential. Other shaped cross sections, such as square, hexagonal, etc., may be used.

Although a number of preferred embodiments have been described in considerable detail for illustrative purposes, many modifications will occur to those skilled in the art. It is therefore desired that the protection afforded by Letters Patent be limited only by the true scope of the appended claims.

What is claimed is:

l. A restrictor for reducing the pressure of a fluid, comprising a housing formed to define a fluid inlet and a fluid outlet,

a plurality of layers of wire mesh positioned within said housing between said inlet and said outlet transversely to the direction of fluid flow therethrough, and

means including said housing for defining a fluid flow path from said inlet to said outlet, the cross-sectional area of which path increases in the direction of fluid flow in the region between that layer farthest upstream and that layer farthest downstream characterized in that said housing is formed with a series of central bores the diameters of which are successively larger in the direction from inlet to outlet and in which said layers of wire mesh comprise a like series of groups of layers of suitable diameters to fit into each of said bores. 2. A restrictor for reducing the pressure of a fluid, comprising a housing formed to define a fluid inlet and a fluid outlet,

a plurality of layers of wire mesh positioned within said housing between said inlet and said outlet transversely to the direction of fluid flow therethrough, and

means including said housing for defining a fluid flow path from said inlet to said outlet, the cross-sectional area of which path increases in the direction of fluid flow in the region between that layer farthest upstream and that layer farthest downstream characterized in that said housing has the shape of a hollow frustum of a cone and is formed with a plurality of co-axial interior annular slots and in which said layers of wire mesh comprise a like plurality of groups of layers positioned in said slots.

3. A restrictor for reducing the pressure of a fluid,

comprising a housing formed to define a fluid inlet and a fluid outlet a plurality of layers of wire mesh positioned within said housing between said inlet and said outlet transversely to the direction of fluid flow therethrough, and

means including said housing for defining a fluid flow path from said inlet to said outlet, the cross-sectional area of which path increases in the direction of fluid flow in the region between that layer farthest upstream and that layer farthest downstream characterized in that said housing has the shape of a hollow frustum of a cone and which includes a plurality of washers of successively larger inside and outside diameters positioned within and in engagement with the interior surface of said housing and in which said layers of wire mesh are of circular shape and of various suitable diameters to fit within said housing between said washers.

4. A restrictor for reducing the pressure of a fluid,

comprising a housing formed to define a fluid inlet and a fluid outlet,

a plurality of layers of wire mesh positioned within said housing between said inlet and said outlet transversely to the direction of fluid flow therethrough, and

means including said housing for defining a fluid flow path from said inlet to said outlet, the cross-sectional area of which path increases in the direction of fluid flow in the region between that layer farthest upstream and that layer farthest downstream characterized in that said housing is in the form of a hollow cylinder and which includes a plurality of discs positioned within the said housing in co-axial, spaced apart relationship, each of said discs being formed witha central, circular aperture, each aperture being of a different diameter, and with discs having successively larger apertures being positioned along said flow path in the direction from inlet to outlet, and

in which said layers of wire mesh all have substantially the same diameter and are positioned between said discs.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1404652 *Jul 2, 1921Jan 24, 1922Gustav F W RohnowMultiple-screen mixing device
US3191630 *Apr 11, 1963Jun 29, 1965Cottrell Res IncGas flow control system for sub-sonic divergent diffusers
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3916982 *Dec 12, 1972Nov 4, 1975Sherwin Williams CoSound attenuating improvements for foundry molding machines
US3944395 *Mar 4, 1974Mar 16, 1976Lutz George HElement for heating system
US4007908 *May 9, 1975Feb 15, 1977Masoneilan International, Inc.Process and device for attenuating noise caused by a valve during the expansion of a fluid
US4061082 *Oct 20, 1975Dec 6, 1977American Air Filter Company, Inc.Ventilating air filtering and distributing device
US4241805 *Apr 2, 1979Dec 30, 1980Vibration And Noise Engineering CorporationHigh pressure gas vent noise control apparatus and method
US4251234 *Sep 21, 1979Feb 17, 1981Union Carbide CorporationHigh intensity ionization-electrostatic precipitation system for particle removal
US4668024 *Nov 12, 1985May 26, 1987Toyota Jidosha Kabushiki KaishaSolenoid-operated hydraulic control device for anti-skid brake system
US4805656 *Apr 4, 1983Feb 21, 1989Facet Enterprises Inc.Porous composite structure
US4830057 *Mar 18, 1987May 16, 1989Hendrickson BrothersScreen and flow regulator assembly
US4874017 *Mar 10, 1988Oct 17, 1989Hendrickson Donald WScreen and flow regulator assembly
US5489265 *Nov 23, 1994Feb 6, 1996Ivac CorporationRestrictor fitting for an infusion pump
US5511585 *Mar 31, 1994Apr 30, 1996The Lee CompanyMethod and device for providing fluid resistance within a flow passageway
US5855355 *Mar 10, 1997Jan 5, 1999The Horton CompanyQuiet and constant flow control valve
US7185678 *Dec 11, 2003Mar 6, 2007Nitram Energy, Inc.Orifice plate diffuser
US8020663 *Nov 12, 2009Sep 20, 2011Airbus Operations SasMethod for reducing the noise generated by a hole under a high energy gas flow
US8327865 *Sep 14, 2006Dec 11, 2012Manbas Alpha AbPressure controlled gas storage
US8393437 *Feb 15, 2011Mar 12, 2013Westinghouse Electric Company LlcNoise and vibration mitigation system for nuclear reactors employing an acoustic side branch resonator
US20080283123 *Sep 14, 2006Nov 20, 2008Manbas Alpha AbPressure Controlled Gas Storage
US20120206011 *Feb 15, 2011Aug 16, 2012Westinghouse Electric CompanyNoise and vibration mitigation system for nuclear reactors employing an acoustic side branch resonator
DE2520389A1 *May 7, 1975Nov 20, 1975Masoneilan Int IncDrosselorgan
EP0126346A2 *May 2, 1984Nov 28, 1984KÜBA Kühlerfabrik Heinrich W. Schmitz GmbHApparatus for dividing a stream of a liquid-gas mixture into a multitude of partial streams
WO1998002623A1 *Sep 4, 1996Jan 22, 1998Rodriguez Rodriguez SabinoImprovements in the universal receiving cone for toilet siphons
Classifications
U.S. Classification138/41, 138/44
International ClassificationF16L55/027, F16L55/02
Cooperative ClassificationF16L55/02745
European ClassificationF16L55/027G