Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3726102 A
Publication typeGrant
Publication dateApr 10, 1973
Filing dateAug 3, 1971
Priority dateAug 3, 1971
Publication numberUS 3726102 A, US 3726102A, US-A-3726102, US3726102 A, US3726102A
InventorsC Parks
Original AssigneeC Parks
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Icy beverage machine
US 3726102 A
To maintain a balanced liquid-gas charge in the cooling chamber of an icy beverage machine, gas is introduced when the pressure in the cooling chamber falls below about 25 psi. Then after about a 3-to-8 second delay, liquid is charged into the cooling chamber until the pressure in the cooling chamber reaches about 30 psi.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Parks 51 Apr. N), 1973 [54] ICY BEVERAGE C NE 2,514,463 7/1950 Bayers, Jr. ..26l/DIG. 7

[76] Inventor: Charles K. Parks, P.O. Box 998, Primary Examiner wflliam E Wayner Abllene 79602 Attorney-Charles W. Coffee [22] Filed: Aug. 3, 1971 [57] ABSTRACT [21] Appl. No.: 168,632

To maintain a balanced liquid-gas charge in the cooling chamber of an icy beverage machine, gas is in- [52] US. Cl ..62/70, 62/306, 26l/DIG. 7 troduced when the pressure in the cooling chamber [51] Int. Cl. ..F2Sc 7/16 falls below about 25 psi, Then after about a 3-to-8 [58] Field of Search ..62/69, 70, 178, 306; second delay, liquid is charged into the cooling 261/DIG. 7, 27, 69 R, 92 X, 64, 18 B chamber until the pressure in the cooling chamber reaches about 30 psi. R f [56] e erences Cited 6C l M Figure UNITED STATES PATENTS 3,403,524 10/1968 lVlitchell et al. ..62/7O WATER SOURCE sfifii? cw CO2 v r SOURCE SOLENOID 42 /\7\( l v l '31" 40 V PRESSURE 52x REFRIGERAT|ON MECHAN|5M ICY BEVERAGE MACHINE BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to beverages and more particularly to a carbonated drink partially frozen.

2. Description of the Prior Art The KNEDLIK U. S. Pat. No. 3,044,878 shows the basic icy beverage machine. This patent discloses the maintenance of the charge within the cooling chamber by use of an electrical contact probe within the cooling chamber. The patent discloses a source of carbon dioxide gas under pressure at all times being connected to the cooling chamber when the liquid falls below a predetermined level as indicated by the probe within the cooling chamber.

LENTS, U. S. Pat. No. 3,108,449, discloses the means for maintaining the proper temperature within the cooling chamber. The temperature is sensed by the torque necessary to agitate the contents of the chamber. When the torque becomes great, the cooling is reduced. The amount of liquid in the chamber will effect the torque on the agitator. Also, changes in the temperature will produce changes in the pressure.

Icee Dispenser Service Manual Parts Catalog as published by John E. Mitchell Company, PO. Box 1811, 3800 Commerce Street, Dallas, Texas 75226, with the distributor parts prices effective Dec. 1, 1969, (a copy of which is attached to this application), depicts machinery which is currently commercially available upon the market and describes the operating procedures necessary to maintain the balance of liquid and gas in the cooling chamber.

The service manual shows that under present operating procedure when the pressure in the cooling chamber falls below 25 psi, the solenoid valve from the carbon dioxide tank (set at about 35 psi) and the liquid pump are both started. Then when the pressure upon the cooling chamber increases by a -pound differential, the liquid pump is stopped and the carbon dioxide solenoid valve cut off.

A study of the operations set out in the service manual, particularly the material on Page 7, Operation of First Production of Icee Drink, Page 8, Daily Operation and Hints for Better Dispenser Operation, and on Page 16, Trouble Shooting, indicates that much manual operation is essential on the present machines to keep the proper liquid-gas balance within the cooling chamber. 1f the liquid level is too much or too little, the temperature will be wrong. Furthermore, if there is an insufficient carbon dioxide cap (which is to say there is too much liquid) the product is not of the proper fluffy consistency. If there is too much gas within the chamber, the gas blows out of the dispensing faucet and tends to blow the beverage in a cup out of the cup, which is extremely undesirable. Furthermore, periodically the liquid within the chamber tends to form ice crystals therein, which is undesirable, and it is necessary to go through a defrosting operation. At the time of defrosting, techniques must be observed to get the proper liquid-gas balance.

SUMMARY OF THE INVENTION 1. New and Different Function I have found that more consistent, desirable results may be obtained with less skillful operators if the gas is first introduced at a low pressure and thereafter the liquid is charged into the cooling chamber.

This is particularly important because the operators of icy beverage machines are traditionally extremely low-skilled and, also, that traditionally there is a very high turnover in their employment. Even if they were adapted to a full understanding of the expansion freezing upon which these machines operate as described in the KNEDLIK patent above, they do not have time to become fully trained.

One of the outstanding advantages of my invention is that if a proper balance between liquid and gas in the cooling chamber can be maintained, the defrosting procedures can be greatly simplified. I.e., if all that occurred during defrosting was the heating of the product to cause any ice crystals therein to melt and the rechilling of it, the defrosting cycle would be greatly simplified. If the defrosting cycle were simplified, it would be possible to defrost the machine mechanically on an automatic cycle. However, it will be noted as described inthe present art and specifically referring to the manual, the present procedures for defrosting include re-establishng proper balance between liquid and gas within the cooling chamber. Therefore, one of the advantages of this invention in maintenance of the proper balance in the cooling chamber is the simplification of the defrost cycle so the defrosting can be done automatically and therefore, can be done periodically in the proper manner.

2. Objects of the Invention An object of this invention is to produce an improved icy beverage.

Another object is to improve the charging of the cooling chamber of an icy beverage machine.

A further object is to simplify the operation of an icy beverage machine so the defrosting may be cycled automatically rather than manually.

Still further objects are to achieve the above with a device that is sturdy, compact, durable, light-weight, simple, safe, efficient, versatile, and reliable, yet inexpensive and easy to manufacture, install, operate, and maintain.

Other objects are to achieve the above with a method that is versatile, rapid, efficient, and inexpensive, and does not require skilled people to install, adjust, operate, and maintain.

The specific nature of the invention, as well as other objects, uses, and advantages thereof, will clearly appear from the following description and from the accompanying drawing, the different views of which are not necessarily to the same scale.

BRIEF DESCRIPTION OF THE DRAWING The drawing is a schematical representation of an icy macine with my invention incorporated therein.

DESCRIPTION OF THE PREFERRED EMBODIMENT As may be seen in the drawing, the icy machine includes coolng chamber 10 which is refrigerated by coils 12 which are connected to refrigeration mechanism 14. Product 24 is drawn from the cooling chmber 10 by faucet 16. The product in the cooling chamber 10 is agitated by agitator 18 which is driven through torque coupling 20. The refrigeration mechanism 14 is controlled by micro switch 22 so that as the product 24 within the cooling chamber 10 becomes cold, the torque to the agitator 18 increases. This actuates the micro switch 22, thus cutting off the refrigeraton mechanism 14. Water from water source 26 and flavored, sweetened syrup from syrup source 28 are pumped by mixing pump 30 through pipe 32 into the cooling chamber 10. Check valves 34 prevent the backflow of any of the liquid material in the opposite direction of its normal flow. Carbon dioxide gas from source 36 is regulated to desired pressure by constant pressure regulator valve 38 and admitted through solenoid valve 40 into the pipe 32 and into the cooling chamber 10. Check valve 42 prevents back-flow of the gas. Pump motor 44 connected to pump 30 and solenoid coil 46 connected to solenoid valve 40 are controleld by pressure switch 48 which is sensitive to pressure within the pipe 32 immediately before its admission into the cooling chamber 10.

The mechanism which has been described to this point is well known and commercially available on the market. I have improved the operation by installing time-delay switch 50 to the pump motor 44. I have had good success using thermal time-delay switches such as are commercially available on the market for flashing outdoor electric display signs. These commercial units have heater unit 52. The switch 50 is open for 3 to seconds until the heater 52 becomes hot enough to cause the switch 50 to close. Then, the switch 50 remains closed as long as the circuits are energized. Therefore, with my invention, the pressure switch 48 can be set to actute at 25 psi and to deactivate on a 5- pound differential, i.e., 30 psi. As soon as the pressure switch 48 actuates, the solenoid valve 40 is opened letting the carbon dioxide gas, which is regulated to about 32 psi by pressure regulator valve 38, enter the copling chamber 10. Thereafter, in. about three to 8 seconds, the motor 44 starts pumping liquid into the cooling chamber until the pressure is increased to 30 psi, at which time the pressure switch simultaneously closes the solenoid valve 40 and, also, stops the pump motor 44.

As the unit is operated and if the pressure switch 48 is frequently activated because of heavy use of the equipment, the delay switch 50 and the heater 52 will tend to become warm and have less and less delay. However, I have not found this to be disadvantageous because when the equipment is in heavy use, it has been my observation that the cooling chamber 10 needs to be charged with additional liquid in an operational situation such as that. In light use (when the product is being drawn from the cooling chamber 10 at long intervals of time) the pressure switch 48 is not actuated for long periods of time which permits the delay switch 50 to cool off between its use.

My invention maintains the proper gas-liquid balance in the coolng chamber 10 and therefore, it is possible to defrost the cooling chamber by automatic clock controls. These automatic clock controlls have not been shown because they are well within the skill of ordinary mechanics who are familiar with this type of equipment. It is not necessary in defrosting to make any changes in the liquid supply orthe gas supply to the cooling chamber.

Maintenance of the proper pressure has may advantages. Under present conditions, the pressure in the coolng chamber 10 sometimes gets exceedingly high during defrost periods. This isa result of basic unbalance before defrosting as well as the fact that sometimes defrosting being manual by unskilled persons, proceeds for a long period of time. However, with my invention, the pressure is maintained in the proper range; therefore, the defrost pressure is not so high. Also, by making it possible to have automatic defrostng, this prevents overheating. One disadvantage of high pressure is that it causes deterioration of the seals around the cooling chamber, particularly around the agitator shaft, and causes strain on valves. Sometimes the imbalance between the proportion of gas supply and liquid supply becomes such and the temperaure on defrosting is such that the intergrity of the cooling chamber 10 itself is threatened.

The embodiment shown and described above is only exemplary. I do not claim to have invented all the parts, elements or steps described. Various modifications can be made in the construction, material, arrangement, and operation, and still be within the scope of my invention. The limits of the invention and the bounds of the patent protection are measured by and defined in the following claims. The restrictive descripton and drawing of the specific example above do not point out what an infringement of this patent would be, but are to enble the reader to make and use the ivention.

I claim as my invention:

1. In a machine for making icy drinks having a. a cooling chamber containing i. a mixed liquid product and ii. carbon dioxide gas,

b. agitator means in the cooling chamber for agitating the contents,

c. chilling means attached to the chamber for chilling the contents, and

d. a faucet on the chamber for dispensing the drinks therefrom;


f. sensing a need for charging the cooling chamber,

g. opening a valve connecting a source of carbon dioxide gas under pressure to the cooling chamber responsive to sensing the need; thereafter h. pumping liquid product into the cooling chamber responsive to the sensing of the need to charge, and in addition to a time delay caused by heating a thermal switch,

j. sensing when the cooling chamber is charged, then simultaneously k, closing the valve and stopping the pump.

2. The invention as defined in claim 1 with the additional limitation of m. measuring the pressure within the cooling chamber, thus sensing the need for charging same and when the same is charged.

3. The invention as defined in claim 1 with the additional limitation of Y n. maintaining the pressure of the source of carbon dioxide gas not more than about 2 psi higher than the maximum pressure of the cooling chamber.

4. The invention as defined in claim 1 with the additional limitations of m. maintaining the cooling chamber at a pressure between about 25 psi and 30 psi, and

n. supplying carbon dioxide at not more than about 32 psi.

5. In a machine for making icy drinks having a. a cooling chamber containing i. a mixed liquid product and ii. carbon dioxide gas,

b. agitator means in the cooling chamber for agitating the contents,

c. chilling means attached to the chamber for chilling the contents, and

d. a faucet on the chamber for disepensing the drinks therefrom;

e. a source of carbon dioxide gas under pressure,

f. pressure regulator means on the source of gas for regulating the pressure thereof,

g. a solenoid valve connecting the souce of gas and the cooling chamber,

h. a pump connected to the cooling chamber for pumping liquid thereto,

j. a pump motor connected to the pump, and

k. electric control means connected to the cooling chamber for actuating the solenoid and pump motor,


n. a thermal delay switch attached to the pump motor for delaying the start of the motor after the solenoid valve is opened.

6. The invention as defined in claim 5 wherein said electric control means is o. a pressure switch.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2514463 *Oct 25, 1948Jul 11, 1950Jr George W BayersLiquid carbonator
US3403524 *Feb 13, 1967Oct 1, 1968John E Mitchell CompanyMachine for dispensing semi-frozen drinks and control therefor
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3823571 *Jul 18, 1973Jul 16, 1974Mitchell J CoMachine for dispensing a semi-frozen carbonated beverage including a system for automatically controlling the quality of the beverage through timed modes
US4011733 *Jul 29, 1975Mar 15, 1977Dagma Gmbh & Co.Apparatus and process for carbonating liquids
US4140736 *Feb 2, 1976Feb 20, 1979O. G. Hoyer A/SMethod and system for mixing a continuously flowing mass with a gas
US4482509 *Mar 4, 1983Nov 13, 1984Gerlach Industries, Inc.Carbonating apparatus
US4719056 *Jun 21, 1985Jan 12, 1988Isoworth LimitedFluid treatment
US4747272 *Jun 24, 1987May 31, 1988Cherry-Burrell CorporationFrozen comestibles with improved over-run control
US4850269 *Jun 26, 1987Jul 25, 1989Aquatec, Inc.Low pressure, high efficiency carbonator and method
US4859376 *Jun 26, 1987Aug 22, 1989AquatecGas-driven carbonator and method
US4940164 *Jun 26, 1987Jul 10, 1990AquatecDrink dispenser and method of preparation
US5002201 *Sep 14, 1988Mar 26, 1991Aquatec Inc.Bottled water cooler apparatus and method
US5388604 *Mar 18, 1994Feb 14, 1995Accurate Metering Systems, Inc.Method for adjusting the density of a liquid
US5473909 *Mar 8, 1994Dec 12, 1995The Kateman Family Limited PartnershipMethod and apparatus for producing and dispensing aerated or blended fluid products
US5481968 *Jun 30, 1994Jan 9, 1996Accurate Metering Systems, Inc.Apparatus for continuous multiple stream density or ratio control
US5484614 *May 17, 1995Jan 16, 1996Accurate Metering Systems, Inc.Method for adjusting the density of a liquid
US5713209 *Oct 24, 1996Feb 3, 1998General Mills, Inc.Twin screw extruder for batch freezing
US5868065 *Sep 16, 1996Feb 9, 1999Kateman Family Limited PartnershipApparatus for manufacturing frozen confection
US6224297 *May 14, 1998May 1, 2001Tmo Enterprises LimitedMethod and apparatus for use in conveying material
US6576276Oct 25, 2000Jun 10, 2003The Coca-Cola CompanyCO2-hydrate product and method of manufacture thereof
US6858240Apr 15, 2003Feb 22, 2005The Coca-Cola CompanyCarbon dioxide-hydrate product and method of manufacture thereof
US20030219521 *Apr 15, 2003Nov 27, 2003Ashis GuptaCarbon dioxide-hydrate product and method of manufacture thereof
US20070114243 *Nov 22, 2005May 24, 2007Britvic Soft Drinks LimitedBeverage dispense
US20080272211 *Mar 5, 2008Nov 6, 2008Ds Produkte Dieter Schwarz GmbhProcess for the gasification of tap water
US20150007962 *Dec 11, 2012Jan 8, 2015Winix Inc.Beverage cooling device and beverage supplying system using cooling device
USRE36390 *Sep 13, 1996Nov 16, 1999Fels UlrichDevice for cooling of fluids and edible foams
EP0401617A1 *May 25, 1990Dec 12, 1990Carpigiani S.r.L.Ice cream making machine
WO2016074711A1 *Nov 12, 2014May 19, 2016Alfred Kärcher Gmbh & Co. KgBeverage preparation device
U.S. Classification62/70, 261/DIG.700, 62/306
International ClassificationF25D31/00, B67D1/12, B67D1/08, A23G9/22
Cooperative ClassificationY10S261/07, A23G9/228, B67D1/1243, F25D31/002, B67D1/0861
European ClassificationB67D1/12B6H, B67D1/08D2C, F25D31/00C, A23G9/22N