Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3726106 A
Publication typeGrant
Publication dateApr 10, 1973
Filing dateJan 7, 1970
Priority dateJan 7, 1970
Publication numberUS 3726106 A, US 3726106A, US-A-3726106, US3726106 A, US3726106A
InventorsW Jaeger
Original AssigneeW Jaeger
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Self-refrigerating and heating food containers and method for same
US 3726106 A
Abstract
A self heating or cooling container having in one embodiment two separable sections of the container, one for enclosing a cooling or heating chemical and the other for enclosing the product to be cooled or heated, and in another embodiment a cooling or heating section within the product section. The section for enclosing the coolant or heating agent has a conical portion and two different diameter cylindrical portions while a closure for the product section has a closely parallel shape. The coolant-heating agent section also has a valve assembly responsive to the section's position and when activated causes the product to change temperature. The separable sections allow forming and filling each section individually during the manufacturing process with combination of the sections achieved as a last step.
Images(10)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

limited @tates Patent 1 Jaeger 1 Apr. 10, 1973 [76] Inventor: Wilbert J. Jaeger, 345 N. Batavia Avenue, Apt. 30, Orange, Calif. 92666 [22] Filed: Jan. 7, 1970 [21] Appl. No.: 1,239

Related US. Application Data [63] Continuation-impart of Ser. No. 737,121, June 14,

1968, abandoned.

[52] US. Cl. ..62/294, 62/371, 62/457, 126/262 [51] Int. Cl ..F25d 3/10 [58] Field of Search 126/262, 263; 62/294, 457, 371, 372, 331

[56] References Cited UNITED STATES PATENTS 450,527 4/1891 Poyner ..62/457 2,622,415 12/1952 Landers ..62/457 3 ,205,678 9/ l 965 Stoner ..62/457 3,338,067 8/1967 Warner ..62/457 Primary ExaminerWilliam J. Wye Attorney-Raymond L. Madsen and Richard M. Jennings ABSTRACT A self heating or cooling container having in one embodiment two separable sections of the container, one for enclosing a cooling or heating chemical and the other for enclosing the product to be cooled or heated, and in another embodiment a cooling or heating section within the product section. The section for enclosing the coolant or heating agent has a conical portion and two different diameter cylindrical portions while a closure for the product section has a closely parallel shape. The coolant-heating agent section also has a valve assembly responsive to the sections position and when activated causes the product to change temperature. The separable sections allow forming and filling each section individually during the manufacturing process with combination of the sections achieved as a last step.

23 Claim, 43 Drawing Figures PATEIITEU 3.728106 SHEET UHUF 1O INVENTOR W/L 6587' J. #16656 PATH-HEB AFR 1 0 i975 SHEET USUF 1O INVENTOR. W/L 5597' J 46662 ATTQQNE/f PATENTED APR 1 0 i973 SHEET 07 0F 10 INVENTOR.

sum 08 0F 10 INVENTOR. W/ABEZTJ. J/Ifege 4rrae/vE/s PATENTED APR 1 0 I975 SHEET OSUF 1O SHEET 10 OF 10 266 42 t/vzvfld INVENTOR. W/L 65,8711. J,46

' ATTOe/VEVS CROSS REFERENCE This application is a continuation-in-part of patent application Ser. No. 737,121, filed June 14, 1968, now abandoned, for SELF-REFRIGERATING AND HEATING. FOOD CONTAINERS by Wilbert J. Jaeger.

BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates generally to self-refrigerating and heating containers and more particularly to containers having an independent heating or cooling portion and product portion and to the method of forming, assembling and using such containers.

2. Description of the Prior Art Although self-refrigerating and heating food containers have been long known and long desired, there has not been a commercial development because of various economic, health, and safety problems.

For example, the following U.S. Pat. Nos.: Whalen 3,320,767, Warner 3,285,033, Palaith 2,460,765 and Blake et al., 2,185,799, have all shown devices comprising a single walled partitioned container for separating a heating or cooling substance from a food product. The health hazard due to possible mingling of the food product and the chemical used for heating or cooling is too great, and the containers cannot be made cheaply enough for low cost mass produced items; both of these factors have contributed to the lack of commercialization of the containers disclosed in the abovementioned patents.

In a later Warner U.S. Pat. No. 3,338,067 a double walled unit was disclosed with separate containers for the food product and for the cooling chemical. While this construction appears to abate the health problem, there is still the problem of economics in that the container described cannot conveniently be manufactured on equipment which is presently used to manufacture food cans. It is to be understood that a large investment exists in present can making and assembling equipment, and it is highly desirable that any container developed has the ability to be manufactured on the existing equipment or at least not require expensive modification of the equipment.

Additionally, any self-cooling or self-heating food container must also be of such construction as to allow processing of the food after it has been packed and sealed; one such further processing step is the pasteurization of beer, for example. Subjecting a container having a chemical coolant to pasteurization temperatures would cause sufficiently high pressures to make a safe container for the coolant prohibitively expensive.

Generally, while it is obvious that a self-heating or self-cooling container would be more expensive than a conventional container, an analysis of the costs involved in cooling soft drink containers, such as in supermarkets, reveals that it costs approximately a penny a day per can based on an average shelf life of four to five days. It is noted that this cost does not include the cost that the consumer has in storing such cans in a home refrigerator. Complementing this cost is further expense of ice and other cooling devices when the cans are to be kept cool outdoors as on a picnic for example. Finally, there are certain regions where refrigeration is not even available and cooled drinks just do not exist.

SUMMARY OF THE INVENTION The present invention overcomes the disadvantages of the prior art mentioned above by providing a container having an enclosure adapted to include means for selectively changing the temperature of the content within another enclosure of the container comprising a first elongated hollow body having first and second ends; a first closure sealed to said first end; a second closure sealed to said second end of said first hollow body and extending into said first hollow body and having a surface at least a portion of which has a conical shape said first and second closures and said first elongated body forming said first mentioned enclosure; a second elongated hollow body having first and second ends and a surface having at least a portion with a conical shape, said surface of said second elongated hollow body is closely disposed to said surface of said second closure and parallel thereto, said second body forming said other enclosure; and means communicating the other closure of said second hollow body with the environment about said first hollow body. In addition the present invention includes among several methods a method of forming the container comprising the steps of providing a strip of material; cutting said strip to a pre-deterrnined size; forming said out strip into a hollow cylinder having two open ends; providing a first plug of material; pressing said first plug into a first elongated hollow body having two ends and having a portion adjacent one end with a conical shape and a portion adjacent the other end with a cylindrical shape; connecting said one endof said first hollow body and one end of said cylinder to form a first enclosure; providing a second plug of material; pressing said second plug into a second elongated hollow body having two ends and having a portion of cylindrical shape and a portion of conical shape; providing a closure; lock seaming said closure to an end of said second hollow body; filling said hollow body in a high pressure environment with a coolant; sealing said other end of said filled second hollow body; and inserting said second hollow body into said first hollow body so that said second hollow body is locked into position slightly spaced from said first hollow body.

An object of the present invention is to provide a self-cooling or heating container which is safe, convenient to use, and economical to manufacture because of its adaptation to existing manufacturing equipment.

Another object of the present invention is to provide a self-cooling or heating container having a construction which reduces the health hazard of mingling the product to be heated or cooled and the chemical which provides the heating or cooling.

Still another object of the present invention is to provide a self-cooling or heating container which allows the product to be heated or cooled to be disposed within the container within a sealed enclosure as part of a process which is independent of the formation, filling and sealing of the cooling or heating section of the container.

A further object of the present invention is to provide a self-cooling or heating container which has efficient heat transfer properties and when in the cooling mode has the ability to form ice within the product to be cooled.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view partially in phantom of an embodiment of a self-cooling or heating container oriented in an upright position.

FIG. 2 is a perspective view partially in phantom of the self-cooling or heating container of FIG. 1 oriented in an inverted position.

FIG. 3 is a plan view of the container of FIG. 2 showing a pop top.

FIG. 4 is a longitudinal partially broken away, partially sectional view taken along line 4-4 of FIG. 3.

FIG. 5 is a longitudinal partially broken away, partially sectional view of the self-cooling or heating container after the pop top has been removed.

FIG. 6 is a partial enlarged sectional view taken along curved line 6-6 of FIG. 5.

FIG. 7 is a fragmentary plan view taken along line 7-7 of FIG. 5.

FIG. 8 is a perspective view partially broken away of the inner and outer sections of the container of FIG. 1.

FIG. 9 is a partially broken away perspective view of the FIG. 1 embodiment shown in integral form.

FIG. 10 is a bottom view of the FIG. 9 container showing both the inner and outer sections.

FIG. 11 is a longitudinal partially broken away, partially sectional view taken along line 11-11 of FIG. 10.

FIG. 12 is a partial enlarged sectional view taken along curved line 12-12 of FIG. 1 1.

FIG. 13 is a perspective view of another embodiment of a container partially in phantom.

FIG. 14 is a bottom view of the container of FIG. 13 showing a pull tab.

FIG. 15 is a longitudinal partially broken away, partially sectional view taken along line 15-15 of FIG. 14.

FIG. 16 is an isometric bottom view of the pull tab of FIG. 14.

FIG. 17 is a sectional view taken along line 17-17 of FIG. 14.

FIG. 18 is a perspective view of another embodiment of a container oriented in an upright position.

FIG. 19 is a perspective view partially in phantom of the container shown in FIG. 18, oriented in an upside down position.

FIG. 20 is a partially exploded, partially broken away perspective view of the container oriented as in FIG. 19.

FIG. 21 is a longitudinal partially broken away, partially sectional view taken along line 21-21 of FIG. 19 illustrating the inner container in its first position.

FIG. 22 is a plan sectional view taken along line 22- 22 of FIG. 21.

FIG. 23 is a fragmentary longitudinal view as shown in FIG. 21 rotated 90.

FIG. 24 is a partial enlarged sectional view taken along curved line 24-24 of FIG. 21.

FIG. 25 is a partial enlarged sectional view of the embodiment shown in FIG. 24 before the container body and the closure have been connected.

FIG. 26 is a longitudinal partially broken away, partially sectional view of the embodiment shown in FIG. 21 illustrating the inner container in its second positron.

FIG. 27 is a partially exploded perspective view of the valve assembly and closure for the inner container.

FIG. 28 is a fragmentary enlarged partially sectional view taken along line 28-28 of FIG. 21.

FIG. 29 is a fragmentary enlarged partially sectional view taken along line 29-29 of FIG. 26.

FIG. 30 is a fragmentary enlarged sectional view taken along line 30-30 of FIG. 28.

FIG. 31 is a fragmentary enlarged sectional view taken along line 31-31 of FIG. 29.

FIG. 32 is a plan sectional view taken along line 32- 32 of FIG. 31.

FIG. 33 is a perspective view of the plunger element of the valve assembly.

FIG. 34 is a longitudinal partially broken away, partially sectional view of the container of FIG. 20 modified to provide heating for the container.

FIG. 35 is an enlarged partially sectional view of the valve assembly taken along line 35-35 of FIG. 34.

FIG. 36 is an enlarged sectional view taken along line 36-36 of FIG. 35.

FIG. 37 is a block diagram of a method of forming the embodiment shown in FIG. 20.

FIG. 38 is a longitudinal partially broken away, partially sectional view of another embodiment of a container.

FIG. 39 is a plan view of the embodiment shown in FIG. 38.

FIG. 40 is a fragmentary enlarged sectional view taken along the curved line 40-40 of FIG. 38.

FIG. 41 is a sectional view taken along line 41-41 of FIG. 38.

FIG. 42 is a sectional view of the valve assembly taken along line 42-42 of FIG. 38.

FIG. 43 is a fragmentary enlarged sectional view similar to FIG. 24 illustrating the container in integral form.

DESCRIPTION OF THE EMBODIMENTS Referring first to FIGS. 18, 19 and 20 there is illustrated a container 99 having an outer container section 100 and an inner container section 107. The outer container 100 comprises a hollow, elongated body 101 in the form of a conventional beverage can having a closure 102 with a conventional pop top 104 connected to the body 101 at one end and a uniquely shaped recessed or concave closure 106 connected to the other end; according to usual usage the closure 102 is at the top of the can and the recessed closure 106 is at the bottom. As seen in FIG. 20, the inner container 107 includes an elongated hollow body 108 having a shape very similar to that of the recessed closure and cooperates with the outer container 100 to fit within the recessed closure. The inner container forms an enclosure for a heating or cooling chemical which when activated will heat or cool the content within an enclosure 110 formed by the outer container 100.

As mentioned, the hollow body 101 is shaped as a conventional beverage container and, as such, has a cylindrical shape which is formed by having a strip of suitable material, usually a properly coated metal, cut to a pre-determined size dependent upon the size of the can desired; the strip is then rolled into the cylindrical shape and retained by a suitable connection such as spot welding to form a seam 114. The hollow body 101 is connected to the top closure 102 by a standard rolling operation to form a lock seam. The pop top 104 includes a ring portion 116 and a tear portion 110. The tear portion is formed by having the closure 102 partially cut in the shape of an opening desired, usually triangular or rectangular, while the ring 116, which is attached by a spot weld designated 120, is pulled by a user when it is desired to have access to the content of the outer container.

The closure 106 is comprised of a large conical portion 122, FIG. 20, a small conical portion 124 (better seen in FIG. 24), a large diameter cylindrical portion 126, and a small diameter cylindrical portion 120. In addition the closure 106 has a first end portion 130, FIGS. 24 and 25, which forms with the hollow body 101 the lock seam 132, FIG. 24, and a second end portion 134, FIG. 20, which is integrally connected to the cylindrical portion 128 and forms a flat surface, generally transverse to the direction of the longitudinal axis of the container 99.

Referring now to FIG. 24, there is shown in more detail the two conical portions 122 and 124 of the recessed closure 106. The conical portion 122 is sloped at an angle of about 14 from the vertical, while conical portion 124 is sloped at an angle of about only 4. The difference in angle is due primarily to the conventional machines used to form the lock seam 132 to connect the recessed closure to the cylindrical body 101. The lock seaming machine grips the cylindrical body 101 and the closure 106, thereby deforming the closures original 14 conical portion 122 and causes the two elements to rotate while the locking seam 132 is formed by rolling the end 130 of the recessed closure and an end 136 of the cylindrical body 101. Adifferent variation of the connection between the cylindrical body and the closure is shown in FIG. 43 wherein the cylindrical body 101' is made integral with the closure 106 so that no lock seam is necessary.

The conical portion 122 and the cylindrical portions 126 and 128 may be made by a process which is commonly called drawing. The drawing process begins by providing a plug of material, such as a malleable metal, which is processed through a series of pressing operation to progressively form the desired shape as shown in FIG. 20, for example. Generally the first pressing operation would form the conical portion 122 by having a male die enter a female die which are dimensioned to allow the plug of material to expand through a restricted spacing between the two dies so as to form a tubular conical structure. After the conical portion 122 is formed, progressive punching with different sets of male and female dies creates the remaining cylindrical portions 126 and 128 and the end portion 134. It is to be understood that material other than meta] may be used to form the outer container 100 so that other processes may be used dependent upon the choice of materials. For example, a molding operation might be used to form the outer container if the material is a synthetic resin. And it is to be understood that some other process may be used if desired when metal is the material.

Again referring to FIG. 20, the inner container 107 has a shape similar to the shape of the closure 106 and comprises a conical portion 140, a large diameter cylindrical portion 142, and a small diameter cylindrical portion 144. The conical portion 140 is located adjacent a first end 146, FIG. 24, and between the end 146 and the conical portion there is still another cylindrical portion 148. A closure 150, FIG. 20, is connected to the hollow body 108 with a lock seam 152 in a fashion similar to that described for lock seam 132. However, once again referring to FIG. 43 the hollow body 108' may be made integral with the closure so as to obviate the need for a lock seam. Another closure 154 is positioned over the second end 156 of the body 108.

The hollow body 108 of the inner container 107 may be made in a manner analogous to that of the closure 106 of the outer container 101. That is, except for dimensional variation, the same drawing process which is used for closure 106 may be used for the hollow body 108. Since the closures 150 and 154 are of simpler design and substantially flatter than the body 100, they may be stamped from sheet metal in the conventional fashion.

Referring now to FIG. 23, there is illustrated in more detail the interior of the container near its top closure 102. As the cylindrical portion 144 approaches the end 156, there is formed an angular recess 160, which cooperates with the closure 154 to form a means for retaining the inner container 107 within the outer container 101 as shown in FIG. 21. Helping to retain the inner container 107 are four projections or indentations 162, 164, 166 and 168, FIG. 22. As seen in FIG. 22, the projections are evenly spaced around the inner circumference of the cylindrical portion 128 of the closure 106. However, as seen in FIGS. 21 and 23, which are views separated by 90, two of the projections 162 and 166 are spaced from the other two projections 164 and 168 in a direction parallel to the longitudinal axis of the container 90. This may best be seen when comparing the recess 160 and closure 154 in FIGS. 21 and 23. In FIG. 21 the projections 162 and 166 are shown abutting the closure 154 so as to prevent the movement of the inner container 107 toward the end portion 134 of the closure 106. However, when the vantage point is rotated 90, as is done when moving from FIG. 21 to FIG. 23, it is noted that the projections 164 and 168 tit within the recess 160. Thus, in the position shown in FIGS. 21 and 23 the inner container 107 is locked within the outer container 101 unable to be separated due to the combination of the projections 164, 160 and the recess 160 and unable to move further into the closure 106 because of the abutment of the projections 162, 166 and the closure 150. This position is the first or storage position of the inner container 107 relative the outer container 101.

Referring now to FIG. 26, the second or activating position of the inner container 107 relative the outer container 101 is illustrated. The inner container 107 has been pushed further into the closure 106 so that the closure 154 is spaced closely to the end portion 134 of the closure 106. In this second position the projections 162 and 166 are located within the recess 160 while the projections 164 and 168 have been permanently distorted. The significance of the first and second positions for the inner container 107 will be explained in detail hereinbelow. The projections 162, 166, 166 and 168 may be formed in the closure 106 by a simple crimping operation if the material of the closure 106 is metal or metal be molded integrally if the material is a synthetic resin.

In the storage position, the seam 152 of the inner container 107 is disposed inwardly of the seam 132 to prevent accidental activation of the container should a force be applied against the bottom of the container during transportation or handling. The slightly inward position of the inner container so as to leave the seam 132 in a protective position is shown clearly in FIGS. 19 and 32.

Referring to FIGS. and 27, there is illustrated a portion of the valve assembly 170, which is connected to the closure 154 of the inner container 107. In FIG. 30, the valve assembly 170 is shown in more detail. The valve assembly comprises a generally tubular sleeve 172 having plurality of longitudinally extending ribs 174 spaced about the interior circumference of the sleeve, a frangible diaphragm 176, a tubular plunger 178, (also see FIG. 33), which includes a bottoming head 179 and a flanged head 180, a longitudinal opening 182, and a small control aperture 184, which is positioned perpendicular to the longitudinal opening 182 and proceeds through the body of the tubular plunger 1178. Additionally, a seal such as an O-ring (not shown) or a resilient washer 186 is provided to sandwich the diaphragm 176 between itself and the sleeve 172. The washer 186 also seals an opening 196 about the plunger 170 to prevent leakage of the content of the inner container 107.

The valve assembly 170 is held together by the closure 154 by having one shoulder 190 of the closure 154 abut a slanted shoulder 192 of the valve sleeve 172 while a second shoulder 194 of the closure 154 abuts the washer 186; by press forming the closure 154 about the valve assembly opposing forces are created by the shoulders 190 and 194 to form a fluid tight, operable valve assembly. During manufacture the valve assembly 170 is positioned so that the plunger 178 fits through the opening 196 in the closure 154 and then the shoulders 190 and 194 may be crimped about the valve assembly.

In the views shown in FIGS. 28 and 30, the flanged head 100 is positioned adjacent the diaphragm 176, but has not yet broken the diaphragm so that the content within the container 107 fills the interior of the sleeve 172. As illustrated in FIG. 28 the container 107 is in its first position relative the closure 106 and has the closure 154 abutting the projections 162 and 166. When pressure is applied to the inner container 107 as indicated by the arrow in FIG. 26, such as by a user pressing down with his thumbs on the closure 150, FIG. 20, with sufficient force to move the inner container further into the closure 106, the plunger 178 of the valve assembly will come into contact with the end portion 134 of the closure 106 as shown in FIGS. 29 and 31. It has been found'that with a conventionally shape can having an 8 ounce beverage compartment and a 4 ounce coolant compartment l2 ounces total) and conventional can material, about 4.5 pounds of force is necessary to move the inner container from its first to second positions. When the bottoming head 179 of the plunger 178 abuts the end portion 134, the actuating force is transmitted to the flanged head 180 which breaks through the diaphragm 176 and moves upward into the sleeve 172. Movement of the plunger 178 is relatively easy because of the sliding relationship established between the flanged head 180 and the ribs 174 of the sleeve 172. As the flanged head moves into the sleeve, the content of the inner container begins to communicate with the longitudinal opening 182 by way of the control aperture 184 as can be seen by the arrow in FIG. 31 and by the plan view in FIG. 32. The flanged head is slightly spaced from the ribs and there are spaces, such as that designated 198, FIG. 32, which surround the plunger to allow movement of the container content around the flanged head, into the control aperture, through the longitudinal opening and past the bottoming head.

When the inner container 107 is pushed beyond the projections 162 and 166, the projections are somewhat distorted and the closure 154 is flexed sufficiently so that the projections retain a sufficient protrudence inwardly toward the inner container to move into the recess 160, thereby retaining the inner container in its second or activating position. The flex of the closure 154 is attained by the inherent flexibility of the material used and by a seal 199 disposed between the closure and the end of the inner container.

As mentioned earlier, the content of the inner container may be any chemical compound which will create the desired heating or cooling effect. For cooling, a preferred compound is Freon 12, which is a gas at room temperature and becomes liquid at about 21F. However, there is a pressuretemperature relationship, which will allow the boiling point temperature of Freon to be raised if the Freon is contained in a vessel where the pressure is greater than one atmosphere pressure (about 15 psi). Thus, if Freon is placed within the inner container 107 with a pressure of 109.24 pounds per square inch the Freon will be a liquid up to a temperature of F. If the Freon in the inner container communicates with the ambient environment, which may be assumed to be at a pressure of about 15 psi then the boiling point temperature of the Freon drops to its normal -2lF. Since in almost all cases, the environment about the Freon would be at a temperature much greater than 21F, the Freon will change from its liquid phase to its gaseous phase and boil off; during this time the Freon will increase in temperature as a liquid and then while at the same temperature change from a liquid to a gas. However, the Freon will be absorbing heat during the entire process with most of the heat being absorbed during the Freons change of phase, the quantity of heat per unit mass that must be supplied to a material at its boiling point to convert it completely to a gas at the same temperature, being called the heat of vaporization of the material. It is this process of absorbing heat from the surrounding to change the Freon from a liquid to a gas that provides the Freon with the quality of being able to lower the temperature of the immediate environment. ideally, given enough Freon and a small enough environment to cool, the Freon will continue to absorb heat until an equilibrium has been reached at 2lF. However, for purposes of cooling a beverage, for example, if a certain amount of Freon can lower the temperature of the beverage environment to the range of about 32 to 38F that is all that is necessary.

Referring now to FIGS. 21, 26, 29 and 31, there is illustrated the way in which the Freon within the inner container 107 is selectively exposed to atmospheric pressure to cause the Freon to boil and absorb heat from the content within the enclosure 110. As shown in FIG. 31, once the plunger 178 breaks the diaphragm 176 the Freon is able to communicate through the opening 184 to a spacing designated 200 between the inner container and the closure 106. This spacing is about the plunger 178 as shown in FIG. 31, continues around to the side of the inner container as shown in FIG. 29, continues along the entire length of the inner container as shown in FIG. 26, and continues finally to the environment about the container 99 as shown in FIG. 24. It is noted that in addition to locating the inner container in its first and second positions the projections 162, 164, 166 and 168 also position the inner container within the closure 106 to provide for the spacing 200. The only points of contact between the inner container and the closure 106 are those made by the projections. The spacing 200 is important as it affects the cooling efficiency of a given amount of Freon relative to a given amount of product within the outer container 101. In a similar manner the diameter of the control aperture 184 is also important in regard to the efficiency of the cooling process and is a function of the coolant used. For example, for Freon the control aperture has a diameter of 0.013 inches, while the spacing 200 is 0.005 inches (distance between the inner container surface and the surface of the closure 106) for a container having the size of a conventional 12 ounce beverage can. It is also noted that for Freon, the inner container should have a volume approximately onethird the volume of the outer container when the outer container contains a beverage and for best heat exchange efficiency the heat exchange surface should be as large as possible, however, taking manufacturing considerations and conventional styling considerations into account, the part conical, part cylindrical shape of the inner container and closure 106 with the inner container extending almost the full longitudinal length of the outer container has been found most effective.

The embodiment shown in FIGS. 18 through 33 also has the unique advantage of being able to selectively form ice within the beverage in the enclosure 110 if it is found desirable. For example, if the beverage in the enclosure is beer, it is normally undesirable to have any ice formation, however, if the beverage is a soft drink or certain types of liquor, such as scotch, the formation of ice may be highly desirable. Since Freon will boil at the surface which is in communication with the low pressure environment if the container 99 is activated in an upside down position as shown in FIG. 26, liquid Freon will escape through the valve assembly 170 into the spacing 200. Initially the liquid Freon will immediately start absorbing heat and will boil while adjacent the closure 134 and cylindrical portion 128. As more liquid Freon is supplied the temperature of the beverage in the region about the closure 134 and the portion 128 will drop below 32F and ice will be formed. As the temperature drops in that region less heat exchange occurs so that the liquid level of the Freon slowly creeps upwardly in the spacing 200 progressively cooling the beverage throughout the enclosure 110. The reason that there is less heat exchange as the temperature is reduced is that a temperature differential between two objects is the driving force to cause a transfer of heat from the object at the higher temperature to the object at the lower temperature. The liquid level may reach the seam 152 in a cool environment while in a warm environment the liquid level may only proceed partly along the longitudinal length of the container. However, since liquid Freon will always be present adjacent the closure 134 and the portion 128 during the cooling process, the beverage in the region adjoining the closure and the portion 128 will be cold enough to form ice. After the cooling process has been accomplished, the user turns the can upright and pulls the pop top 104 so that he can drink the beverage; ice that has formed will be immediately under the pop top to insure that the user receives a very cool and refreshing drink.

If ice is not desired then activation of the inner container may be accomplished while holding the container in the position shown in FIG. 21, using the thumbs against the closure 105 to push the inner container deeper into the closure 106, or activation may be accomplished while the container is in a position shown in FIG. 18. If the former method is used, and it appears to be the easier of the two mentioned methods, then as soon as the plunger 178 of the valve assembly 170 has broken the diaphragm 176, the container should be rotated to the position shown in FIG. 18. When this is done boiling of the liquid will occur within the inner container because of the clearance or head room provided between the liquid Freon and the valve assembly. The head room amounts to about 17 to 20 per cent of the volume of the inner container and is provided as a safety precaution to prevent a dangerously high level of pressure existing within the inner container. Under these circumstances cooling is not concentrated at any one portion or region along the container. However, heat is transferred from the beverage to the Freom in a slower more evenly distributed manner so that the final temperature of the beverage using this second activation process is about the same as when using the first mentioned activation process thus when beer is the beverage within the enclosure a temperature of 38F has been achieved using either of the activation processes.

The particular shapes of the inner container and the closure 106 provide unique advantages in that they are conveniently manufactured by the same type of machines presently used in the can industry and may be attached to conventional can bodies using presently available machines and yet provide a relatively large surface area through which heat exchange may be accomplished. Since the heat transfer occurs at a much faster rate around the cylindrical portion of the closure 106, there is less need for large heat exchange surface relative the amount of beverage in the vicinity. However, as the coolant proceeds along the closure 106 to the cylindrical portion 126 and to the conical portion 122 there is a lesser rate of heat exchange occurring so that a larger heat exchange surface area is necessary relative to the amount of the beverage. The advantage of the geometric structure illustrated is best seen in FIG. 24 where as the heat transfer surface area reaches a maximum the amount of beverage to be cooled reaches a minimum due to the conical portions 122 and 124.

It is also noted that in either method of operation of the cooling process there is little likelihood of Freon in the liquid state being spilled upon the user's hands. As mentioned, such events have occurred with prior art devices and is very undesirable from a product liability standpoint because of the frostbite occasioned by contact of liquid Freon and skin. The use of a control aperture 184, 0.013 inch in the example mentioned, the specific coolant, Freon 12, the spacing 200, 0.005 inch in the example mentioned, and the specific shape of the inner container to give the heat exchange surface all combine to provide the proper and necessary cooling without the usual disadvantages such as the frostbite just mentioned. Another advantageous feature of the embodiment'shown in FIG. 20 is the double walled construction between the refrigerant and the beverage. In case either fluid should lead from its respective enclosure, it would be to the external environment rather than mingling with the other fluid. Thus, there is a definite health advantage and an avoidance of product liability disadvantages should a coolant and beverage mix and be consumed unknowingly.

A still further advantage is achieved when the present invention is used with a beverage whose flavor is a function of temperature. For example, beer is generally thought to have the best taste when it is at a temperature between 38 and 42F. Generally most refrigeration units in stores and at home cool beer to about 38F. However, when the beer can is removed from the refrigeration unit, the excellent heat conducting properties of the metal can immediately transfers heat from the environment to the beer. Within 30 seconds after a beer can is opened the temperature of the beer is about 42F and continues to climb thereafter. One reason for the rapid temperature increase is that water vapor in the environment will con dense on the can and cause an even greater heat transfer than usual because water conducts heat much better than air. Hence, beer, for example, is rarely consumed at its most flavorful temperature.

The container of the present invention provides the cooling while the container is in the environment. Generally all that is needed to cool 8 ounces of liquid is about 19 Btu; 4 ounces of Freon 12 will generate about 27 Btu so that extra cooling power is available to offset the immediate heating from the environment and to cool the inner container and outer container themselves. Once the cooling process is complete, the inner container and the outer container will continue to act to retard and to offset the heating effect of the environment and thereby keep the beer below the 42F level for a longer period of time. At 70F, 45 per cent relative humidity, beer will remain at or below 40F for up to minutes. Of course, the same advantage is achieved when using the present invention for heating purposes.

Referring again to FIG. 27 there is illustrated a variation of the inner container to adapt it for heating purposes. The modification includes simply adding a toroidal shape tablet 202 to an annular recess 204 formed in the closure 154 about the valve assembly 170. If the proper chemical compound is provided within the inner container then upon release of the chemical within the inner container there will be an exothermic chemical reaction to provide heat for the content within the enclosure 110. For example, the tablet 202 may be comprised of sodium thiosulfate or potassium thiosulfate while the material within the inner container is a solution of Freon and hydrogen peroxide.

The Freon is used to eject the hydrogen peroxide from the inner container. Experiments have shown that with an 8 per cent hydrogen peroxide solution in the inner container a temperature of I20F can be reached in the beverage situated within the enclosure 110. If-the solution is 10 per cent the temperature reached is F; if the solution is 12 per cent the temperature reached is F; and if the solution is 14 per cent the temperature reached is F, a temperature that is higher than necessary for most heated foodstuff.

Referring now to FIGS. 34, 35 and 36 there is shown another version of a container 210 which may be used to heat a product. The structure of the outer container 101' is identical to that shown in FIG. 18. Likewise the structure for the inner container 107 is identical to the structure of inner container 107 in the embodiment shown in FIG. 18, except for the valve assembly and the chemicals used. As illustrated in FIG. 36, the valve assembly 212 includes an elongated rod 214 moveable through a tubular sleeve 216 and a seal 218 which is to prevent leakage. Included within the inner container 107' are two separated chemicals, the chemicals being separated by a flexible bag 220, FIG. 34, made of a suitable material such as a synthetic resin which is attached to an end 156' of the inner container by being sandwiched between the inner container and a closure 154'. The inner container has both storage and activation positions analogous to the inner container 107. In the storage position the rod 214 is completely contained within the bag 220. However, in the activating position the rod is moved a sufficient distance to pierce the bag 220 as is shown in FIG. 34, thereby allowing the chemical 222 within the bag to mix with the chemical 224 outside the bag. Since many chemicals give off heat when reacting without the need of exposure to atmospheric pressure, there is no need to have any communication with the environment about the container 210 in order to have a heating effect. An example of a suitable chemical for being within the bag is hydrogen peroxide while suitable chemicals to be placed within the inner container include sodium thiosulfate crystals.

Referring now to FIGS. 38 through 42, there is illustrated another embodiment of the present invention. The container 230 comprises an outer cylindrical body 232, a closure 234 with a pop top 236 located at one end of the cylindrical body and a second closure 238 located at the other end of the cylindrical body 232. The closure 238 has a generally cylindrical portion 240 which is formed into a male threaded section. Integral with the cylindrical portion 240 is an annular ring portion 242 which is deposed generally perpendicular to the cylindrical portion 240 and connects at an end 244 to an end 246 of the cylindrical body 232 to form a lock seam 247 similar to that described for the embodiment of FIG. 18.

The method of forming the cylindrical body 232 may be identical to that used to form outer container 101. The same is true of the methods forming the closure 234 and the closure 102. The closure 238 may be pressed into a generally cup shape with one set of dies and then threads formed with another set of dies. The male die of the second set of dies is removed with a twisting motion thereby causing the cylindrical portion 240 to be threaded. A consumable beverage or other foodstuff may be located within the enclosure 248 formed by the cylindrical body and the closures 238 and 234.

A second inner container 250 is positioned within the container 230 and has a shape very similar to the inner container 107. For example, the container 250 is comprised of a first cylindrical portion 252 integrally connected to a larger cylindrical portion 254 which in turn is integrally connected to a conical portion 256. A closure 258 is sealed to the cylindrical portion 252. The other end of the inner container is comprised of a generally cylindrical portion 260, FIG. 40, which is formed into a set of female threads to allow engagement with the male thread 240 of the closure 238. To insure a fluid type connection an O-ring seal 262 is provided between the closure and the inner container. Within the enclosure 264 formed by the inner container is a refrigerant, such as the Freon l2 mentioned above.

Also connected to the closure 238 is a valve assembly comprising a tubular sleeve 268 having spaced ribs 270, a frangible diaphragm 272, a tubular plunger 274 having a flanged head 276, a longitudinally extending opening 278, a transversely extending control aperture 280, a pressure platform 282 and an O-ring seal 283. Operation of the valve assembly 266 is identical to that described earlier for the valve assembly 170. The pressure platform 282 is the only different element, which is provided because the valve assembly is located in a different position and is activated by a user pressing upon the pressure platform to cause the plunger and therefore the flanged head to break through the diaphragm. The breaking of the diaphragm allows communication of the content within the enclosure 264 to communicate through the control aperture 280 and through the longitudinal opening 278 with the external environment. The inner container 250 may be formed by the same drawing process used for the inner container 107 with the additional step of forming the threads within the cylindrical portion 260.

Operation of the valve assembly 266 is desirable when the container 230 is situated in a position as shown in FIG. 38. If the container were turned upside down, there would be the possibility of leaking liquid coolant on the user. Because there is only a single wall separating the enclosure 248 from the enclosure 264 and because the inner container will be constructed of a good heat conducting metal, there is excellent heat transfer between the product within the enclosure 248 and the refrigerant in enclosure 264 once the valve assembly has been activated. To assemble the container 230, the inner container 250 is formed by drawing while the closure 238 is pressed. The closure 238 is then engaged to the inner container to form a fluid tight seal. The cylindrical body 232 is formed and lock seamed to the closure 238. A vacuum is created, Freon is inserted into the inner container and the closure 258 is sealed to enclose the Freon. The beverage is then added to enclosure 248 and the container is sealed with the closure 234. To conform to existing practices the containers are usually shipped from a can manufacturer to a bottler before the beverage is added to the container.

Current production of beer and soft drinks in metal cans occur in a two step manufacturing procedure. Generally, a can company will manufacture a portion of the finished can, while a bottling company fills the can and completes the can structure. Usually, a can company will receive a roll of metal, which is coated twice and cut to a pre-determined size to form the cylindrical can body. In a separate operation the pop top closures are formed and are mated to the can body by lock seaming. Generally, the cans will also be imprinted with appropriate labels. The cans are then pelletized and forwarded to a bottling company, which then sends the partially completed can through further processes to insure cleanliness before they are filled and sealed.

In keeping with the traditional two step manufacturing process a method has been devised for forming a container, such as the embodiment illustrated in FIG. 18. The method comprises, providing a strip of material, which is then cut to a pre-determined size toallow the formation of a hollow cylinder, such as the cylindrical body of the outer container 101, FIG. 18. There is also provided a plug of material, which, as mentioned earlier, is pressed into an elongated hollow body by the above mentioned drawing process which includes a series of pressing operations. The elongated hollow body may be formed with a configuration identical to the closure 106, FIG. 20, which includes two conical sections 122 and 124 and two cylindrical portions 126 and 128. The formation of the container, the formation of the closure and their connection is graphically described in FIG. 37 in the rectangular figures designated 300, 302 and 304 respectively. It is, of course, understood that the projections 162, 164, 166 and 168 may also be crimped into the closure during its forming process. The three rectangular figures, 300, 302 and 304, are surrounded by a larger rectangular figure drawn in phantom designated 306 to indicate that those steps may be accomplished by one manufacturer while the remainder of the method to be described may be accomplished by others.

A second container, such as the inner container 107, may be formed by a manufacturer totally divorced from the manufacturer forming the conventional container, or the inner container may be formed on another forming line by the same manufacturer of the conventional can. Forming a container having a unique shape, such as the inner container 107, may be accomplished by providing a plug of material and then drawing that material by the progressive pressing steps as already described. A closure is then stamped out of sheet metal and connected to the coolant container body by a lock seaming process. These twd steps are described graphically by the rectangular figures designated 308 and 310 respectively. Next the inner container is filled with a coolant under pressure if the coolant responds in a manner analogous to Freon. This step is designated 312. The coolant filling step may be accomplished by any standard aerosol filling machine. After filling the inner container, the container is then sealed as designated 314. The large rectangular figure drawn in phantom line and designated 316 is used to indicate the separate manufacturing operations necessary to form the coolant cartridge. The coolant container may then be inserted into the product container in a bottlers plant or prior to reaching the bottle-rs plant depending upon convenience. For example, if the manufacturer forms the outer product container and the inner coolant container, then economics would probably dictate that he insert the inner container into the outer container before shipment to the bottler. Regardless of the approach followed, the step is designated 318. The in-. sertion of the inner container into the outer container may be accomplished by a magnet attaching itself to a closure, such as closure 150, if the closure is made of tin plated steel so as to be magnetic. The remainder of the container may also be steel or could be aluminum if an all metal container is desirable.

Once within the bottlers plant the additional operation of filling the product container and sealing the container may be accomplished in the usual way. Rectangular Figures 320 and 322 designate respectively these last two processing steps. It is to be noted, however, that in bottling some products such as beer, it is undesirable to have the coolant container inserted within the product container until after the beer is sent to a pasteruization station subjecting the beer to a relatively high temperature which would usually be detrimental to a coolant such as Freon 12. Thus, an advantage of the embodiment shown in FIG. 18 is that the coolant container may be added to the product container after the product container has been filled, completely processed and sealed in a fashion which would not require any changes from present day processing.

The process above described for forming the various containers may be altered somewhat should material other than metal be used or if it is found desirable for other reasons not to follow the more traditional approach. For example, using the drawing process described, it is possible to press a hollow, elongated body that includes the outer cylindrical and the uniquely shaped closure as an integral element. The cylindrical portion, which eventually forms the outer body of the container, is then rolled under heat and pressure in a fashion similar to turning ones sock partially inside out. This is known as a outer wall reversed draw. In an analogous fashion an inner wall reversed draw may be used to stuff the portion representing the closure into the large cylindrical portion, which eventually forms the outer body. As mentioned earlier, should plastic be used the various parts may be molded or extruded and then fastened together.

Referring now to FIGS. 1 through 4 a container comprises an outer container 12 for depositing a product and an inner container 14 for housing a cooling or heating compound. In the interest of clarity the selfrefrigerating or heating container will be described as a self-refrigerating device for a liquid food or beverage 19, FIG. 4. However, it will be readily apparent as the description proceeds, and as will be explained subsequently, that the container 10, may be utilized to regulate the temperature of solid or liquid foods so as to either heat or cool the food. Further it will be understood that the inner container 14 may be charged with a heat producing substance or a refrigerant depending on the selected application of the container 10. It is to be understood, however, that the container described could also be used to store other than foodstuff and could be used to heat or cool any one ofa number of items.

The outer container 12 has a top closure 15 sealed to a cylindrical side body 16 in a conventional manner such as by a rolled seal 17j and the top closure 15 may include a conventional pull pop top opening arrangement l8 scored into the outer surface thereof as already described. The outer container 12 is closed after the beverage 19 has been placed therein, by the attachment of the bottom closure 21, FIG. 4 to the lower end of the side body 16. As seen best in FIG. 6, the side body 16 may be attached to the closure 21 by a rolled seal 22, for example. The closure 21 has a generally conical configuration with a relatively large head portion 23, FIG. 8 and a tapering seam portion 24, with the seam portion 24 extending into the side body 16 the greater part of the length of the side body, and preferably substantially the entire length of the side body.

The coolant inner container 14 comprises a closure 27, FIG. 8 and a tank 26 which is adapted to contain a quantity of liquid coolant 28 under pressure, for example. The inner container 14 is designed to withstand more pressure than the outer container 12 and therefore the tank 26 and the closure 27 may be constructed from stronger or thicker material than the corresponding members of the outer container 12. Further to insure a pressure tight vessel the seal 29, FIG. 6 between the tank 26 and the closure 27 may be formed by double rolling these surfaces inwardly of the periphery of the closure; a gasket material or sealant (not shown) may be disposed between the surfaces of the folded portions of these just mentioned members. A plurality of ridges 30, FIGS. 2 and 3 are formed in the closure 27 to increase the rigidity thereof. It is important for best performance of the container 10 that the configuration of the tank 26 be similar to the configuration of the closure 21, but of slightly smaller dimensions so that close contact may be maintained between the closure 21 and the inner container.

Means for venting the interior of the inner container 14 to the atmosphere is attached to the closure 27, and

for the selected embodiment the venting means is shown as a pull pop top arrangement 31, FIG. 8 scored into the closure. The pull-tab arrangement 31 may be of conventional type with the depth of the scoring slightly reduced so that the lid may withstand greater pressures and with the size of the resulting opening 32 being adapted for a selected cooling rate as will be explained subsequently. Although the venting arrangement 31 has been selected herein as a one-shot type just as the valve assembly it will be understood that in accordance with the subject invention any suitable venting assembly may be incorporated into the closure, including those of the manually controllable valve type assembly that the inner container 14 may be more readily recharged if it should be desired that the unit be reusable.

As noted previously, one of the primary objects and advantages of the subject invention is that the container may be processed with the least possible modification of existing manufacturing equipment, in which equipment the industry presently has a large capital investment. It should be noted that in accordance with the subject invention that the outer container 12, before the closure 21 is attached thereto, may be filled by standard equipment without modification. However, it will be recognized that since the closure 21 will displace a given volume within the outer container 12 that the volume of the liquid filling each container should be reduced proportionally. For example, the filling machine should be set so as to place l2 ounces of beverage in a standard 16 ounce can. An important advantage of the conical configuration of the closure 21 is that it may be nested (stacked) in a modified closure feeder machine and then inserted into the outer container so that the seal 22 may be subsequently formed in the conventional manner at the normal high rate of production.

As with the FIG. 18 embodiment, since the outer container 12 and the inner container 14 are structurally independent, the filled outer container may be processed without concern as to the effects of such processing on the coolant.

The inner container 14 may be assembled by placing the required amount of coolant 28 into the tank 26 and then spinning the closure 27 onto the tank so as to form the double seal 29. Once again the structural independence of the beverage container 12 and the coolant container 14 is advantageous, as the coolant container may be assembled at a completely different facility under the most favorable environmental conditions.

The amount and type of coolant is determined by the requirements of the particular application and the beverage selected. In addition to Freon 12, propane, butane or a mixture thereof are satisfactory refrigerants. It will be understood, however, that the subject invention is not limited to the proportions or type of coolants stated by way of example and that any suitable coolant may be utilized in the inner container in accordance with the principles of the subject invention.

After the outer container 12 has been filled, sealed and processed, the inner container 14 may be adhered to the outer surface of the closure 21 by means of any conventional adhesive such as epoxy. However, since conventional epoxy is a poor heat conductor only small quantities should be utilized. Preferably, the inner container 14 may be bonded to the outer surface of the closure 21 by a thermal conductive adhesive 33, such as Thermo-mastic for example, disposed between the closure 21 and the tank 26. The use of the conductive adhesive 33 as a bonding agent has the advantage of increasing the thermal conductivity between the tank 26 and crown 21 as well as compensating for any minor irregularities in the surfaces that may otherwise prevent close contact therebetween.

In the embodiment of the container shown in FIGS. 9 through 12, the conically shaped bottom member or conical section 21 of the outer container 12 is formed as an integral part of the side body 16'. In formation the same drawing processes may be employed as described for the FIG. 18 embodiment. One advantage of the container 12 is that it may be filled from the top end in exactly the manner now conventionally employed in the industry, and the closure 15 may be sealed to the side body 16' without any modification of existing equipment. For the embodiment shown in FIGS. 9 through 12 the inner container 14 (which is identical to unit 14) may be mounted within the opening formed by the outer surfaces of the closure structure 21' in an identical manner to that described previously.

Shortly before the beverage 19 is to be consumed, the user may vent the inner container 14 by means of the pull-tab arrangement 31; and the pressure within the coolant container 14 is quickly reduced towards atmospheric pressure through the opening 32. The coolant such as Freon 12 will boil causing the structure of the inner container 14, the closure 21 and therefore the beverage 19 to be cooled. It should be noted that the rate of cooling may be controlled by the relationship of the size of the head of the tank 26 and the size of the opening 32. These just mentioned parameters are selected so that the beverage is uniformly cooled as quickly as possible without degrading the flavor. As the beverage 19 is cooled it will settle towards the closure 15, the container being then inverted, and the resulting convection current of the beverage will help provide uniform cooling. Also, since the lower portion of the stem 24 will retain the coolant longest, the portion of the beverage near the closure 15, which will be consumed first will be cooled first. Further, the beverage adjacent to the expanded portion 23 of the closure 21 which will be consumed last will tend to be maintained cooler longer due to this larger heat transfer area.

The container 10 may be utilized as a self heating device by the simple expedient of using a heat producing substance instead of a refrigerant in the tank 26 of the inner container 14. In the heating application a mixture of phosphorus and magnesium filings for example may be loaded and sealed into the unit 14 in such a manner as to form an inert environment. Shortly before the food is to be served the user may vent the unit 14 by means of the pull-tab arrangement 31 allowing air to oxidize the phosphorus which in turn ignites the magnesium. The heat. produced by the burning of this mixture is transferred through the tank 26, the conductive adhesive 33 and the closure 21 in a manner similar to that described previously for the cooling application. The amount of heat generating compound which is loaded into the unit 14 is selected so as to heat the food contained in the unit 12 to a desired temperature.

Referring to FIGS. 13 through 17, another embodiment of the self-refrigerating and heating container of this invention is illustrated. Again, container 10" comprises beverage outer container 12" and coolant inner container 14'.

Referring principally to FIG. 15, which is a longitudinal section through container 10'', the beverage unit comprises can body 34 which is a conventional, commercially available lock seam can body. At the bottom of FIG. 15, which is the topof con-tainer 10", closure 36 is sealed to the end of the body. Closure 36 is provided with a conventional pop-top opener 38. Bottom closure 40 is secured to body 34 by means of lock seam 42. In view of the fact that the bottom closure 40 is of a special configuration, it may be preferable that the bottom closure be first sealed onto the can body, followed by the can being filled and sealed by adding the closure 36. In either event, one of the closures is secured to the body, the can is filled with its food material and the other end is sealed.

Bottom closure 40 has a conical portion 44 which provides a beverage space 46 between the bottom closure and the can body. Beyond the conical portion 414 is a cylindrical portion 48 which is integral through transition portion 50 to a cylindrical portion 52. The

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US450527 *Jan 23, 1891Apr 14, 1891 Combined dinner-pail and lunch-basket
US2622415 *Jun 23, 1948Dec 23, 1952Thomas P LandersChilling foodstuffs
US3205678 *Oct 25, 1963Sep 14, 1965Arthur M StonerPitcher cooler combination
US3338067 *Jun 28, 1966Aug 29, 1967 Combined beverage and refrigerant containers
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3852975 *Apr 6, 1973Dec 10, 1974W BeckSelf-chilling container with safety device and method of making same
US3874557 *Feb 7, 1974Apr 1, 1975Harold E PorterSelf-cooling or self-heating beverage container or the like
US3919856 *Mar 20, 1974Nov 18, 1975William D BeckSelf-chilling container with safety device and method of making same
US4319464 *Jul 25, 1980Mar 16, 1982Dodd N RayRefrigerated container
US4523433 *Jun 13, 1984Jun 18, 1985Nippon Light Metal Co., Ltd.Cold storage body
US4628703 *Jul 29, 1985Dec 16, 1986Ho KimSelf operative cooling mechanism of can
US4656838 *Sep 11, 1986Apr 14, 1987Shen Hwang KCooling device for a can containing a beverage
US4669273 *May 7, 1986Jun 2, 1987Liquid Co2 Engineering Inc.Self-cooling beverage container
US4688395 *Jul 1, 1986Aug 25, 1987Superior Marketing Research Corp.Self-contained cooling device for food containers
US4759191 *Jul 7, 1987Jul 26, 1988Liquid Co2 Engineering, Inc.Miniaturized cooling device and method of use
US4784678 *Apr 6, 1987Nov 15, 1988The Coca-Cola CompanySelf-cooling container
US4791789 *Nov 6, 1987Dec 20, 1988Wilson John JAutomatic self-cooling device for beverage containers
US4802343 *Jul 1, 1987Feb 7, 1989The Coca-Cola CompanySelf-cooling container
US4901535 *Jun 22, 1988Feb 20, 1990Sabin Cullen MTemperature changing device improved evaporation characteristics
US4928495 *Jun 22, 1989May 29, 1990Israel SiegelSelf cooling and self heating container
US4949549 *Oct 12, 1989Aug 21, 1990International Thermal Packaging, Inc.Cooling device with improved waste-heat handling capability
US4974419 *Mar 17, 1988Dec 4, 1990Liquid Co2 Engineering Inc.Apparatus and method for simultaneously heating and cooling separate zones
US4981022 *Sep 8, 1989Jan 1, 1991American Cycle Industries, Inc.Refrigerated bicycle beverage carrier
US4993239 *May 18, 1990Feb 19, 1991International Thermal Packaging, Inc.Cooling device with improved waste-heat handling capability
US5018368 *Oct 12, 1989May 28, 1991International Thermal Packaging, Inc.Multi-staged desiccant refrigeration device
US5048301 *Jun 13, 1990Sep 17, 1991International Thermal PackagingVacuum insulated sorbent driven refrigeration device
US5131239 *Feb 20, 1991Jul 21, 1992Wilson John JAutomatic self-cooling device for beverage containers
US5148688 *Jul 22, 1991Sep 22, 1992Pimm Annette RDrinking vessel
US5197302 *Jan 8, 1991Mar 30, 1993International Thermal Packaging, Inc.Vacuum insulated sorbent-driven refrigeration device
US5606866 *May 24, 1995Mar 4, 1997The Joseph CompanyHeat exchange unit for self-cooling beverage containers
US5655384 *May 24, 1995Aug 12, 1997The Joseph CompanySelf-cooling container including liner member
US5943875 *Dec 8, 1997Aug 31, 1999Envirochill International, Ltd.Self-cooling fluid container with nested refrigerant and fluid chambers
US6128906 *Feb 10, 1999Oct 10, 2000Chill-Can International, Inc.Non-metallic food or beverage container having a heat exchange unit contained therein
US6209344 *Mar 31, 1999Apr 3, 2001Gautam K. MahajanMulti-walled container
US6564558 *Nov 14, 2001May 20, 2003Seymour Michael LDisposable self-cooling, self-heating container
US6634417Apr 6, 1998Oct 21, 2003J. Bruce KolowichThermal receptacle with phase change material
US6895763 *May 19, 2003May 24, 2005Michael L. SeymourDisposable container
US7213401Feb 20, 2003May 8, 2007ThermagenSelf-refrigerating packaging and associated actuation device
US7240507Nov 4, 2002Jul 10, 2007ThermagenHeat exchanger
US7832188 *Dec 21, 2006Nov 16, 2010O'neill Trevor FApparatus and method for sealing a lidstock to a container
US7866180 *Jan 23, 2006Jan 11, 2011Diana GoodwinGraded pressure apparatus for cooling food and beverages and methods of making the same
US9039924Dec 2, 2011May 26, 2015Frosty Cold, LlcCooling agent for cold packs and food and beverage containers
US9181015Mar 15, 2013Nov 10, 2015Raymond BooskaThermal receptacle with phase change material
US20050160745 *Feb 20, 2003Jul 28, 2005Pierre JeuchSelf-refrigerating packaging and associated actuation device
US20060186125 *Feb 14, 2006Aug 24, 2006Stephen TewThermally insulating containers
US20070090077 *Sep 29, 2006Apr 26, 2007Graber Loren RContainer arrangement
US20070163569 *Jan 19, 2006Jul 19, 2007Mark StrachanArrangement for and method of selectably changing the temperature of a product by employing a snap action invertible actuator
US20070169883 *Jan 23, 2006Jul 26, 2007Dianthronics, Inc.Graded pressure apparatus for cooling food and beverages and methods of making the same
US20080016882 *Jul 12, 2007Jan 24, 2008Neuweiler Jeffrey CSelf-contained system for rapidly cooling liquids
US20080099493 *Oct 12, 2007May 1, 2008The Coca-Cola CompanyContainers having a space for a material, a cooling device, or a heating device
US20080271476 *Feb 11, 2008Nov 6, 2008Elias LangguthEndothermic beverage cooler
US20090045080 *Dec 21, 2006Feb 19, 2009O'neill Trevor FApparatus and method for sealing a lidstock to a container
US20090071968 *Sep 10, 2008Mar 19, 2009O'brien DianeContainer
US20090120109 *Feb 1, 2005May 14, 2009Thermagen SaActuating Device for Self Cooling Packaging
US20090266737 *Oct 29, 2009Cole Joseph WBeverage container permitting multiple configurations
US20090314667 *Sep 15, 2006Dec 24, 2009Jacques BeyersContainer for receiving a cartridge for heating or cooling the contents of the container
US20100270316 *Dec 18, 2008Oct 28, 2010Sahlstroem MikaelTop Cover For Sealing an Open End of a Cylindrical Beverage Container, and a Method For Providing such a Top Cover
US20130327312 *Aug 2, 2013Dec 12, 2013Heatgenie, Inc.Package heating device and chemical compositions for use therewith
US20140110412 *Oct 21, 2012Apr 24, 2014Thomas Peter JohnsonUniversal Floating Beverage Holder
EP0752564A2 *Jun 12, 1996Jan 8, 1997The BOC Group plcApparatus for chilling fluids
EP1038144A1 *Dec 7, 1998Sep 27, 2000Envirochill International LtdSelf-cooling fluid container with nested refrigerant and fluid chambers
WO1989000270A1 *Jul 5, 1988Jan 12, 1989International Thermal Packaging, Inc.Self-contained cooling apparatus
WO1989000271A1 *Jul 5, 1988Jan 12, 1989International Thermal Packaging, Inc.Self-contained cooling apparatus
WO1990015961A1 *Jun 14, 1990Dec 27, 1990Israel SiegelSelf cooling and self heating container
WO1994025809A1 *Apr 27, 1994Nov 10, 1994Christian BizzocchiDevice for instantly cooling a liquid substance of variable consistency
WO1997038271A1Apr 3, 1997Oct 16, 1997The Joseph CompanyCombined valve cup and bottom assembly for self-cooling container
WO1997045684A1 *May 9, 1997Dec 4, 1997Stefano CaramelliQuick cooling of beverages within closed vessels
WO1998030848A1 *Jan 8, 1997Jul 16, 1998The Boc Group PlcApparatus for chilling fluids
WO1999030092A1 *Dec 7, 1998Jun 17, 1999Envirochill International Ltd.Self-cooling fluid container with nested refrigerant and fluid chambers
WO2000043274A2Jan 18, 2000Jul 27, 2000Chill-Can International, Inc.Self-cooling or self-heating food or beverage container having heat exchange unit with external protective coating
WO2003073019A1 *Feb 20, 2003Sep 4, 2003ThermagenSelf-refrigerating packaging and associated actuation device
Classifications
U.S. Classification62/294, 62/457.9, 62/457.1, 126/262, 62/371
International ClassificationF25D3/10
Cooperative ClassificationF25D3/107, F25D2331/805
European ClassificationF25D3/10C