Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3727606 A
Publication typeGrant
Publication dateApr 17, 1973
Filing dateJun 12, 1970
Priority dateJun 12, 1970
Publication numberUS 3727606 A, US 3727606A, US-A-3727606, US3727606 A, US3727606A
InventorsSielaff U
Original AssigneeAirco Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apnea detection device
US 3727606 A
Abstract
A device for providing continuous monitoring of a human breathing and heart rate wherein a fluid-tight mattress is located in contact with the human and produces pressure signals in response to the breathing and heart rate. A pressure transducer is provided for interpreting the pressure signals for application to an electronic circuit for visual or audible recognition of the signals.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 Sielaff 1451 A r. 17, 1973 [541 APNEA DETECTION DEVICE 3,481,324 12/1969 Talbot 61. a1 ..12s/2.05 B

3,533,095 10/1970 Collins [75 Inventor Ulmh McFarland 3,547,106 12/1970 Bornmann us 2.05 R x A A i [73]. sslgnee irco, Inc New Providence, NJ. FOREIGN PATENTS OR APPLICATIONS Filed: J 1970 1,480,160 4/19 7 France ..128/2 5 418,067 2/1947 Italy .1 1 28/2 S [21] Appl' 8 522,563 4/1955 ma ..128/2 5 673,719 10/1929 France ..128/2.08 [52] US. Cl. ..128/2 S, 128/205 P, 340/279 [51] Int; Cl. ..A61b 5/02, A6lb 5/10 Primary Examiner- Kyle L. Howell [58] Field of Search 128/2 R, 2 S, 2.05 R, Att0rney-Roger M. Rathburn, Edmund W. Bopp and l28/2.05 T, 2.05 P, 2.05 B, 2.06 R, 2.06 F, H. Hume Mathews 2.08, DIG. 17; 340/279, 240

[57] ABSTRACT [56] V References Clted A device for providing continuous monitoring of 21 UNITED S S PATENTS human breathing and heart rate wherein a fluid-tight mattress is located in contact with the human and 8211? produces pressure Signals in response to the breathing 2452799 11/1948 g et a1 R and heart rate. A pressure transducer is provided for 3 572 317 3 1971 w ifde "I: Iii 292.05 R interpreting the Pressure Signals for application 9 4 3/1940 Strauss et aL 1 R electronic circuit for visual or audible recognition of 2,235,894 3/1941 Lee ..l28/2.05 R the signals. 3,081,765 3/1963 Kompelien... ,.l28/2 R 3,325,799 6/1967 Farris ..12s 2.0s ux 6 Clams, 3 Drawing Flgllres 3,439,358 4/1969 Salmons ..340/279 UX a 26 28 M 1 L f :4. A ooooooo 0.0.0.0; Q Q 1 o o o o zg t 1 Q Q Q l8 PATENTEDAPR 1 71973 I 3.727. 606

' sum 1 or 2 FIG.-1

10/ I I 217L 33 /NVENTUR. ULRICH SIELAFF math/7.77%

A T TOR/V5 Y PATENTED APR 1 1191s SHEET 2 OF 2 PRESSURE PRESSURE DETECT/ON PAD TRANSDUCER C/RCU/T 2 as RESP/RA T/ON INDICATOR A SCHM/TT TRIGGER "9 AP/VEA T/ME ALARM DELA Y,

ALARM T587- llwvziivl-nR ULRICH SIELAFF I law Q GM 47 TOP/VF V APNEA DETECTION DEVICE BACKGROUND OF THE INVENTION This invention relates generally to monitoring devices for maintaining a continuous surveillance of certain vital body movements and, more particularly, to a device for monitoring the breathing, and heart rate of infants.

Periodic breathing, called apnea, is a respiratory difficulty particularly prevalent in premature infants where the infant experiences a temporary stoppage of breathing and, unless the condition is detected immediately and preventive steps taken, the lack of continued circulation to the brain may result in serious damage.

Although the periodic breathing will sometimes cor rect itself without assistance to the infants respiratory system, it is extremely important that some monitor be provided to continuously ascertain the breathing and heart rate of infants, in order to alert hospital personnel to prolonged conditions of apnea so that the proper measures may be quickly takento restore continuous, uninterrupted breathing. A further need for such apnea monitoring equipment is shown by the unpredictability of an apneac condition, whereas the periodic breathing or stoppage may occur at any time and even immediately after a continued surveilance where no symptoms are evident.

Prior to the present invention, various devices have been devised to afford continuous breathing and heart monitoring; however, in general, these devices have relied upon some physical attachment of electrodes or detectors upon the 'infants body and, therefore, have been susceptible to dislodgement through gross body movements of the infant, or during movements of the infant by attending personnel, and a false apnea condition and alarm are experienced.

In addition, such prior art devices have often required an electrical connection in some manner between the infant and the monitoring equipment, thereby presenting a potential electrical hazard.

lt is thus an object of the present invention to provide a highly sensitive breathing and heart rate monitor which is continuously capable of, detecting apnea conditionsin an infant.

, It is another object of this invention to provide a sensitive breathing and heart rate monitor wherein no physical attachment of any kind is necessary to the infant being monitored.

lt is'a still further object to provide a continuous breathing and heart rate monitor where all sensing means associated with the infant are pneumatically operated, whereby no electrical connections are utilized.

tion;

FlG. 2 is a schematic drawing of an alternate mattress suitable for use in the invention;

FIG. 3 is a schematic diagram showing the electronic circuitry, in block form, which may be used with the present invention.

Referring now to FIG. 1, there: is shown a schematic diagram of the overall apnea monitoringsystem. The system includes a fluid-tight flexible pad 10, adaptable for placement beneath an infant. The pad 10 may contain a resilient porous material for support and comfort of the infant and which allows the free circulation of fluid within the outer non-porous covering.

A pop-off valve 12, the purpose and function of which will be later explained, communicates with the interior of the pad 10 through flexible tubing 14. A transducer 16 is provided and which also is in fluid communication with the interior of pad 10 by means of flexible tubing 18, pop-off valve 12, and tubing 14. The transducer is of the pressure-sensitive type which is adapted to sense verted and transmitted as electrical signals. The transducer 16 must be capable of detecting minute pressure changes due to the respiration and heart beat of an infant resting upon the pad 10; however, such transducers are commercially available having the required sensitivity.

The transducer used must be extremely sensitive to pressure variations as the pressure signals experienced from the movement ofinfants are extremely minute. As an example, the present invention has been utilized to monitor the breathing rate of premature infants weighing less than about 3 pounds, and it is found that the pressure signals from the fluid-tight mattress are in the order of from about 0.05 to 0.08 cm of water.

These signals were readily detectable by a pressure The transducer, therefore, must be capable of distinguishing pressure signals'of minute magnitude and alter its characteristics in order to provide a sufficient alteration for sensing by a later fluidic or electronic circuitf The purpose of the pop-off valve 12 is to prevent large changes in pressure from the pad 10, such as those caused by gross bodily movements of the infant, from reaching and affecting the transducer 16. To this purpose, the pop-off valve 12 is provided with a pair of discs 20 and 22 which are adapted to be displaced with respect to their respective seats 24 and 26 to allow fluids to pass freely therethrough. i

As shown, the disc 20 is positioned such that a predetermined negative pressure caused by a gross body movement causes a displacement of the disc 20, allowing atmospheric pressure to enter the pop-off valve 12 to equalize the effect of the negative pressures.

The disc 22 is positioned such that a predetermined positive pressure caused by the gross body movement displaces that disc 22 and the excess pressure is exhausted to the atmosphere. Conventional means, such as springs, are provided in order to return the discs 20 and 22 to their proper seated condition after the increase or decrease in pressure has been properly equalized, and also, conventional means may be included for adjusting'the sensitivity of response of each of the discs 20- and 22. In the preferred embodiment, it has been found that either weight or spring loaded discs may be suitable and satisfactory results have been achieved where the valves are preset to be displaced from their seats at a predetermined positive or negative pressure of about $0.5 cm water. This value is therefore the largest positive or negative pressure experienced by the pressure transducer.

In addition to limiting the effects of large pressure variations due to gross body movements, the pop-off valve 12 serves to achieve an equilibrium point during the initiation of the system. The compression of the pad due to the initial placement of an infant within an incubator or the like upon pad 10 will cause the disc 22 to be displaced and allow the excess pressure to escape. This venting of excess pressure will continue automatically until an equilibrium point is reached, at which time, the system is closed and small pressure variations; i.e., within $0.5 cm. water will be completely contained within the system and will act upon the transducer 16.

Further, very slow fluctuations in pressure, such as by a gradual temperature change, are bled from the system through orifice 28 in pop-off valve 12, thereby creating a stable base line reading, yet the orifice 28 may be adjusted such that rapid fluctuations caused by the infants respiration and heart rate are unaffected by its presence. Although the orifice 28 is shown in the preferred embodiment located on pop-off valve 12, the actual placement within the system may vary widely without affecting its operation. The actual size of the orifice 28 also may vary depending on the overall design of the system. Its size governs the frequency response of the system; i.e., where the orifice 28 size is particularly small, relatively slow fluctuations are detected, while a large size orifice may entirely exhaust the same slow fluctuations.

The changes in electrical characteristics of the trans- I ducer l6, responsive to.pressure fluctuations in the pad 10, are applied to electronic circuitry 30for perform-' ing various functions such as triggering an alarm system at a'particular apnea condition or controlling a readout device which may be under surveilance by attending hospital personnel.

Referring now to FIG. 2, there is shown an alternate flexible pad 10 suitable for use in the apnea detection device. Although a flexiblepad 10 of a continuous .design, that is, the internal resilient material is dispersed uniformly and uninterrupted throughout the pad 10, is most easily constructed, it also entraps a relatively large quantity of air and thus, the pressure signals may be somewhat attenuated. In FIG. 2, therefore, an embodiment of the flexible pad 10 is disclosed where individual pockets or fingers 32 of resilient material are individually enclosed within a flexible non-porous material, and are spaced such that some portion of the infant will always rest upon one or more of the fingers 32. In this manner, the amount of entrained air is reduced and a less attenuated pressure signal is realized.

Although the fingers 32 are shown in elongated form, they may also be of other configurations, including spherically shaped fluid-tight pockets.

Turning now to FIG. 3, there is shown, in block form, a schematic of a typical electronic circuit 30 utilized in this invention. The individual circuits shown are of generally conventional designs so that only their overall function will be explained. As shown, the circuit 30 is used wherein only one sensed'movement is monitored, such as breathing rate, however, a similar electronic circuit may also be used where both breathing rate and heart rate movements are sensed. I

Briefly, the flexible pad 10, as previously explained, experiences pressure fluctuations in response to the breathing rate of an infant resting thereon and these pressure changes are transmitted to the transducer 16. The transducer 16, in the preferred embodiment is caused to change its capacitance in response to the pressure variations received, and a detection circuit 32 is provided in order to sense the capacitance changes and transmit the changes in the form of an analog signal for amplification by the amplifier 34.

This amplified analog signal may then be applied to a known circuit such as a Schmitt trigger, where the analog signal is converted to a digital signal by a preselected analog range.

The Schmitt trigger 36 is a generally known electrical circuit which is adapted to tripper a digital pulse when an analog signal of a predetermined signal amplitude is reached, and continue to transmit the constant digital pulse until the analog signal thereafter falls I below a predetermined cut-off strength.

A respiration indicator 38.receives the digital signal from the Schmitt trigger 36 and provides a visual monibreathing rate, i.e., less than 3 second delay do not sound the audible alarm, as often times, the infant will experience short delays in breathing followed immediatelyby a return to a normal breathing rate. The time delay 42 serves to eliminate. the short, or normal breathing interruptions and only trigger the audible alarm where the breathing rate has slowed or even ceased for a predetermined amount of time, at which point,-the attending hospital personnel are warned of the severe apnea condition so that the necessary steps may be taken. The circuit may also provide for silencing the alarm once breathing has again resumed.

A conventional test circuit 44 may also be included in order to afford continuous assurance that the alarm .40 is in proper working condition.

There is thus provided an apnea alarm system for continuous monitoring of the respiratory and heart rate of infants through a resilient fluid-tight pad adapted to underlie the infant and which transmits pressure variations to a highly sensitive pressure transducer. Large pressure variations normally introduced through gross body movements of the infant are automatically filtered out of the pressure signal to the transducer while long continuous pressure changes are stabilized at a desired zero metering point. The pressure transducer thereafter undergoes a variation in capacitance in response to the pressure variation, which is detected, amplified, and applied to known visual as well as audible monitoring systems.

I claim:

1. A breathing monitor for continuously detecting movement of a living infant, comprising a flexible airtight resilient mattress, adapted to underlie and support said infant, the interior of said mattress containing air volumes which in response to bodily movement of the infant on said mattress are compressed and exhibit relative pressure fluctuations with respect to the ambient atmosphere; means communicating with said mattress interior for receiving said pressure fluctuations and converting said pressure fluctuations into a recognizable signal; and non-closeable bleed means connected continuously between said mattress interior and ambient atmosphere to enable bleeding of relatively slow pressure fluctuations from said interior.

2. A breathing monitor for continuously detecting movement of a living infant, comprising a flexible airtight resilient mattress adapted to underlie and support said infant, the interior of said mattress containing air volumes which in response to bodily movements of the infant on said mattress are compressed and exhibit pressure fluctuations; valve means communicating with said mattress interior for receiving said pressure fluctuations, said valve means being adapted to filter out pressure fluctuations above and below a predetermined pressure range; and means connected for receiving the remaining filtered pressure fluctuations from said valve means and converting said filtered pressure fluctuations into a recognizable signal.

3. A breathing monitor as defined in claim 2 wherein said valve means comprises a chamber, said chamber having an inlet and an outlet, a first check valve means in said chamber adapted to open said chamber to ambient atmosphere at a predetermiined'positive pressure within said chamber, a second check valve means in said chamber adapted to open said chamber to ambient atmosphere at a predetermined negative pressure within said chamber.

4. A breathing monitor as defined in claim 3 wherein said predetermined positive pressure within said chamber is about 0.50 cm water and said predeter' mined negative pressure within said chamber is about 0.50 cm water.

5. A breathing monitor as defined in claim 3 wherein said chamber has an orifice adapted to bleed slow changes in pressure within said chamber to the ambient atmosphere.

6. A method of monitoring the breathing and heart rate related movements of an infant, comprising the steps of:

maintaining the interior of said paid at about ambient atmospheric pressure, sensing pressure variations in the pad resulting from movements of the infant,

receiving the sensed variations and filtering out gross pressure variations above and below a predetermined pressure range 7 I monitoring the filtered pressure variations and converting the filtered variations to a recognizable signal.

UNITED STATES PATENT OFFICE QEIRTEFICATE OF CORRECTION Patent No. ,5 ,7 7 Dated April 7 s 975 Invent0r(s) ULRICH SIELAFF It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Col. line 29, "tripper" should read ---1 trigger 001. 6, line 17, "0.50" should read {.50 g

line 2M, after "steps of: the following line has been omitted: positioning an air-tight pad underlying and supporting the infant to be monitored,

Signed and sealed this 18th day of December 1973.

(SEAL) Attest:

EDWARD M. PLETCHER,JR. RENE D. TEGTMEY ER Attesting Officer Acting Commissioner of Patents F092 PO-105O (10-69) f uscoMM-Dc 60376-P69 {I UYS GOVERNMENT PfiI NTING OFFICE 1969 0-365-33l

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2193945 *Apr 12, 1937Mar 19, 1940Louis WeisglassApparatus for measuring and supervising the heart action
US2235894 *Jan 18, 1938Mar 25, 1941Lee Clarence DDevice for recording pulse waves, respiration, and blood pressure changes
US2452799 *Apr 3, 1947Nov 2, 1948Joseph B HershApparatus for and method of measuring or indicating limb or digital volume changes resulting from arterial pulsations
US2839050 *Nov 7, 1956Jun 17, 1958Kurt SokolDevice for measuring the tonus of the muscular system of the floor of the vagina, pelvis and adjacent areas
US3081765 *Jun 15, 1960Mar 19, 1963Honeywell Regulator CoMedical body function recorder
US3325799 *Jul 13, 1964Jun 13, 1967Edwia Greines CohenMattress alarm
US3439358 *Nov 30, 1965Apr 15, 1969George Washington LtdActivity detectors
US3481324 *Mar 13, 1967Dec 2, 1969Belle O TalbotBallistocardiograph apparatus
US3533095 *Jan 2, 1969Oct 6, 1970James CollinsInflatable pad with alarm
US3547106 *Jan 8, 1968Dec 15, 1970American Electronic LabActivity detecting means
US3572317 *Oct 2, 1968Mar 23, 1971Hoffmann La RocheRespiratory distress monitor
US3631438 *Sep 30, 1969Dec 28, 1971Nat Res DevApnoea alarms
FR673719A * Title not available
FR1480160A * Title not available
IT418067A * Title not available
IT522563A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3836900 *Jan 26, 1973Sep 17, 1974Fleet Electronics LtdRecording or alarm devices
US3852736 *Mar 5, 1973Dec 3, 1974Beaumont W HospitalBed egress alarm circuit
US3898981 *Aug 17, 1973Aug 12, 1975Electronic Monitors IncRespiration monitoring apparatus
US3950799 *Dec 13, 1975Apr 20, 1976Hoffmann-La Roche Inc.Respiratory distress stimulator system
US4038973 *Jan 5, 1976Aug 2, 1977Moore Mary ASystem for monitoring the weight of a patient
US4146885 *Oct 13, 1977Mar 27, 1979Lawson Jr William HInfant bed and apnea alarm
US4169462 *May 19, 1977Oct 2, 1979Strube Richard ECrib death detector
US4299233 *Oct 3, 1979Nov 10, 1981Lemelson Jerome HPatient monitoring device and method
US4336533 *Dec 22, 1980Jun 22, 1982Wettach Robert SFluid activated alarm device
US4381788 *Feb 27, 1981May 3, 1983Douglas David WMethod and apparatus for detecting apnea
US4403215 *Apr 17, 1981Sep 6, 1983Hellige, GmbhApparatus for automatically monitoring body functions
US4732159 *May 2, 1986Mar 22, 1988University Of Kentucky Research FoundationSimple capsule pneumograph
US4803997 *Jul 14, 1986Feb 14, 1989Edentec CorporationMedical monitor
US4813428 *Oct 17, 1986Mar 21, 1989Fukuda Denshi Co., Ltd.Device for detecting breathing
US4823619 *Feb 28, 1986Apr 25, 1989Antonio Nicholas F DSensor and transducer apparatus
US4987783 *Feb 2, 1988Jan 29, 1991Antonio Nicholas F DSensor and transducer apparatus
US5062169 *Mar 9, 1990Nov 5, 1991Leggett & Platt, IncorporatedClinical bed
US5117518 *Mar 8, 1989Jun 2, 1992Huntleigh Technology, PlcPressure controller
US5189742 *Mar 20, 1992Mar 2, 1993Canon Kabushiki KaishaFor supporting a body
US5279163 *Dec 3, 1990Jan 18, 1994Antonio Nicholas F DSensor and transducer apparatus
US5361133 *Jun 23, 1992Nov 1, 1994Footmark, Inc.Method and apparatus for analyzing feet
US5659395 *Jun 7, 1995Aug 19, 1997Footmark, Inc.Method and apparatus for analyzing feet
US5790256 *Feb 3, 1997Aug 4, 1998Footmark, Inc.Method of diagnosing/monitoring medical problems in humans
US5796340 *Aug 12, 1996Aug 18, 1998Miller; WilliamMotion monitor useful for sleeping humans
US6036660 *Dec 24, 1997Mar 14, 2000Pegasus Egerton LimitedPatient movement detection
US6254551Feb 5, 1998Jul 3, 2001Instrumentarium Corp.Apparatus for monitoring a mechanically transmitted signal based on the organs or vital functions and for processing the results
US6331893 *Jan 16, 2001Dec 18, 2001Footmark, Inc.Foot analyzer
US6611783Jan 5, 2001Aug 26, 2003Nocwatch, Inc.Attitude indicator and activity monitoring device
US6721980Oct 28, 1999Apr 20, 2004Hill-Fom Services, Inc.Force optimization surface apparatus and method
US7330127Apr 20, 2004Feb 12, 2008Hill-Rom Services, Inc.Force optimization surface apparatus and method
US7515059Nov 19, 2007Apr 7, 2009Hill-Rom Services, Inc.Patient support surface with physiological sensors
US8031080Apr 3, 2009Oct 4, 2011Hill-Rom Services, Inc.Patient support surface with vital signs sensors
US8136527Mar 13, 2008Mar 20, 2012Breathe Technologies, Inc.Method and device for non-invasive ventilation with nasal interface
US8281433Oct 20, 2009Oct 9, 2012Hill-Rom Services, Inc.Apparatuses for supporting and monitoring a person
US8381729Aug 3, 2007Feb 26, 2013Breathe Technologies, Inc.Methods and devices for minimally invasive respiratory support
US8418694Apr 30, 2010Apr 16, 2013Breathe Technologies, Inc.Systems, methods and apparatus for respiratory support of a patient
US8525679Sep 14, 2010Sep 3, 2013Hill-Rom Services, Inc.Sensor control for apparatuses for supporting and monitoring a person
US8525680Sep 14, 2010Sep 3, 2013Hill-Rom Services, Inc.Apparatuses for supporting and monitoring a condition of a person
US8567399Sep 26, 2008Oct 29, 2013Breathe Technologies, Inc.Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy
US8573219Dec 9, 2011Nov 5, 2013Breathe Technologies, Inc.Method and device for non-invasive ventilation with nasal interface
US8604932Dec 22, 2008Dec 10, 2013American Vehicular Sciences, LLCDriver fatigue monitoring system and method
US8677999Aug 21, 2009Mar 25, 2014Breathe Technologies, Inc.Methods and devices for providing mechanical ventilation with an open airway interface
US8752220Jul 6, 2010Jun 17, 2014Hill-Rom Services, Inc.Systems for patient support, monitoring and treatment
US8770193Apr 17, 2009Jul 8, 2014Breathe Technologies, Inc.Methods and devices for sensing respiration and controlling ventilator functions
US8776793Apr 17, 2009Jul 15, 2014Breathe Technologies, Inc.Methods and devices for sensing respiration and controlling ventilator functions
US20080077020 *Aug 31, 2007Mar 27, 2008Bam Labs, Inc.Method and apparatus for monitoring vital signs remotely
US20090192364 *Jan 29, 2008Jul 30, 2009Voto Andrew MInfant monitoring system
USRE28754 *May 16, 1975Mar 30, 1976William Beaumont HospitalBed egress alarm circuit
EP0853918A2Dec 22, 1997Jul 22, 1998Pegasus Airwave LimitedPatient movement detection
WO1991013575A1 *Mar 8, 1991Sep 10, 1991Legget & Platt IncClinical bed
Classifications
U.S. Classification600/535, 340/626, 340/573.1
International ClassificationA61B5/11, A61B5/113
Cooperative ClassificationA61B5/113
European ClassificationA61B5/113