US3728351A - Radioiodinated quinoline derivatives - Google Patents

Radioiodinated quinoline derivatives Download PDF

Info

Publication number
US3728351A
US3728351A US00733248A US3728351DA US3728351A US 3728351 A US3728351 A US 3728351A US 00733248 A US00733248 A US 00733248A US 3728351D A US3728351D A US 3728351DA US 3728351 A US3728351 A US 3728351A
Authority
US
United States
Prior art keywords
iodine
compounds
iodoquinoline
radioiodinated
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00733248A
Inventor
R Counsell
P Mehta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Michigan
Original Assignee
University of Michigan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Michigan filed Critical University of Michigan
Application granted granted Critical
Publication of US3728351A publication Critical patent/US3728351A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/22Oxygen atoms attached in position 2 or 4
    • C07D215/233Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/38Nitrogen atoms
    • C07D215/42Nitrogen atoms attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/38Nitrogen atoms
    • C07D215/42Nitrogen atoms attached in position 4
    • C07D215/46Nitrogen atoms attached in position 4 with hydrocarbon radicals, substituted by nitrogen atoms, attached to said nitrogen atoms

Definitions

  • Radioiodinated analogs of 4-substituted-7-iodoquinolines when administered parenterally or orally are selectively concentrated in animal tissues containing melanin and may be used for the detection and location of melanotic tumors as well as other abnormal growths.
  • the preferred quinoline compounds are 4- (dialkylaminoalkylamino)-7-iodoquinolines, such as for example 4-(3-dimethylaminopropylamino)-'7- iodoquinoline.
  • the radioiodinated compounds are prepared by isotope exchange between the natural iodinated compounds and radioactive alkali metal iodides.
  • the present invention relates broadly to the field of radioactive compositions and move particularly to radioiodinated analogs of 7iodoquinolines and to methods of preparing and using such analogs.
  • chloroquine and chloropromazine have a marked affinity for pigmented tissue containing melanin.
  • chloroquinolines have been prepared and tested as antimalarial drugs, few iodinated compounds of this kind have been described.
  • A. R. Surrey and H. F. Hammer J. Am. Chem. Soc., 68 ll3( 1946) reported the preparation of 4(4-diethylamino-lmethylbutylarnino )-7-iodoquinoline, but did not prepare this compound labeled with radioactive iodine or suggest any utility for such a compound.
  • iodine isotope I is an iodine isotope selected from iodine-123, iodine-I25, iodine-l3] or iodine-l32; and R is selected from alkylamino, dialkylamino, dialkylaminoalkylamino, alkoxy, hydroxyalkoxy, or dialkylaminoalkoxy groups and the acid addition I salts thereof. More particularly, the invention relates to compounds corresponding to the formulas:
  • iodine-123 where n is a number from O. to 5, and I is an iodine isotope selected from the group consisting of iodine- 123, iodine-125, iodine-131 and iodine-132 and the acid addition salts thereof.
  • the invention also comprises methods of preparing iodine-containing compounds of the kind described above which methods comprise reacting 4-chloro7- iodoquinoline, in which the iodine is preferably the stable non-radioactive isotope iodine127, with a compound having the formula RH where R is a radical as defined above.
  • This reaction is preferably carried out by heating the compounds at a temperature sufficient to effect replacement of the chlorine atom by the radical R-.
  • the resulting 4-substituted-7-iodoquinoline is isolated and, if desired, it can be purified and stored for later use in preparing pharmaceutically useful radioactive compounds.
  • the 4-substituted-7-iodoquinoline is interacted with a radioactive alkali metal iodide to effect isotope exchange and so introduce a diagnostically useful proportion of radioactive iodine in the said quinoline compound.
  • the isotope exchange may, for example, be carried out by dissolving the 4-substituted-7-iodoquinoline compound and the radioactive metal iodide in a suita v ble solvent and heating the solution at an'elevated temperature for a length of time sufficient to effect sub stantial interchange of iodine between the iodoquinoline compound and the radioactive iodide.
  • the invention further relates to pharmaceutical compositions comprising a compound of the kind described.
  • the iodine radioisotope is preferably one having a gamma-radiation energy of not more than 500 kev. I Y
  • the invention also relates to a method for detecting and locating melanotic tumors in living animals which comprises parenterally or orally administering a detectable dose of a radioactive compound of the kind described above and then subsequently scanning the animal by means of a conventional radiation scanning device to determine the loci and intensity of radiation mors in living animals comprise administering to the animal a detectable dose of a compound having quin oline as its nucleus to which is attached a radioisotope of iodine, the said radioisotope preferably having a gamma-radiation energy of not more than 500 kev., a1- lowing sufficient time for the said compound to be concentrated in any melanotic tumors present in said animal, and then scanning the animal by means of a conventional radiation scanning device for radioactive loci within the animal.
  • the organic radical R in the first formula shown above is an alkylamino or substituted-alkylamino group.
  • the substituent at the 4-position is an alkylamino group such as dimethylamino, diethylamino, dipropylamino, hexylamino, 4-methy1penty1amino, pentylamino, 4- methylbutylamino, butylamino, propylamino, 3- methylpropylamino, etc.
  • the substituent at the 4-position may be a substituted-alkylamino group such as a dialkylamino-substituted alkylamino group.
  • substituents 2- dimethylaminoethylamino, 3- dimethylaminopropylamino, 3- diethylaminopropylamino, 3-
  • dipropylaminopropylamino 4-dimethy1aminobutylamino, 5-dimethylaminopentylamino, and the like.
  • Such compounds may be prepared, for example, by reacting 4-chloro-7-iodoquinoline with an appropriate amine.
  • the 4-substituent may also be an alkoxy or substituted alkoxy group.
  • examples of such groups are ethoxy, hydroxyethoxy, propoxy, 3-dimethy1propxy, pentyloxy, 4-dimethylaminopentyloxy, 4- diethylaminopentyloxy, and the like.
  • Such 4-alkoxysubstituted compounds of the invention may be prepared, for example, by reacting 4-ch1oro-7- iodoquinoline with an appropriate alcohol or alkali metal alkoxide.
  • radionuclides with a gramma-radiation energy of less than 500 kev. are preferred.
  • isotopes are iodine-125 which has a half-lifeof 60 days and a radiation energy of 35 kev. and iodine-131 which has a half-life of 8 days and a radiation energy of'360 kev. While the synthesis and storage of compounds containing iodine-125 is simpler, for some purposes the higher radiation energy of iodine-131 may be necessary or desirable.
  • Other known radioisotopes of iodine, such as iodine-123 and iodine-132, are also useful and may even be advantageous for certain purposes.
  • the compounds of the present invention are preferably used in the form of one of their water-soluble acid addition salts.
  • Methods for preparing such salts are well known to those skilled in the art. In practice, saltswith hydrochloric acid have been found to be very satisfactory and are usually preferred, but the acid addition salts of other strong mineral acids such as hydrobromic acid, nitric acid, sulfuric acid, or strong organic acids such as glacial acetic acid are also useful.
  • A ethylcno glycol
  • 13 pivallc acid
  • C 3-dimethylamino-l-propan0l
  • D 4-methyl-1-pentan0l.
  • EXAMPLE 7 Preparation of Iodine-125 Analogs by Isotope for the specified time and allowed to cool. in the case of the compounds described in Examples 1 and 3, water was added and the product collected by filtration and washed well with water. For the compound described in Example 2, the solution was concentrated to approximately 0.5 ml. under reduced pressure, treated with water and ammonium hydroxide, and the precipitate collected as above.
  • EXAMPLE 8 4 to 5-week-old male, black mice of the BL6J strain were injected intraperitoneally with 10 microcuries of 4-(3-dimethylaminopropylamino)7-iodoquinoline containing iodine-125. The animals were sacrificed at 12, 24 and 48 hrs.
  • EXAMPLE 10 When 1 millicurie of 4 (3- dimethylaminopropylamino)-7-iodoquinoline containing iodine-125 was injected into a melanotic dog weighing lbs., concentration of the radioactive compound in the melanoma was similar to that observed in the Syrian hamsters described in Example 9.
  • an iodine isotope selected from the group consisting of iodine-l23, iodine-125, iodine-131 and iodine 132;
  • R is selected from the group consisting of alkyl having 1 to 6 carbons and dialkylamino-substituted alkyl having 1 to 6 carbons in each of the alkyls of the dialkyl group and 2 to 5 carbons in the other alkyl group, and the pharmaceutically acceptable acid addition salts thereof.
  • n is a number'from 1 to 5
  • l is an iodine isotope selected from the group consisting of iodine- 123, iodine-125, iodine-131 and iodine-132, and the pharmaceutically acceptable acid addition salts thereof.

Abstract

Radioiodinated analogs of 4-substituted-7-iodoquinolines when administered parenterally or orally are selectively concentrated in animal tissues containing melanin and may be used for the detection and location of melanotic tumors as well as other abnormal growths. The preferred quinoline compounds are 4(dialkylaminoalkylamino)-7-iodoquinolines, such as for example 4(3-dimethylaminopropylamino)-7-iodoquinoline. The radioiodinated compounds are prepared by isotope exchange between the natural iodinated compounds and radioactive alkali metal iodides.

Description

United States Patent 1191 Counsell et al.
[ 1 Apr. 17, 1973 1 RADIOIODINATED QUIINOLINE DERIVATIVES [73] Assignee: The Regents of the University of Michigan, Ann Arbor, Mich.
[22] Filed: May 31, 1968 [2]] App]. No.: 733,248
[52] US. Cl.... .....260/288 A, 260/279 R, 260/288 R, 260/289 R, 424/1, 424/258 [58] Field ofSearch..... ..260/288, 288 A, 694; 424/1 [56] References Cited UNITED STATES PATENTS 3,145,197 8/1964 Hoey ..260/5I8A 2,554,316 5/1951 Reid ..424/1x 2,911,338 11/1959 Tabem etal... ..424/1 3,339,072 8/1967 Edwards ....252/301.1x
2,233,970 3/1941 Andersagetal.... ..260/288 3,091,571 1 5/1963 Polinger .424/258 3,406,176 10/1968 Surrey et al. 260/288 X OTHER PUBLICATIONS Counsel] et al., Jour. Pharm. Sci., Vol. 56, p. 1,042-4 1967) Primary ExaminerDonald G. Daus Attorney-Lawrence S. Levinson, Merle J. Smith, Donald J. Perrella and Burton Rodney 5 7 ABSTRACT Radioiodinated analogs of 4-substituted-7-iodoquinolines when administered parenterally or orally are selectively concentrated in animal tissues containing melanin and may be used for the detection and location of melanotic tumors as well as other abnormal growths. The preferred quinoline compounds are 4- (dialkylaminoalkylamino)-7-iodoquinolines, such as for example 4-(3-dimethylaminopropylamino)-'7- iodoquinoline. The radioiodinated compounds are prepared by isotope exchange between the natural iodinated compounds and radioactive alkali metal iodides.
5 Claims, No Drawings RADIOIODINATED QUINOLINE DERIVATIVES BACKGROUND OF THE INVENTION l.-Field of the Invention The present invention relates broadly to the field of radioactive compositions and move particularly to radioiodinated analogs of 7iodoquinolines and to methods of preparing and using such analogs.
2. Description of the Prior Art The use of various compounds labeled with radioactive elements for diagnosis and radiotherapy of various pathological conditions, including malignant tumors, is well known. Compounds of this kind which could be used for the early detection and treatment of melanotic tumors have not heretofore been known, and the use of certain radioiodinated compounds for this purpose was first suggested by the present applicant in the Journal of Pharmaceutical Sciences, Volume56, No. 8, pages 1042-4044, Aug., 1967.
It has previously been noted that a number of quinoline, acridine, phenothiazine and other polycyclic drugs and dyes are rapidly absorbed by melanin whereas monocyclic compounds such as pyridine and hydroquinone as well as aliphatic compounds have no such affinity for the biopolymer.
It has also been noted that certain drugs such as chloroquine and chloropromazine have a marked affinity for pigmented tissue containing melanin. I While many chloroquinolines have been prepared and tested as antimalarial drugs, few iodinated compounds of this kind have been described. A. R. Surrey and H. F. Hammer (J. Am. Chem. Soc., 68 ll3( 1946)) reported the preparation of 4(4-diethylamino-lmethylbutylarnino )-7-iodoquinoline, but did not prepare this compound labeled with radioactive iodine or suggest any utility for such a compound.
SUMMARY OF THE INVENTION derivatives corresponding to theforinula:
enriched in an iodine isotope I is an iodine isotope selected from iodine-123, iodine-I25, iodine-l3] or iodine-l32; and R is selected from alkylamino, dialkylamino, dialkylaminoalkylamino, alkoxy, hydroxyalkoxy, or dialkylaminoalkoxy groups and the acid addition I salts thereof. More particularly, the invention relates to compounds corresponding to the formulas:
iodine-123 where n is a number from O. to 5, and I is an iodine isotope selected from the group consisting of iodine- 123, iodine-125, iodine-131 and iodine-132 and the acid addition salts thereof.
The invention also comprises methods of preparing iodine-containing compounds of the kind described above which methods comprise reacting 4-chloro7- iodoquinoline, in which the iodine is preferably the stable non-radioactive isotope iodine127, with a compound having the formula RH where R is a radical as defined above. This reaction is preferably carried out by heating the compounds at a temperature sufficient to effect replacement of the chlorine atom by the radical R-. The resulting 4-substituted-7-iodoquinoline is isolated and, if desired, it can be purified and stored for later use in preparing pharmaceutically useful radioactive compounds. To prepare such radioactive compounds, the 4-substituted-7-iodoquinoline is interacted with a radioactive alkali metal iodide to effect isotope exchange and so introduce a diagnostically useful proportion of radioactive iodine in the said quinoline compound. The isotope exchange may, for example, be carried out by dissolving the 4-substituted-7-iodoquinoline compound and the radioactive metal iodide in a suita v ble solvent and heating the solution at an'elevated temperature for a length of time sufficient to effect sub stantial interchange of iodine between the iodoquinoline compound and the radioactive iodide.
The invention further relates to pharmaceutical compositions comprising a compound of the kind described.
above in which the iodine is a radioactive isotope, and said compound being dissolved-in a pharmaceutically acceptable solvent. The iodine radioisotope is preferably one having a gamma-radiation energy of not more than 500 kev. I Y
The invention also relates to a method for detecting and locating melanotic tumors in living animals which comprises parenterally or orally administering a detectable dose of a radioactive compound of the kind described above and then subsequently scanning the animal by means of a conventional radiation scanning device to determine the loci and intensity of radiation mors in living animals comprise administering to the animal a detectable dose of a compound having quin oline as its nucleus to which is attached a radioisotope of iodine, the said radioisotope preferably having a gamma-radiation energy of not more than 500 kev., a1- lowing sufficient time for the said compound to be concentrated in any melanotic tumors present in said animal, and then scanning the animal by means of a conventional radiation scanning device for radioactive loci within the animal.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Among the preferred compounds of this invention are those in which the organic radical R in the first formula shown above is an alkylamino or substituted-alkylamino group. As examples of such compounds may be mentioned: 7-iodoquinoline compounds in which the substituent at the 4-position is an alkylamino group such as dimethylamino, diethylamino, dipropylamino, hexylamino, 4-methy1penty1amino, pentylamino, 4- methylbutylamino, butylamino, propylamino, 3- methylpropylamino, etc. Likewise the substituent at the 4-position may be a substituted-alkylamino group such as a dialkylamino-substituted alkylamino group.
Examples of such substituents are 2- dimethylaminoethylamino, 3- dimethylaminopropylamino, 3- diethylaminopropylamino, 3-
dipropylaminopropylamino, 4-dimethy1aminobutylamino, 5-dimethylaminopentylamino, and the like. Such compounds may be prepared, for example, by reacting 4-chloro-7-iodoquinoline with an appropriate amine.
The 4-substituent may also be an alkoxy or substituted alkoxy group. Examples of such groups are ethoxy, hydroxyethoxy, propoxy, 3-dimethy1propxy, pentyloxy, 4-dimethylaminopentyloxy, 4- diethylaminopentyloxy, and the like. Such 4-alkoxysubstituted compounds of the invention may be prepared, for example, by reacting 4-ch1oro-7- iodoquinoline with an appropriate alcohol or alkali metal alkoxide.
For diagnostic purposes radionuclides with a gramma-radiation energy of less than 500 kev. are preferred. Examples of such isotopes are iodine-125 which has a half-lifeof 60 days and a radiation energy of 35 kev. and iodine-131 which has a half-life of 8 days and a radiation energy of'360 kev. While the synthesis and storage of compounds containing iodine-125 is simpler, for some purposes the higher radiation energy of iodine-131 may be necessary or desirable. Other known radioisotopes of iodine, such as iodine-123 and iodine-132, are also useful and may even be advantageous for certain purposes.
The compounds of the present invention are preferably used in the form of one of their water-soluble acid addition salts. Methods for preparing such salts are well known to those skilled in the art. In practice, saltswith hydrochloric acid have been found to be very satisfactory and are usually preferred, but the acid addition salts of other strong mineral acids such as hydrobromic acid, nitric acid, sulfuric acid, or strong organic acids such as glacial acetic acid are also useful.
The following examples illustrate the invention.
EXAMPLE 1 Preparation of 4-(3-Dimethylaminopropylamino)-7- iodoquinoline A solution of 4-ch1oro'7-iodoquinoline (2.5 g.) in 3- dimethyaminopropylamine (10 ml.) was heated at the reflux temperature for up to 23 hrs. The excess amine was removed by distillation under reduced pressure and the residual oil dissolved in a minimum of acetone. NH OH was added and the resulting yellow precipitate was collected by filtration and washed with water. Several .recrystallizations from acetone afforded pale yellow needles (2 g., 65 percent) of the desired product, mp 101-103, nmr peaks at 7.64 (NCH 7.43 (CH N), (triplet, J 6 cps.) and 6.67 ppm (CH NH, multiplet). The latter became a triplet upon deuteration (J 6 cps.) The IR spectra was as expected. Anal. (C H IN calcd. C 43.21, H 4.14; found C 43.34, H 4.11. Acute toxicity tests in mice gave an LD value of 58 mg./kg. with confidence limits of 49.6 to 67.9 mg./1 g.
EXAMPLE 2 Preparation of 4-(4-Methy1pentylamino)-7-iodoquinoline A solution of 4-ch1oro-7-iodo'quino1ine (2 g.) in 4- methylpentylamine (4 ml.) was heated under reflux for 23 hrs. and the excess of solvent evaporated under reduced pressure. Addition of acetone to the residue gave a solid hydrochloride (1.75 g.), mp 168173 and V 2,700 cm (NW-I). Recrystallization from EtOHMe CO gave an analytical sample, mp 183-4. The motor liquors afforded a second fraction (0.35 g.), mp 130-135, which upon recystallization from ethyl alcohol-water gave the desired base in pure form, mp 1445. Treatment of an ethyl alcohol solution of the HCl salt gave the same free base. Anal. (C H IN Ca1c.C 50.88, H 5.41; found C 50.74, H 5.32. The IR and nmr spectra were as expected. 7
EXAMPLE 3 Preparation of iodoquinoline A mixture of 3-dimethylamino-l-propanol (1.45 g., 0014M) and sodamide (0.67 g., 0.017M) in dry toluene 15 ml.) was heated under reflux until the evolution of ammonia ceased (about 3 hrs.). The grey suspension was cooled and a solution of 4-chloro-7- iodoquinoline (1 g., 0.0034M) in toluene (5 m1.) added dropwise with stirring. The reaction mixture was heated under reflux for 18 hrs. On cooling, water was added to dissolve the solid material, and the toluene phase was separated, dried over sodium sulfate, and evaporated to leave a pale brown oil which solidified upon addition of petroleum ether (bp, 30-40). The white solid (0.7 g., 57 percent) mp 90, was recrystallized from acetone to give an analytical sample, mp 934, V,,,,,,1180 cm- (COC), and nmr peaks at 2.29 (NMe 2.50 (triplet, J 6 cps., NCH' and 4.23 ppm (triplet, J 6 cps., -OCH Anal. (C H IN O) Calcd. C 47.22, H 4.81; found C 47.37, H 4.80.
4-(3-Dimethylaminopropoxy)-7- EXAMPLE 4.
Preparation of 4-(4-Methylpentyloxy)-7-i0doquino1ine 'A solution of 4-chloro-7-iodoquinoline (3.1 g.) in toluene (5 ml.) was added dropwise with stirring to a previously heated mixture of 4-methyl-l-pentanol (4.4 g.) and sodamide (2.1 g.) in toluene ml). The reacdescribed in Example 4, the solvent was removed in vacuo, the residue treated with water containing a little acetone, and the precipitate collected. In all cases, the products were purified by recrystallization and the pution was carried out as in Example 3 and afforded a -rity established by (a) TLC and a radiochromatogram white solid (2.45 g.)-, mp 8588. Recrystallization of .the strip and b) admixture melting point with from hexane gave the desired compound in pure form, authentic samples. Further details of the individual mp 97-9, V at 1,115 cm" (CO-C) and nmr preparations are given in Table l.
TABLE I Percent Bath Reaction Rccrystalliza- Spec. act Compound Solvent temp. time (hr.) tionsolvunt Recovery Exchange (L/mg Examplol A 170-5 10 MezCO-HzU 53 50.0 5.00 Example 2.-
11 1005 48 EtOlI-lIzO 15 40 14.5 Example 3. 0 205-10 24 MczCO-HaO 55 2.5 0.51 Examplo D 175-150 48 EtOHHz0 7 4.8 1. 44
l A=ethylcno glycol, 13 =pivallc acid, C =3-dimethylamino-l-propan0l, D=4-methyl-1-pentan0l.
peaks at 9.94 [doublet, J 6 cps, C-(Cl-l and 4.15 ppm. (triplet, J 6.5 cps, -OCH Anal. (C H l NO) Calcd. C 50.72, H 5.1 l;found C 50.80, H 4.98.
EXAMPLE 5 Preparation of 4-Dimethylamino-7-iodoquinoline Dimethylamine gas was bubbled through an icecooled solution of 4-chloro-7-iodoquinoline (2 g.) in
toluene ml.) and methylethyl ketone (10 ml.) for 3 hours in a pressure bottle. The bottle was tightly stoppered and placed in an oven at 50C. for 10 days. The
- mixture was cooled and washed with water. The organic phase was dried over sodium sulfate and the solvent removed in vacuo. Recrystallization of the solid residue gave the desired compound in pure form (1.1 g.) mp l078, and an nmr peak at 2.99 ppm.
-(NCl-l Anal. c n m Calcd. c 44.32, H 3.72; foundC44.42,H3.59.
EXAMPLE 6 Preparation of 4-Hydroxyethoxy-7-iodoquinoline A solution of the compound described in Example 5 (100 mg.) in ethylene glycol (1.5 ml.) was heated in an oil bath at 185.for 16 hours, cooled, and diluted with water. The precipitate (70 mg.), mp l53-5, was
' recrystallized from acetone-water to give the desired product in pure form, mp 1545. The IR and nmr spectra were as expected. Anal. (C H lNO Calcd. C 41.94, H 3.20; found C 42.03, H 3.25.
EXAMPLE 7 Preparation of Iodine-125 Analogs by Isotope for the specified time and allowed to cool. in the case of the compounds described in Examples 1 and 3, water was added and the product collected by filtration and washed well with water. For the compound described in Example 2, the solution was concentrated to approximately 0.5 ml. under reduced pressure, treated with water and ammonium hydroxide, and the precipitate collected as above. For the compound EXAMPLE 8 4 to 5-week-old male, black mice of the BL6J strain were injected intraperitoneally with 10 microcuries of 4-(3-dimethylaminopropylamino)7-iodoquinoline containing iodine-125. The animals were sacrificed at 12, 24 and 48 hrs. Control mice were injected via the same route with 10 microcuries of sodium iodide-125 and sacrificed at the same time intervals. Counting was done in a commercial well counter. This radioiodinated quinoline compound showed the same marked affinity for melanin and slow release from pigmented tissues that had earlier been observed in rats and mice using chloroquine labeled with carbon-l4. Moreover, the low thyroid activity observed for the animals receiving the radioiodinated quinoline compound versus those given the sodium radioiodide, indicates that significant diodination did not occur.
EXAMPLE 9 4-(3-Dimethylaminopropylamino)-7-iodoquinoline containing iodine-125 was injected into Syrian hamsters with malignant melanomas at a dosage of microcuries per animal. Excellentvisualization of the melanotic tumor was obtained within 4 days. The concentration of iodine- 111 the tumor was approximate ly 10 times its concentration in other tissues. lts concentration in the melanoma remained constant or increased for about 5 days following the injection while concentrations in all other tissues fell rapidly during the first 3 days. There was no evidence of uptake by the thyroid. Since a portion of the injected material is excreted in the bile, the scans were also made several (35) days after the injection to allow time for the material to be eliminated from the bowels,'spleen and liver.
EXAMPLE 10 When 1 millicurie of 4 (3- dimethylaminopropylamino)-7-iodoquinoline containing iodine-125 was injected into a melanotic dog weighing lbs., concentration of the radioactive compound in the melanoma was similar to that observed in the Syrian hamsters described in Example 9.
From the preceding it is evident that the usefulness of the compounds of this invention resides in their selective concentration in melanotic tissues. It should also be noted that the utility of these compounds is not necessarily limited to the detection of melanomas, for
- nary sense are of minor significance compared with radiation dosages and toxicity.
In view of the above, it will be seen that the several objects of the-invention are achieved and other advantageous results attained.
As, various changes could be made in the above methods and products without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
What is claimed is:
l. A compound having the formula:
enriched in an iodine isotope selected from the group consisting of iodine-l23, iodine-125, iodine-131 and iodine 132;
R is selected from the group consisting of H and alkyl having 1 to 6 carbons;
R is selected from the group consisting of alkyl having 1 to 6 carbons and dialkylamino-substituted alkyl having 1 to 6 carbons in each of the alkyls of the dialkyl group and 2 to 5 carbons in the other alkyl group, and the pharmaceutically acceptable acid addition salts thereof.
2; A compound. having the formula:
where n is a number'from 1 to 5, and l is an iodine isotope selected from the group consisting of iodine- 123, iodine-125, iodine-131 and iodine-132, and the pharmaceutically acceptable acid addition salts thereof.
3. A compound according to claim 2 in which n is 3.
4. A compound according to claim l'in which R is hydrogen and R is the radical 4-methylpentyl.
5. A compound according to claim 1 in which both R, and R are methyl radicals.

Claims (4)

  1. 2. A compound having the formula:
  2. 3. A compound according to claim 2 in which n is 3.
  3. 4. A compound according to claim 1 in which R1 is hydrogen and R2 is the radical 4-methylpentyl.
  4. 5. A compound according to claim 1 in which both R1 and R2 are methyl radicals.
US00733248A 1968-05-31 1968-05-31 Radioiodinated quinoline derivatives Expired - Lifetime US3728351A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US73324868A 1968-05-31 1968-05-31

Publications (1)

Publication Number Publication Date
US3728351A true US3728351A (en) 1973-04-17

Family

ID=24946829

Family Applications (1)

Application Number Title Priority Date Filing Date
US00733248A Expired - Lifetime US3728351A (en) 1968-05-31 1968-05-31 Radioiodinated quinoline derivatives

Country Status (1)

Country Link
US (1) US3728351A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2209584A1 (en) * 1972-12-08 1974-07-05 Schering Ag
US4017596A (en) * 1975-03-03 1977-04-12 Research Corporation Radiopharmaceutical chelates and method of external imaging
US4335095A (en) * 1979-03-21 1982-06-15 The Radiochemical Centre Limited Indium-111 oxine complex composition
USRE31463E (en) * 1975-03-03 1983-12-13 Research Corporation Radiopharmaceutical chelates and method of external imaging
WO1987006138A1 (en) * 1986-04-11 1987-10-22 President And Fellows Of Harvard College Dihydrorhodamines and halogenated derivatives thereof
US5372813A (en) * 1992-12-22 1994-12-13 The Regents, University Of California Substituted 6-nitroquipazines, methods of preparation, and methods of use
US20050282253A1 (en) * 1995-10-23 2005-12-22 Folkman M J Therapeutic antiangiogenic endostatin compositions

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2233970A (en) * 1941-03-04 Quinoline compound and process of
US2554316A (en) * 1945-05-01 1951-05-22 Allen F Reid Production of radioactive halogens
US2911338A (en) * 1954-03-09 1959-11-03 Abbott Lab Capsules and method of producing
US3091571A (en) * 1960-09-30 1963-05-28 Burroughs Wellcome Co Epidemiological antimalarial preparation and method of its formation
US3145197A (en) * 1961-06-26 1964-08-18 Mallinckrodt Chemical Works 5-acetamido-nu-alkyl-2, 4, 6-trhodoiso-phthalamic acid compounds
US3339072A (en) * 1962-06-14 1967-08-29 Nuclear Science And Engineerin Method of tracing iodine using i-129
US3406176A (en) * 1964-08-24 1968-10-15 Sterling Drug Inc 7-halo-4-carbamylimino-1, 4-dihydroquinolines

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2233970A (en) * 1941-03-04 Quinoline compound and process of
US2554316A (en) * 1945-05-01 1951-05-22 Allen F Reid Production of radioactive halogens
US2911338A (en) * 1954-03-09 1959-11-03 Abbott Lab Capsules and method of producing
US3091571A (en) * 1960-09-30 1963-05-28 Burroughs Wellcome Co Epidemiological antimalarial preparation and method of its formation
US3145197A (en) * 1961-06-26 1964-08-18 Mallinckrodt Chemical Works 5-acetamido-nu-alkyl-2, 4, 6-trhodoiso-phthalamic acid compounds
US3339072A (en) * 1962-06-14 1967-08-29 Nuclear Science And Engineerin Method of tracing iodine using i-129
US3406176A (en) * 1964-08-24 1968-10-15 Sterling Drug Inc 7-halo-4-carbamylimino-1, 4-dihydroquinolines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Counsell et al., Jour. Pharm. Sci., Vol. 56, p. 1,042 4 (1967) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2209584A1 (en) * 1972-12-08 1974-07-05 Schering Ag
US4017596A (en) * 1975-03-03 1977-04-12 Research Corporation Radiopharmaceutical chelates and method of external imaging
USRE31463E (en) * 1975-03-03 1983-12-13 Research Corporation Radiopharmaceutical chelates and method of external imaging
US4335095A (en) * 1979-03-21 1982-06-15 The Radiochemical Centre Limited Indium-111 oxine complex composition
WO1987006138A1 (en) * 1986-04-11 1987-10-22 President And Fellows Of Harvard College Dihydrorhodamines and halogenated derivatives thereof
US5372813A (en) * 1992-12-22 1994-12-13 The Regents, University Of California Substituted 6-nitroquipazines, methods of preparation, and methods of use
US20050282253A1 (en) * 1995-10-23 2005-12-22 Folkman M J Therapeutic antiangiogenic endostatin compositions
US7495089B2 (en) 1995-10-23 2009-02-24 The Children's Medical Center Corporation Therapeutic antiangiogenic endostatin compositions
US20090137518A1 (en) * 1995-10-23 2009-05-28 The Children's Medical Center Corporation Therapeutic Antiangiogenic Endostatin Compositions
US7867975B2 (en) 1995-10-23 2011-01-11 The Children's Medical Center Corporation Therapeutic antiangiogenic endostatin compositions

Similar Documents

Publication Publication Date Title
Sundberg et al. Selective binding of metal ions to macromolecules using bifunctional analogs of EDTA
US4959356A (en) Porphyrins for boron neutron capture therapy
US5624901A (en) 3-hydroxy-2(1H)-pyridinone chelating agents
US5609849A (en) Serotonin (5-HT1A) receptor ligands and imaging agents
EP0381713B1 (en) Diaminedithiol chelating agents for radiopharmaceuticals
JP2877844B2 (en) Macrocyclic polyaza-compounds having 5- or 6-membered rings, process for their preparation, and NMR-, X-ray, radiation-diagnosis and radioactivity- and radiation-therapeutic agents containing them and processes for the preparation of these agents
JPS6393758A (en) Novel complex compound, manufacture and diagnostic agent
JPH02504269A (en) Aminopolycarboxylic acids and their derivatives
JPH062740B2 (en) Pharmaceutical composition
JPH02160795A (en) Technetium-99m complex-forming kit
EP0213945B1 (en) Carboxy, carboalkoxy and carbamyl substituted isonitrile radionuclide complexes
US5104865A (en) Iron complexes of hydroxypyridones useful for treating iron overload
JP2633944B2 (en) Method for producing complex compound
JPH04506955A (en) Nitrogen-containing macrocyclic ligands and their metal complexes
US3728351A (en) Radioiodinated quinoline derivatives
JPS6323873A (en) Benzhydryloxyethylpiperazine derivative, manufacture and drug composition
US5281578A (en) Gallium compounds
AU702169B2 (en) Diagnostic agent for hypoxia or mitochondrial dysfunction
Braun et al. Synthesis and body distribution of several iodine-131-labeled central nervous system active drugs
CA2134338A1 (en) Azavesamicols
Counsell et al. Tumor localizing agents. VII. Radioiodinated quinoline derivatives
US5349063A (en) Pancreatic imaging agents
Counsell et al. Potential organ-or tumor-imaging agents. 14. Myocardial scanning agents
US4872561A (en) Carboxy, carboalkoxy and carbamile substituted isonitrile radionuclide complexes
US4139621A (en) N-(4-substituted-3,5-dichloro-phenyl)-piperazines