Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3728521 A
Publication typeGrant
Publication dateApr 17, 1973
Filing dateSep 29, 1970
Priority dateSep 29, 1970
Also published asCA940899A1, DE2148540A1
Publication numberUS 3728521 A, US 3728521A, US-A-3728521, US3728521 A, US3728521A
InventorsH Brough, D Pontarelli
Original AssigneeBliss & Laughlin Ind
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Encoded card employing fiber optic elements
US 3728521 A
Abstract
An encoded card having a layer of light-transmitting elements such as fibers extending between two edges, the fibers being individually capable of transmitting magnetic radiant energy, in the visible, ultraviolet or infrared spectral regions.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United Stat Borough et a].

[ Apr. 17, 1973 ENCODED CARD EMPLOYING FIBER OPTIC ELEMENTS [75] Inventors: Howard C. Borough, Seattle, Wash.;

Donald A. Pontarelli, Chicago, 111.

[73] Assignee: Bliss & Laughlin Industries, Incorporated, Oak Brook, [11.

[22] Filed: Sept. 29, 1970 [2]] Appl. N0.: 76,523

[52] US. Cl...235/6l.l2 N, 235/6l.1l E, 250/219 D, 250/227, 350/96 B [51] Int. Cl. ..G06b 5/16, G06k 7/10, G06k 19/06 UNlTED STATES PATENTS 3,241,986 3/1966 Jerger ..350/96 B 3,335,265 8/1967 Apfelbaum ct a1.. .....235/6l.1 E 3,470,359 9/1969 Esterly ..235/6l.12 R

Primary Examiner-Maynard R. Wilbur Assistant Examiner-Thomas J1 Sloyan Attorney-Davis, Lucas, Brewer & Brugman [5 7 ABSTRACT An encoded card having a layer of light-transmitting elements such as fibers extending between two edges, the fibers being individually capable of transmitting magnetic radiant energy, in the visible, ultraviolet or infrared spectral regions.

The ends of the energy-transmitting fibers along at least one edge of the card are irregularly arranged in a linear information-related pattern which is decoded into discrete information such as numbers, letters or words by transmitting electromagnetic radiation, such as visible or invisible light through the fibers and sensing and decoding the transmitted pattern. The card is encoded either by selectively placing the fibers; or by cutting, removing, or otherwise impairing the energy-transmitting ability of selected fibers.

8 Claims, 15 Drawing Figures 70 READ-OUT 2,177,077 l0/1939 Potts ..235/61.l1 E

2,939,016 5/1960 Cannon ..250/219 D 3,101,411 8/1963 Richards... .....350/96 B 3,125,812 3/1964 Simpson ..350/96 B 3,163,758 12/1964 Treacy ..235/6Lll E a. QR

ENCODED CARD EMPLOYING FIBER OPTIC ELEMENTS BACKGROUND OF THE INVENTION Encoded cards such as conventional credit cards, identification cards, parking lot passes, and railway commuter tickets, store information by means of embossing, magnetic ink records, printed data, and punched holes. Embossed and punched cards are decoded by mechanical feelers and electrical styli, which limit card life. Magnetic ink and printed data can be removed or mutilated. All such cards have been successfully counterfeited.

There is a need for a encoded card which can be decoded without physical contact, which is not easily mutilated, and which is very difficult to counterfeit.

BRIEF SUMMARY OF THE INVENTION The general object of this invention is to provide an encoded card capable of transmitting energy such as electromagnetic radiation in the visible, ultraviolet or infrared spectral region, from one edge to another where it appears in a decodable pattern.

A specific object of this invention is to provide an encoded card such as a credit or identification card having a series of light-transmitting fibers extending from one edge to another and arranged to contain information which can be read by transmitting light edgewise through the card and decoding the resulting pattern of lighted and unlighted areas.

Another object is to provide a fiber optics card having a plurality of light-transmitting fibers extending from one edge to another and which has been encoded by selective placement of the fibers, or by selective impairment of the light-transmitting ability of certain of the fibers, to conduct light from one edge to the other in an intelligent, decodable pattern.

Another object is to provide an encoded fiber optics card which can be decoded without contact and which is very difficult to counterfeit.

Other objects and advantages will be apparent from the following description in connection with the drawings in which:

FIG. 1 is a perspective view of an encoded fiber optics card illustrating a preferred form of the invention;

FIG. 2 is a view similar to FIG. 1, showing a card in which the light-transmitting ability of certain fibers has been impaired or modified in several alternate ways;

FIG. 3 is a view similar to FIG. 1, illustrating a card encoded by arranging individual light-transmitting fibers in unique patterns as a result of the selective placement or removal of entire fibers;

FIG. 4 is a fragmentary edge view of an encoded card with light-transmitting fibers arranged in groups displaying binary numbered information;

FIG. 5 is a fragmentary edge view of FIG. l, in which an individual light-transmitting fiber is shown as a monofilament rod, or light pipe;

FIG. 5A is an exploded view of FIG. 5, before lamination;

FIG. 6 is similar to FIG. 5, in which the light-transmitting fiber comprises multiple small-diameter lighttransmitting filaments;

FIG. 7 is a fragmentary cross-section of a laminated fiber optics card having a light-transmitting fiber core sheet between sheets of non-transmitting material, en-

coded by punching out a section of the fiber core sheet;

FIG. 8 is a cross-section of FIG. 7, taken along the line 8-8, showing in plan view the punched-out portion of the fiber core sheet;

FIG. 9 is a fragmentary edge view of the card taken along the line 9-9 of FIG. 8 and showing the light and dark pattern which would be transmitted edgewise through the card where the energy transmitted is visible light;

FIG. 10 is a perspective, schematic view of the card of FIG. I, placed in one form of reader;

FIG. 10A is a schematic plan view of a modified form of encoded card, in a reader similar to that shown in FIG. 10;

FIG. 10B is another modified form of card;

FIG. 1 l is a perspective schematic view of the card of FIG. 1, in a movable reader; and

FIG. 12 is a perspective view of a laminated form of fiber optics card employing multiple layers of coded light-transmitting fibers.

Like parts are referred to by like reference characters throughout the drawings.

Depending on the material from which the energytransmitting fibers are made, an encoded card in accordance with this invention can be read by a decoder using visible light, or invisible light in the ultraviolet or infrared spectral ranges. This specific disclosure will be limited to visible light-transmitting fibers.

For the light-transmitting fibers to function with light in the visible spectral region (wave lengths of 4,000 7,000 Angstrom Units), the fibers will be made of glass, or plastics such as polymerized methyl methacrylate LUCITE") or polystyrene. As is usual practice, each such fiber will preferably, but not necessarily, have a lower-refractive-index cladding of glass or plastics. Optical fibers are cladded to maximize light transmission and minimize crosstalk between fibers. The cladding must be compatible with the fiber core, particularly with respect to expansion coefficients, and must show no deterioration with use or age.

For the light-transmitting fibers to function with invisible light in the ultraviolet spectral region (wave lengths below 4,000 Angstrom Units), the fibers may be quartz with an appropriate cladding. One particular grade of quartz, produced under the trade name, SUPRASIL," by Englehard Industries Inc., Newark, NJ can be fabricated into fibers usable in the present invention. It transmits visible light and ultraviolet light to wave lengths of 1,840 Angstrom Units. Especially good cladding materials for quartz are MgF LiF, CaF, and a liquid preparation known in the trade as Type 176-C-l98 SUPERTHER Coat manufactured by the Standard T Chemical Co., of New York City, N.Y.

For the light-transmitting fibers to function with invisible light in the infrared spectral region (wave lengths above 7,000 Angstrom Units), the fibers may be quartz, as described above, which transmits to varying degrees in both infrared and ultraviolet regions, as well as the visible region. Two types of glasses, metallic oxide and nonoxide, are used for infrared fiber optics. The oxide glasses transmit most of the visible spectrum, whereas most of the nonoxide glasses do not. Glasses of the metallic oxide types which are used extensively for infrared transmission are commonly known in the trade as Types [R442 and DBF6I, the cladding for these glasses being soda lime tubing. Fibers made from these glasses, and with this cladding, having useful transmission at wave lengths from 4,000 to 50,000 Angstrom Units. Hollow metal wire fibers, preferably highly polished or plated internally, may be used to transmit infrared radiation. I

By using suitable optical filters on the card to filter out visible light, the card can be read only in a special decoder with a particular range of wave lengths of ultraviolet or infrared radiation.

Any counterfeit card not identically filtered would be rejected by such a special decoder.

The encoded cards described in connection with the drawings are all examples which transmit visible light through optical fibers. It should be understood that encoded cards employing the invention may function with ultraviolet or infrared light conductive fiber materials such as metal wire.

The embodiments disclosed in the drawings will now be described.

The card shown in FIG. 1 is a fiat sheet comprising a body 20 having long edges 22, 24 and short edges 26, 28. The body has a plurality of parallel light-transmitting fibers 30. The body is preferably tough plastics material having a substantially lower light-transmitting ability than the fibers 30. It may be opaque or colored to contrast with the fibers. Each fiber 30 is of optical material and may be a monofilament element such as a single glass or plastics filament, rod or pipe as shown in FIG. 5. Or, each fiber may be a bundle 34 of multifilament optical elements 38 as shown in FIG. 6.

In the embodiment of FIGS. 7 and 8, a continuous sheet 36 of small-diameter light-transmitting filaments 40 may be used, with portions removed at locations such as 42, to impair the transmission of light from one edge of the card to the other. This produces a light and dark pattern as shown in FIG. 9. The light-transmitting fibers are the continuous (uncut) bundles of small filaments 40.

The card may be manufactured by any suitable laminating process. This is not part of the present invention so will not be described in detail. Briefly, and referring to FIG. A,. asheet 44 having light-transmitting fibers 30 in a body or matrix 46. may be laminated by conventional hot pressure or adhesive techniques between cover sheets 48 and 50. The cover sheets and the matrix 46 may be of the same plastics v mitting fibers 30. This is merely by way of illustration and not by way of limitation because in actual practice each card may have from 10 to 600 fibers, each comprising a separately readable information channel.

' Light-transmitting fibers may have a wide variety of sizes and shapes. Fibers varying from 0.003" to 0.010" in thickness provide a practical compromise between the maximum number of fibers per inch and the maximum light-transmission per fiber. For fuller explanation of the manner in which light is transmitted by optical fibers from point to point, refer to FIBER OP- TICS, PRINCIPLES AND APPLICATIONS by N. S. Kapany, 1967 Edition, published by Academic Press, New York City, N.Y.

tinuous by coding). The card is encoded by individually I I cutting, darkening, partially removing, or otherwise impairing the light-transmitting ability of selected fibers. In FIG. 1, 52 indicates a fiber which is continuous and capable of transmitting light from one edge of the card to the other; 54 is a fiber which is discontinuous in the area 56 and therefore incapable of transmitting full intensity light. This area 56, as well as area 42 in FIG. 7, may be filled with opaque material if desired to completely block light transmission for maximum contrast.

Various ways of modifying, impairing or blocking the light-transmitting ability of selected fibers are shown in card 58 (FIG. 2). Fiber 60 is cut, with the cut ends transversely displaced. A portion of fiber 62 is darkened or made opaque by localized heat or radiation, for which purpose a special heator radiation-sensitive material may be incorporated in the fiber. Fiber 64 is cut or pinched by heat or pressure to reduce its effective cross-section. Fiber 66 has'an entire section cut and removed similar to the section 56 in FIG. 1.

In FIG. 3, a card 68 has eight light-transmitting fibers 70 spaced in a predetermined pattern. Such a card, manufactured in this manner initially, would be difficult to counterfeit. '3

Cards are decoded by'illuminating one edge, sensing the lighted and unlighted fiber ends along another edge with a photo-sensor, and sending the output signal to a decoder and a visual readout, or to a computer through a proper'interface. Visual readout has the advantageof low cost and size and could be put in small scale operations, such as gasoline stations and small stores. Sending the signal to a central computer allows checking against hot card lists, and central data banks. I I

A fiber optics card according to this invention may be read while stationary; or when either the card or reader is moved relative to the'other. e I A stationary reading apparatus is shown in FIGI IO where a 19-fiber card 72 is placed between a light source 74 and a photo-sensor reader 76. Card '72 is similar to card 20 except that light transmission in four specific fibers hasbeen impaired. Normally, the light source and reader will be close to-the card, but in FIG; 10 are slightly withdrawn to clarify the illustration. v

The light source 74 comprises 19 fiber optics rods or light pipes 78, each having an end aligned with one of the card fibers 30. At the other end of each light pipe 78 is a high-intensity miniature lamp 82. Alternatively, the entire light source 74 may-be a single elongated, high-intensity lamp (not shown).

The reader 73 has nineteen photo detectors 7.9 aligned with the ends 80 of light pipes 78 and with card fibers 30. Conventional circuitry (not shown) identifies each information-related linear pattern'of lighted and unlighted fibers 30 along the edge of the card and places a signal in output line 92 (or a plurality of lines 92) to identify the numbers, letters orother information represented by such encoded pattern. This information is used or displayed in a conventional readout and therefore not specifically shown.

Counting from the left to right in FIG. 10, light transmission through the third, ninth, 13th and 15th fibers 30 in card 72 is impaired by cutouts 84, 86, 88 and 90. The pattern of lighted and unlighted fiber ends which the reader 76 sees will be unique for each differently coded card.

If fibers 30 are of small cross-section, 0.003 inch or less, the reader circuit may require amplification to bring the signal in line 92 up to a usable value.

FIG. A shows a modified card 81 in which fibers 83 extend in non-parallel, random arrangement between the input edge 85 and the output edge 87. Among the applications for this arrangement is a railroad commuter monthly pass system in which the light source and reader could be reprogrammed several times during the month, daily if necessary, to verify bona fide cards and reject expired and counterfeit cards. For example, and counting from left to right in FIG. 10A, the light source 74 could be programmed by illuminating only the first, third, seventh and llth lamps, at the same time, the reader 76 could be programmed to verify the card only if it senses the third, fourth, ninth and l5th lighted fiber ends while all other positions are unlighted. The light source and reader could be reprogrammed, if necessary, to verify other combinations of fibers in the same card.

FIG. 108 shows another modified card 224 in which the input and output ends of fibers 226 and 228 (which may be in the same or separate levels) are in non-opposed edges of the card. The fibers may be encoded by selectively impairing or darkening them.

Reading apparatus 94 in which the card 72 is scanned upon relative movement between the card and a scanner is shown in FIG. 11. For comparison with FIG. 10, the same card 72 is shown. Whether the card moves or the reader moves is of no significance as long as there is relative movement. A suitable reader is shown here merely as one example. This will now be described in detail.

Card 72 in FIG. 11 is held stationary by a support not shown. A scanning reader 96 has a generally U-shaped housing and moves (by means not shown) from left to right in the direction of arrow 98, along the card. The housing end portion 100 has a miniature high-intensity lamp 102 energized through a conductor 104. A photo detector 106 is mounted in the opposite housing portion 108, aligned with the lamp 102; it will place an electrical signal or pulse in an output conductor 110 when a clear fiber 30 is between lamp 102 and detector 106.

The output conductor 110 is connected to a bush 112 which progressively engages contacts 114 in the upper bank 116 as the reader 96 moves along the card.

Another brush 118 is carried as a lower extension of brush 112 and is electrically insulated from it by an insulator 120. The lower brush successively engages contacts 122 in the lower bank 124. It connects though a line 126 to a fixed voltage source. Contacts 122 are interconnected by resistors 128 which comprise part of a voltage divided network in which output line 130 connects into a decoder 132 for identifying the position of the reader relative to the card.

The individual contacts 114 19 in all, corresponding to the 19 light-transmitting fibers 30 in the card) are connected through individual wires 134 to an amplifier 136.

T0 read card 72 with the FIG. 11 apparatus, the reader 96 moves along the card, placing an output signal in conductor each time the lamp 102 is aligned with a clear, continuous fiber 30. The darkened ends of fibers 30 indicate the third, ninth, 13th and 15th fibers which do not transmit light.

At the position shown in FIG. 11, the sixth fiber is a clear one. The detector 106 sees lamp 102 through the fiber. At this position, brush 112 engages the sixth contact 114 in the upper bank. Brush 118 engages the sixth contact 122 in the lower bank. The signal in conductor 110 passes through the engaged contact 114 and via its corresponding wire 134 into amplifier 136 and an amplified signal is sent through line 141 to the decoder 132. The amplifier is supplied with power through a line 139 from power supply 138. Coincident with the signal into the decoder from line 141, another signal is applied to the decoder through line from the voltage divider circuit to identify the particular fiber 30 involved.

Thus, the decoder 132 simultaneously receives two kinds of information about each fiber: First, its position in the card; and second, whether it transmits light. The decoder may include a memory bank (not shown) with which it compares the signal combinations obtained from the card, and then generates an appropriate signal in line 140 into controlled apparatus 142. The latter may be an information display board, screen, or a printer for recording the information on tape, or the like.

Typically, the information obtained from the encoded card, if the latter is a credit card, for example, may be the holders identification number and the expiration date.

Data can be stored in a card in at least two different ways.

One way of storing information is shown in FIGS. 3 and 10, in which the various combinations of lighted and unlighted fiber ends correspond to data in a memory bank. Each combination read from card 68 or 72 may correspond to a differentnumber, name, or other information. The number of possible usable combinations of lighted and unlighted fibers is determined by the following formula:

where n the total number of lighted-and unlighted fibers. Using this formula, a l6-fiber card has 65,536 different combinations possible.

Another way of storing information is shown in FIG. 4 where the fibers are arranged in groups of four, each group being coded to designate a digit in the binary numbering system. Coding is done by impairing the light transmission through selected fibers in each group, or by selectively placing the fibers in each group.

Referring to FIG. 4, the individual fibers in each group of four fibers 30 are respectively assigned values of 8," 4," 2," and 1, according to the'binary code. Individual fibers are impaired or omitted as shown by the darkened circles, to display the number 782193 in the six groups of fibers shown. The reading device of either FIGS. 10 or 1 1 can decode this.

This invention provides a unique means of comparing a card to a hot card list (stolen or expired cards). The list can be prepared as a photo transparency with the card numbers coded in as on the edge of the card. This list can then be scanned by the edge of the card or by a fiber optic element coupling the edge of the card to the list.

It will be apparent that the embodiments shown are exemplary only and that various modifications can be made in construction and arrangement within the scope of the invention as defined in the appended claims.

We claim as our invention:

1. An encoded card comprising:

a flat, laminated body having a light-transmitting core sheet integrally bonded between a pair of opaque cover sheets, said body having top and bottom cover surfaces and relatively narrow edge surfaces transverse to said cover surfaces and corresponding to the thickness of said body, two of said edge surfaces being respectively light-receiving and light-emitting edge surfaces;

said core sheet having a layer of a plurality of elongated light-transmitting fibers disposed in side-byside planar relationship at least at the light receiving and emitting edge of the card and extending between said light-receiving and light-emitting edge surfaces and having their opposite ends exposed at said light-receiving and light-emitting edges for transmitting light from an external light source means edgewise through said body to an external light sensing means;

at least the light-emitting ends of said light-transmitting fibers being exposed along said lightemitting edge surface and being relatively irregularly and fixedly spaced in a planar array, with all of the spaces between the light emitting ends being free of any means capable of transmitting light in response to illumination of the entire light-receiving edge, the irregular spacing providing information in accordance with a predetermined code;

whereby said card can be decoded in a reader having means for supporting'said card with said lightreceiving and light-emitting edge surfaces respectively facing a light source means and a light sensing means and with said core sheet disposed in a plane in which said light source directs light toward said light sensing means edgewise through said card, said information being displayed as an irregular linear pattern of lighted fiber ends along said light-emitting edge surface of said card;

and whereby further an operator can decode said card visually by holding said light-receiving edge surfaces toward a light source and visually comparing the pattern of lighted fiber ends along said light-emitting edge surface with a predetermined code.

2. An encoded card according to claim 1 in which said light-transmitting fibers are substantially parallel to each other.

3. An encoded card according to claim 1 in which the light-transmitting fibers are capable of transmitting light which is primarily visible.

4. An encoded card according to claim 1 in which said light-transmitting fibers are capable of transmitting light primarily in the infrared spectral region.

5. An encoded card according to claim 1 in which said light-transmitting fibers are capable of transmitting light primarily in the ultraviolet spectral region. 1

. An encoded card according to claim 1 m which right filter means is provided with said light-transmitting fibers to inhibit the transmission of light which is primarily visible and to enable the transmission only of light which is primarily invisible.

7. An encoded card according to claim 1 in which said layer is comprised of uniformly transversely spaced fiber optics fibers consisting of optical material, certain of said fiber optics fibers having their lighttransmitting ability impaired in selected portions of said layer according to said predetermined code, said light-transmitting fibers comprising the remaining unimpaired fiber optics fibers with their light emitting ends irregularly spaced.

8. An encoded card according to claim 2 in which said light-transmitting fibers are straight and said lightreceiving and light-emitting edge surfaces are at opposite sides of said card.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2177077 *Nov 4, 1935Oct 24, 1939Teletype CorpPhotoelectric transmitter
US2939016 *Nov 20, 1956May 31, 1960IbmDetecting apparatus
US3101411 *May 17, 1960Aug 20, 1963American Optical CorpLight conducting device to transmit ultra-violet radiation for specimen fluorescenceunder a microscope
US3125812 *Mar 3, 1961Mar 24, 1964 Apparatus for decoding an encoded light image
US3163758 *Mar 13, 1961Dec 29, 1964Gen ElectricAutomatic character reader utilizing infrared radiation
US3241986 *Feb 28, 1962Mar 22, 1966Servo Corp Of AmericaOptical infrared-transmitting glass compositions
US3335265 *Sep 11, 1963Aug 8, 1967Solar Systems IncPunched card reader
US3470359 *Apr 5, 1966Sep 30, 1969Fmc CorpAnti-counterfeit document
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3858031 *Feb 16, 1973Dec 31, 1974Bliss & Laughlin IndCredit card having clear middle layer encoded by discrete opaque areas and system for decoding same by laser beam
US3977762 *Sep 5, 1974Aug 31, 1976International Standard Electric CorporationOptical coupler
US3996455 *May 8, 1974Dec 7, 1976The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationTwo-dimensional radiant energy array computers and computing devices
US4021664 *Feb 3, 1975May 3, 1977Eastman Kodak CompanyStorage and retrieval of graphic information
US4053764 *Oct 2, 1975Oct 11, 1977The United States Of America As Represented By The Secretary Of The Air ForceHigher-order mode fiber optics t-coupler
US4070093 *Aug 26, 1976Jan 24, 1978Bell Telephone Laboratories, IncorporatedMinimizing transmission path disabling due to defective transmission members of a communications cable
US4117460 *Nov 1, 1976Sep 26, 1978United Technologies CorporationSensing device
US4138057 *Jul 8, 1977Feb 6, 1979Atalla TechnovationsCard, system and method for securing user identification data
US4138058 *Aug 15, 1977Feb 6, 1979Atalla TechnovationsCard, system and method for securing personal identification data
US4362930 *Jan 9, 1981Dec 7, 1982Zeag Systems A.G.Data carrier card
US4418278 *May 20, 1981Nov 29, 1983Mondshein Lee FEmbedded optic fiber page
US4671839 *Dec 23, 1985Jun 9, 1987Xerox CorporationSecure identification card manufacture
US4756557 *Dec 23, 1985Jul 12, 1988G.A.O. Gesellschaft Fuer Automation Und Organisation MbhSecurity document having a security thread embedded therein and methods for producing and testing the authenticity of the security document
US4906837 *Sep 26, 1988Mar 6, 1990The Boeing CompanyMulti-channel waveguide optical sensor
US5218594 *Mar 6, 1991Jun 8, 1993Pioneer Electric CorporationRecording medium with an optical waveguide and player for playing the same
US5321780 *Dec 8, 1992Jun 14, 1994Seymour EdelmanOptical digital memory system
US5392369 *Jan 25, 1994Feb 21, 1995Edelman; SeymourOptical digital memory system
US5633975 *Nov 14, 1995May 27, 1997The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationSecurity system responsive to optical fiber having Bragg grating
US5959289 *Feb 11, 1997Sep 28, 1999Empire Airport Service Co., Ltd.Card and information recording card and method of using the same
US6005991 *Nov 26, 1997Dec 21, 1999Us Conec LtdPrinted circuit board assembly having a flexible optical circuit and associated fabrication method
US6193156 *Nov 12, 1998Feb 27, 2001Wenyu HanMethod and apparatus for patterning cards, instruments and documents
US6566672 *Sep 29, 2000May 20, 2003Heidelberger Druckmaschinen AgLight sensor for sheet products
US6835934Dec 29, 2000Dec 28, 2004Note Printing Australia LimitedMethod of determining a characteristic of a security document, such as a banknote
US6890260Jan 8, 2002May 10, 2005IgtIlluminated player tracking card for a gaming apparatus
US7104449 *Dec 22, 2000Sep 12, 2006Wenyu HanMethod and apparatus for patterning cards, instruments and documents
US7315664 *Jun 8, 2004Jan 1, 2008The Boeing CompanyMethod of identifying and labeling optical conduits
US7520651 *May 4, 2007Apr 21, 2009Abhinand LathLight pipe containing material
US7988324Jun 10, 2009Aug 2, 2011Sensitile SystemsLight system with stacked light pipe structure
EP0208573A1 *Jun 5, 1986Jan 14, 1987ARJOMARI-PRIOUX Société anonyme diteSecurity document using optical fibres, and authentication process
EP0790576A2 *Feb 13, 1997Aug 20, 1997Empire Airport Service Co., Ltd.Information card
EP0902392A2 *Aug 4, 1998Mar 17, 1999Robert Bosch GmbhChipcard
EP1242980A1 *Dec 29, 2000Sep 25, 2002Note Printing Australia LimitedMethod of determining a characteristic of a security document, such as a banknote
WO2003060845A1 *Mar 28, 2002Jul 24, 2003Igt Reno NevIlluminated player tracking card for a gaming apparatus
Classifications
U.S. Classification235/488, 235/487, 70/DIG.510, 385/121, 250/227.21, 385/114, 250/568, 235/473
International ClassificationG06K19/14
Cooperative ClassificationY10S70/51, G02B6/43, G06K19/14, G06K19/086
European ClassificationG06K19/08C2, G02B6/43, G06K19/14