Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3729008 A
Publication typeGrant
Publication dateApr 24, 1973
Filing dateDec 28, 1970
Priority dateDec 28, 1970
Also published asDE2142983A1
Publication numberUS 3729008 A, US 3729008A, US-A-3729008, US3729008 A, US3729008A
InventorsBerkovits B
Original AssigneeAmerican Optical Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electrode for atrial pacing with curved end for atrial wall engagement
US 3729008 A
Abstract
A curvilinear electrode suitable for being curved-over and supported by a moving atrium wall of a patient's heart. The electrode includes at least one long, thin, flexible electrical conductor encapsulated by an electrically insulating flexible catheter sleeve. The electrode has a sufficient resilience to maintain the curve in a plane and yet allow the curve to be flexed linear for insertion through a blood vessel of the patient.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

nited States atet 45] Apr. 24, 1973 Eerkovits ELECTRODE FOR ATlRIAL PACING WITH CURVED END FOR ATRIAL WALL ENGAGEMENT [75] Inventor: Barough V. Berkovits, Newton Highlands, Mass.

[73] Assignee: American Optical Corporation, Southbridge, Mass.

[22] Filed: Dec. 28, 1970 [21] Appl. No.: 10l,836

[52] US. Cl. ..128/418, 128/348, 128/419 P [51] Int. Cl. ..A61n

[58] Field of Search ..128/348, 349 R, 350 R, 128/404, 418, 419 P, 2 M

[56] References Eited UNITED STATES PATENTS 3,516,412 6/1970 Ackerman ..128/418 3,485,234 12/1969 Stevens ..128/348 3,348,548 10/1967 Chardock.... ....l28/419 P 2,118,631 5/1938 Wappler ..128/2 M 3,419,010 12/1968 Williamson ..128/350 R I FOREIGN PATENTS OR APPLICATIONS 707,333 4/1931 France ..128/349R OTHER PUBLICATIONS Dodinot et al., Annals of the New York Academy of Sciences Vol. 167, Art. 2, pp. 1038-1054, October,

Primary ExaminerWilliam E. Kamm I Attorney-William C. Nealon, Noble S. Williams, Robert J Bird, Bernard L. Sweeney and Joel Wall ABSTRACT 9 Claims, 6 Drawing Figures BAROUH BERKOVITS INVENTOR.

ELECTRODE FOR ATRIAL PACING WITH CURVEI) END FOR ATRIAL WALL ENGAGEMENT BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates, generally, to an area of medical electronics concerned with electrical stimulation of a patients heart. More particularly, the present inverition relates to improved means for conducting electrical stimulation from heart stimulating apparatus to the atrium of the heart.

2. Description of Prior Art In the medical electronics field, electronic devices have been developed for providing stimulation to the heart. These electronic devices are commonly called pacers. An example of a demand pacer is disclosed in US. Pat. No. 3,528,428 issued in the name of the applicant of the present invention.

Applicant has filed other pacer patent applications including Ser. No. 8IO,519 filed on Mar. 26, 1969 and which has matured into U.S. Pat. No. 3,595,242, and 884,825 filed on Dec. 15, 1969 and which has matured into US. Pat. No. 3,661,158. In these copending applications, heart stimulating devices are disclosed that stimulate both an atrium and a ventricle of the heart. These pacers require two sets of electrodes. The present invention is capable of use with most pacers and is particularly adapted for use with this latter type of pacer.

The electrodes normally used with these devices are long, thin, flexible conductors enclosed by a flexible catheter. At one end of the catheter, the conductor is exposed in order to make contact with the heart.

In some electrode apparatus configurations (called bipolar electrodes), two conductors are included within one catheter, thereby providing a forward conduction path and return path for electrical stimulation to the heart. For this type of electrode, two conductors are exposed and each conductor makes contact with the heart.

The bipolar electrode apparatus used with ventricular stimulation has a generally linear and flexible shape. The two conductors are exposed at one end of the catheter approximately 1 inch from each other. The electrode apparatus is inserted into a blood vessel and is pushed into the ventricle. It normally rests in the ventricular cavity without falling out. The ventricle is formed so that the electrode will normally be confined to its region without difficulty.

But, by comparison, the electrode used for stimulating an atrium has difficulty in maintaining its position within the confines of the atrial cavity. The atrium has smooth walls allowing easy slippage of an ordinary linear electrode therefrom.

Thus, a problem with the prior art electrode is that it is not well suited for use with the atrium. Applicants solution to this problem is to provide improved electrode apparatus which can be inserted in a normal manner into a vessel of the body leading to the atrium, and to automaticallycause a gripping of, and a support by, the atrium wall. The present invention solves the electrode-heart contact problem associated with atrial pacing.

SUMMARY OF THE INVENTION The invention relates generally to electrode apparatus for use with heart stimulating devices. More particularly, the invention relates to a curved electrode apparatus and catheter particularly suited for use in stimulating an atrium of a patients heart. A particular resilience is built into the catheter to provide a particular shape suitable for being supported by the wall of the atrium. The resilience built into the catheter has a twofold purpose; first it can create an axial torque to cause a twisting action to tend to maintain the curve in a plane, and second it has a flexibility for providing an approximately linear shape for proper insertion into a blood vessel.

An advantage of this invention is to permit reliable atrial stimulation. The electrode of the present invention will not slip out of the atrium, nor will it loosen and make poor electrical contact with the atrium.

It is thus an object of the present invention to provide an improved electrode apparatus for use with heart stimulating devices.

It is a further object of the present invention to provide an improved electrode for stimulating an atrium of the heart.

Other objects and advantages of the present invention will become apparent to one having reasonable skill in the art after referring to the detailed description of the appended drawings wherein:

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 depicts two electrodes, one of which is curvilinear in accordance with the present invention, both of which are operatively connected to a heart stimulat ing device;

FIG. 2 is a sectional view of the catheter 11 of FIG. 1 in a first illustrative embodiment of the present invention;

FIG. 3 is a sectional view of a second illustrative embodiment of the present invention;

FIG. 4 is a sectional view of a third illustrative embodiment of the present invention;

FIG. 5 depicts schematically the axial or twisting torque provided by the present invention; and,

FIG. 6 is a side view of a curved electrode in accordance with the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, heart stimulating device 10 is connected to catheter 12 which encloses conductors l3 and 23. These conductors are insulated from each other. One provides a signal or stimulating conductive path and the other provides a return conductive path. This catheter electrode apparatus is an example of prior art. It is inserted into the ventricle of the heart to provide it with electrical stimulation.

By comparison, catheter 11 is also operatively connected to pacer or heart stimulator 10, and similarly has conductors I4 and 24 enclosed therein. But, this catheter is curvilinear or curved near the end that makes contact with the heart. The cross-section of catheter 11 at the location designated as 15 is thicker than the cross-section of the catheter at a point closer to the pacer. This can be seen more clearly in FIG. 6.

In FIG. 6, curved region designated as 30 is thicker in cross-section than the catheter cross-section at the location designated as 40. The reason for this difference in cross-section is due to an additional amount of resilient insulation at region 30.

The catheter can be made from various electrical non-conductive materials such as polyvinyl chloride, plastics, polyethylene, polyurethane and other bodycompatible elastic materials. In the present invention, the catheter is made from a high medical grade durameter (resilient) rubber. The additional amount of rubber at the location of the curve is added to the ordinary flexible catheter by such processes as vulcanization or injection molding. The additional rubber forces the catheter to assume an unnatural shape but one which possesses minimal potential energy.

In FIG. 6, the catheter is depicted as temporarily linear, and this is shown by dotted diagram 32. This is the shape and potential energy state of the catheter when it is inserted into a blood vessel (not shown) to be pushed up to the atrium (not shown).

Upon entering the atrium, the catheter springs back as depicted by direction 31 to the curve shape depicted. This curve shape has the proper dimensions to conform to the atrium and to be suitable for gripping the moving atrium wall. The atrium has a smooth wall which allows easy slippage of an ordinary electrode. The curved electrode shown in FIG. 1 and FIG. 6, will now slip from the atrium, as it is curved over the atrium wall. While inserted in the heart over the atrium wall (not shown), the inherent return tension or resilience causes the catheter to apply tension in step with the moving atrium as the heart is beating. This maintains good electrical contact.

The curved electrode fits into the atrium and will not fall out and slide into the ventricle (not shown) by virtue of its shape. But, the electrode can be pulled out by application of distal force in a surgical procedure. When the electrode is removed from the atrium by the application of distal force, the shape of the curved catheter is shown by dotted configuration 32.

FIG. 2 is a cross-section of the curved electrode taken at curved region of catheter 11. Flanges 16 are what cause the electrode to maintain its curved shape. Flanges 16 lie on the inside of the curve. (They could be on the outside of the curve and the resulting resilience effects would be similar.)

FIG. 3 is a second illustrative embodiment of the present invention taken at curved region 15 of catheter 11. Flange 17 is shown in a different shape from flanges 16, but has much the same effect as flanges 16.

FIG. 4 is a third illustrative embodiment of the present invention taken at curved region 15 of catheter 11 and is a combination of flanges l6 and 17. In FIG. 4, flange 17 is at the inside of the curve and flanges 16 are on the outside of the curve. This configuration combines the resilient advantages of FIGS. 2 and 3.

The purpose of the flanges is two-fold. First, a resilient restoring force must be created to make the electrode spring back in direction 31 as depicted in FIG. 6. Second, the flange is intended to diminish twisting (axial torques which will tend to displace the curve portion of the electrode out of a plane) and thus encourages the curve portion to be planar. (If a curved electrode is allowed to twist excessively while in operational connection with an atrium, it could fall out of the atrium cavity.)

In FIG. 5, arrows 18 indicate directions in which the axial torque resisting force is applied by flanges 16 and 17. In FIG. 6, application of this torque resisting force will tend to cause the curve of the electrode to remain in the plane of the paper.

In a preferred embodiment, the curve has a 1-inch radius, and is generally in the shape of a semi-circle. There is approximately 1.5 to 2 centimeters between exposed conductors of the same catheter. The exposed conductors can be made of platinum.

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Other cross-sectional areas of rubber, or other materials suitable for creating these torques within a body environment can be used. Also, grooves or ridges can be arranged on the inside curve of the catheter to even better grip the atrium wall.

The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within immediate range of the claims, are therefore intended to be embraced therein.

What is claimed is:

1. Electrode apparatus of the intravascular type for use with devices for electrically stimulating the heart of a patient, said apparatus including at least one long, thin, flexible electrical conductor, an electrically-insulating flexible catheter enclosing said conductor, there being an electrically non-conducting material forming an outer wall of said catheter, said conductor having one end extending through the exterior surface of said catheter to permit electrical contact between said heart and said conductor near one end of said conductor, and catheter curve-holding means carried by said outer wall adjacent said end and substantially parallel to and secured along substantially its entire length to the catheter for normally urging said catheter in a curve near said end, the configuration of said curve arranged to be curved-over and supported by a wall of an atrium moving in response to the beating of said heart and being suitable for causing electrical contact to be main tained between said conductor and said atrium, and where said catheter curve-holding means further includes torsion means for maintaining an axial restoring torque on said catheter at said end to encourage said curve to be planar.

2. Electrode apparatus as recited in claim 1 and wherein said catheter curve-holding means further includes flexible means for permitting said curve to be extended into an approximately linear shape for insertion of said catheter into and removal of said catheter from a blood vessel leading to the heart of said patient.

3. Electrode apparatus as recited in claim 2 and wherein said catheter curve-holding means further includes contractile means for causing said approximately linear shape to be formed into said curve about the top of said wall of said atrium after said insertion into said heart.

4. Electrode apparatus as recited in claim 1 and wherein said catheter curve-holding means is made of rubber.

8. Electrode apparatus as recited in claim 1 and wherein said catheter curve-holding means is made of polyethylene.

9. Electrode apparatus as recited in claim 1 and wherein said catheter curve-holding means is made of polyurethane.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2118631 *Apr 3, 1935May 24, 1938Charles Wappler FrederickCatheter stylet
US3348548 *Apr 26, 1965Oct 24, 1967Chardack William MImplantable electrode with stiffening stylet
US3419010 *Jan 17, 1966Dec 31, 1968Cordis CorpCatheter
US3485234 *Apr 13, 1966Dec 23, 1969Cordis CorpTubular products and method of making same
US3516412 *Mar 5, 1969Jun 23, 1970Electro Catheter CorpBipolar electrode having irregularity at inserting end thereof and method of insertion
FR707333A * Title not available
Non-Patent Citations
Reference
1 *Dodinot et al., Annals of the New York Academy of Sciences Vol. 167, Art. 2, pp. 1038 1054, October, 1969.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3804098 *Apr 17, 1972Apr 16, 1974Medronic IncBody implantable lead
US3890977 *Mar 1, 1974Jun 24, 1975Bruce C WilsonKinetic memory electrodes, catheters and cannulae
US3939843 *Mar 4, 1974Feb 24, 1976Medtronic, Inc.Transvenous electrode
US3949757 *May 13, 1974Apr 13, 1976Sabel George HCatheter for atrio-ventricular pacemaker
US4057067 *Apr 6, 1976Nov 8, 1977Lajos Thomas ZAtrioventricular electrode
US4136703 *Mar 9, 1978Jan 30, 1979Vitatron Medical B.V.Atrial lead and method of inserting same
US4176659 *Jul 19, 1977Dec 4, 1979Peter RolfeCatheter with measurement electrodes
US4285347 *Jul 25, 1979Aug 25, 1981Cordis CorporationStabilized directional neural electrode lead
US4351345 *Dec 19, 1979Sep 28, 1982Carney Andrew LMethods of securing electrodes to the heart
US4357947 *Jul 14, 1980Nov 9, 1982Littleford Philip OElectrode and method for endocardial atrial pacing
US4394866 *Jan 21, 1981Jul 26, 1983Research CorporationS-A Node helical lead for atrial pacemakers and method of placement
US4401126 *Jun 13, 1980Aug 30, 1983Bertil ReenstiernaEndocardial, implantable lead for pacemaker
US4401127 *Feb 3, 1981Aug 30, 1983Littleford Philip OStable electrodes for endocardial pacing
US4402328 *Apr 28, 1981Sep 6, 1983Telectronics Pty. LimitedCrista terminalis atrial electrode lead
US4454888 *Oct 7, 1981Jun 19, 1984Cordis CorporationCardiac pacing lead with curve retainer
US4458677 *Nov 19, 1981Jul 10, 1984Mccorkle Jr Charles EIntravenous channel cardiac electrode and lead assembly and method
US4467817 *May 18, 1983Aug 28, 1984Cordis CorporationSmall diameter lead with introducing assembly
US4543090 *Oct 31, 1983Sep 24, 1985Mccoy William CSteerable and aimable catheter
US4601705 *May 3, 1985Jul 22, 1986Mccoy William CSteerable and aimable catheter
US4624265 *Jul 24, 1985Nov 25, 1986Ge. Sv. In. S.R.L.Electro-catheter used in physiological cardiac stimulation simulative of the auriculo-ventricular sequence, featuring active engagement of the cardiac muscle
US4777951 *Sep 19, 1986Oct 18, 1988Mansfield Scientific, Inc.Dilatation procedure
US4856529 *Feb 6, 1987Aug 15, 1989Cardiometrics, Inc.Ultrasonic pulmonary artery catheter and method
US4869248 *Apr 17, 1987Sep 26, 1989Narula Onkar SMethod and apparatus for localized thermal ablation
US4934340 *Jun 8, 1989Jun 19, 1990Hemo Laser CorporationDevice for guiding medical catheters and scopes
US4944727 *Oct 2, 1987Jul 31, 1990Catheter Research, Inc.Variable shape guide apparatus
US5052407 *Apr 10, 1989Oct 1, 1991Mieczyslaw MirowskiCardiac defibrillation/cardioversion spiral patch electrode
US5055101 *Dec 8, 1989Oct 8, 1991Catheter Research, Inc.Variable shape guide apparatus
US5058586 *Jul 22, 1988Oct 22, 1991Siemens AktiengesellschaftCatheter for implantation in the heart, having an integrated measuring probe
US5067957 *Sep 27, 1988Nov 26, 1991Raychem CorporationMethod of inserting medical devices incorporating SIM alloy elements
US5090956 *Dec 4, 1989Feb 25, 1992Catheter Research, Inc.Catheter with memory element-controlled steering
US5114402 *Mar 5, 1991May 19, 1992Catheter Research, Inc.Spring-biased tip assembly
US5144960 *Mar 20, 1991Sep 8, 1992Medtronic, Inc.Transvenous defibrillation lead and method of use
US5165403 *Feb 26, 1991Nov 24, 1992Medtronic, Inc.Difibrillation lead system and method of use
US5190546 *Apr 9, 1991Mar 2, 1993Raychem CorporationMedical devices incorporating SIM alloy elements
US5231989 *Feb 15, 1991Aug 3, 1993Raychem CorporationSteerable cannula
US5345937 *Jul 28, 1993Sep 13, 1994Raychem CorporationSteerable cannula
US5405374 *Aug 25, 1993Apr 11, 1995Medtronic, Inc.Transvenous defibrillation lead and method of use
US5571160 *Jul 11, 1994Nov 5, 1996Pacesetter AbPermanently curved sleeve for shaping an electrode cable, and method for implanting the cable with the sleeve
US5597378 *Oct 2, 1992Jan 28, 1997Raychem CorporationMedical devices incorporating SIM alloy elements
US5609621 *Aug 4, 1995Mar 11, 1997Medtronic, Inc.Right ventricular outflow tract defibrillation lead
US5611777 *Aug 23, 1995Mar 18, 1997C.R. Bard, Inc.Steerable electrode catheter
US5683445 *Apr 29, 1996Nov 4, 1997Swoyer; John M.Medical electrical lead
US5728178 *Aug 26, 1994Mar 17, 1998The Ohio State UniversityGuide tube for gastrostomy tube placement
US5755761 *Apr 26, 1996May 26, 1998Pharmatarget, Inc.Atrial pacing catheter and method having multiple electrodes in the right atrium and coronary sinus
US5779669 *Oct 28, 1996Jul 14, 1998C. R. Bard, Inc.Steerable catheter with fixed curve
US5810790 *Nov 19, 1996Sep 22, 1998Ebling; Wendell V.Catheter with viewing system and port connector
US5871530 *Apr 17, 1998Feb 16, 1999Medtronic, Inc.Intracardiac defibrillation leads
US5922014 *Sep 2, 1997Jul 13, 1999Medtronic, Inc.Method of pacing a right atrium of a patient's heart
US5935102 *Oct 23, 1996Aug 10, 1999C. R. BardSteerable electrode catheter
US5999858 *Nov 20, 1998Dec 7, 1999Medtronic, Inc.Medical electrical lead
US6021354 *Dec 31, 1998Feb 1, 2000Medtronic, Inc.Single pass lead and method of use
US6038472 *Apr 29, 1997Mar 14, 2000Medtronic, Inc.Implantable defibrillator and lead system
US6083150 *Mar 12, 1999Jul 4, 2000C. R. Bard, Inc.Endoscopic multiple sample biopsy forceps
US6178355Dec 18, 1998Jan 23, 2001Medtronic, Inc.Intracardiac defibrillation leads
US6201994Nov 30, 1999Mar 13, 2001Medtronic, Inc.Single pass lead and method of use
US6306141Jun 7, 1995Oct 23, 2001Medtronic, Inc.Medical devices incorporating SIM alloy elements
US7546166Apr 23, 2003Jun 9, 2009Medtronic, Inc.Medical lead designs for lead placement through tissue
US8152775 *Aug 19, 2008Apr 10, 2012Tyco Healthcare Group LpAccess port using shape altering anchor
US8175702Nov 3, 2005May 8, 2012The Washington UniversityMethod for low-voltage termination of cardiac arrhythmias by effectively unpinning anatomical reentries
US8206291Feb 25, 2010Jun 26, 2012Tyco Healthcare Group LpPortal device
US8323316Mar 23, 2010Dec 4, 2012Covidien LpKnotted suture end effector
US8348973Mar 12, 2010Jan 8, 2013Covidien LpBioactive substance in a barbed suture
US8391995Nov 13, 2007Mar 5, 2013The Washington UniversityCardiac pacing using the inferior nodal extension
US8454653Mar 19, 2010Jun 4, 2013Covidien LpCompound barb medical device and method
US8473051Dec 29, 2011Jun 25, 2013Cardialen, Inc.Low-energy atrial cardioversion therapy with controllable pulse-shaped waveforms
US8509889Dec 11, 2008Aug 13, 2013Washington UniversityMethod and device for low-energy termination of atrial tachyarrhythmias
US8560066May 7, 2010Oct 15, 2013Washington UniversityMethod and device for three-stage atrial cardioversion therapy
US8639325May 4, 2012Jan 28, 2014Washington UniversityMethod for low-voltage termination of cardiac arrhythmias by effectively unpinning anatomical reentries
US8679157Nov 30, 2012Mar 25, 2014Covidien LpBioactive substance in a barbed suture
US8706216Jan 12, 2012Apr 22, 2014The Washington UniversityMethod and device for three-stage atrial cardioversion therapy
DE3049652C2 *Jun 13, 1980Jun 4, 1987Bertil ReenstiernaEndokardiale, implantierbare Leitung f}r Herzschrittmacher
EP0044688A1 *Jul 13, 1981Jan 27, 1982Philip O.(deceased) legally represented by Bates H. Richard LittlefordElectrode for endocardial insertion
EP0206248A1 *Jun 19, 1986Dec 30, 1986Medtronic, Inc.Epicardial electrode arrangements and system for applying electrical energy to a human heart
EP0635280A1 *May 27, 1994Jan 25, 1995Pacesetter ABDevice for making an electrode
EP0839547A1Oct 28, 1997May 6, 1998C.R. Bard, Inc.Steerable catheter with fixed curve
WO1987004355A1 *Jan 22, 1987Jul 30, 1987Westmed Pty LtdEpicardiac pacing lead
Classifications
U.S. Classification607/125, 604/530, 604/21
International ClassificationA61N1/375, A61N1/05, A61N1/372
Cooperative ClassificationA61N1/056, A61N1/375, A61N1/057
European ClassificationA61N1/375, A61N1/05N, A61N1/05N4
Legal Events
DateCodeEventDescription
Apr 9, 1985AS99Other assignments
Free format text: TELECTRONICS PTY. LIMITED * HONEYWELL MEDICAL ELECTRONICS B.V. : 19850306 OTHER CASES: NONE; CONFIRMS THE GRANTING OF LICENSE AGREEMENT DATED JULY 1, 197
Apr 9, 1985ASAssignment
Owner name: TELECTRONICS PTY. LIMITED
Free format text: CONFIRMS THE GRANTING OF LICENSE AGREEMENT DATED JULY 1, 1973 SUBJECT TO CONDITIONS IN AGREEMENT DATED JANUARY 16, 1984;ASSIGNOR:HONEYWELL MEDICAL ELECTRONICS B.V.;REEL/FRAME:004436/0297
Effective date: 19850306
Apr 3, 1981ASAssignment
Owner name: COOK PACEMAKER CORPORATION, P.O. BOX 99, BLOOMINGT
Free format text: LICENSE;ASSIGNOR:ATLANTIC RICHFIELD COMPANY;REEL/FRAME:003852/0285
Effective date: 19810327
Owner name: COOK PACEMAKER CORPORATION, INDIANA