Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3730270 A
Publication typeGrant
Publication dateMay 1, 1973
Filing dateMar 23, 1971
Priority dateMar 23, 1971
Publication numberUS 3730270 A, US 3730270A, US-A-3730270, US3730270 A, US3730270A
InventorsAllred V
Original AssigneeMarathon Oil Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Shale oil recovery from fractured oil shale
US 3730270 A
Shale oil is recovered from vertically fractured oil shale formations by injecting hot solvent into the bottom of the fractured zone, removing shale oil from a point above the point of injection, then incrementally raising the recovery point to maintain the recovery point above the level of the silt sedimented within the fracture chimney.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

[451 May 1, 1973 United States Patent 1 Allred 8/1969 Parker.......,................,......

y fractured oil nt into the botthen incrementally raising the recovery point to maintain the recovery point above the level of the silt sedimented within the fracture chimney.

Primary Examiner-Robert L. Wolfe Att0rney.loseph C. Herring, Richard C. Willson, Jr. and Jack L. Hummel [57] ABSTRACT Shale oil is recovered from verticall shale formations by injecting hot solve tom of the fractured zone, removing shale oil from a point above the point of injection,

9 Claims, 3 Drawing Figures ,...166/247 X Closmann.........................166/247 X Mar. 23, 1971 Appl. No.: 127,266

Field of Search...........

References Cited UNlTED STATES PATENTS 6/1970 10/1967 Sch1icht.........

ra a GPVHP nmmnm 99999 wwuww 03960 9 mmmfifl 0 9838 mmmxw 233333 y m d m .m a F M n, O n 0 m m m m m Ym L m E Vm n 0 A OL n C D 0 E0 r. m 0 a an a am i mm v M0 OU e mm m m AA m .m. HR m SFI A, 1 1 1 5 3 M 7 7 t [22] Filed:


SHALE DESCRIPTION OF THE PRIOR ART shale; U.S. Pat. No. 3,358,756 which percolates o benzene in a manner similar to that of the aforementioned U.S. Pat. No. 1,422,204; U.S. Pat. No. 3,515,213 which recovers shale oil by circulating a fluid heated at a moderate temperature from one point within the formation to another for a relatively long time until some of the organic components contained in the shale oil formation are converted to oil-shalederived fluidizable materials; U.S. Pat. No. 3,528,501 producesshale oil in situ by injecting hot hydrocarbon oil through a fractured section of shalebetween wells penetrating the oil shale formation; U.S. Pat. No. 3,241,611 which recovers petroleum from oil shale by circulating natural gas at elevated temperature and pressure as a solvent for the kerogen. None of the above patents teach the incremental raising of the injection and withdrawal points to accomplish the advantages of the present invention.

SUMMARY OF THE INVENTION General Statement of the Invention According to the present invention, shale oil is recovered by first causing a vertical fracture in an oil shale formation, e.g., by explosion, preferably an underground nuclear explosion.

See, for example, Education for Peaceful Uses of 1 Nuclear Explosives, Lynn E. Weaver, ed. The University of Arizona Press, Tucson, Ariz. (1970) (pp 45-63) and The Constructive Uses of Nuclear Explosives, Edward Teller, Wilson Talley, Gary Higgins, Gerald W.

Johnson, McGraw Hill, NYC NY (1968) (pp 245-265) LC No. 6811621.

The device, or devices, will generally be placed near the bottom of the oil shale formation, or if multiple devices, at predetermined intervals, and exploded causing a fracture chimney" which will reach to the top of oil shale formation. Within this chimney will be rubble composed of a wide size range of oil shale resulting from the fracturing by the explosion and the subsequent collapse into the nuclear formed cavity.

A string of pipe is inserted into the chimney by conventional drilling techniques which drill through the rubble. The pipe should extend to a point very near the bottom of the chimney. A second pipe should also be inserted and extend downward to a point somewhat higher than the bottom of the first pipe. The two pipes can be concentric, if desirable, to avoid the need for drilling a second hole through the rubble in the chimney.

To initiate the process, a hot solvent, e.g., stabilized (Material that will not polymerize on prolonged heating, obtained, e.g., by conventional coking or hydrotreating'.) shale oil, kerosine or coker gas oil is heated to about 800F. and injected through the first pipe (the injection pipe) into the bottom of the chimney. The hot solvent contacts oil shale in the rubble and in the walls of the chimney extracting shale oil by breaking down the kerogen within the oil shale and 2 leaving a by product, silt, composed primarily of clays, sand and dolemitic carbonates which is insoluble in the solvent. The mixture of shale oil plus solvent is then withdrawn through the second pipe (the withdrawal pipe). The withdrawn mixture is settled to remove any entrained silt and is fractionated (hydrogenated if required) to remove a fraction boiling above about 750, more preferably 800, and most preferably 850. The lower fraction is then heated and reinjected into the chimney. Through losses by evaporation, etc. the solvent will gradually become virtually percent composed of the stabilized fraction from the shale oil.

One of the characteristics of many oil shales, e.g.,

Green River Oil shales (i.e. greater than 20 gal/ton) is Circulation of ,the hot solvent continues until the level of silt rises to the point where it either affects the flow of hot solvent into the chimney or begins to be elutriated out through the withdrawaltube causing excessive need for above-surface settling. At this point, the withdrawal tube and the injection tube are both raised so that they are above the level of the silt in the chimney. The process then repeats with the lower end of the withdrawal tube generally being slightly above the lower end of the injection tube and with both tubes being raised so as to keep them above the level of the silt which gradually buildsup in the chimney.

Utility of the Invention Shale oil is, of course, useful for the wide variety of purposes to which hydrocarbons are commonly put, including the production of gasoline, diesel fuel, jet fuel, fuel oil, lubricants, solvents, starting materials for plastics, feed for pyrolysis processes, etc. all as well described in the prior art.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic drawing of a chimney within an oil shale formation and the equipment used to heat, fractio'nate and circulate the hot solvent for recovery of the shale oil.

FIG. 2 shows schematically the chimney of FIG; I after recovery of the oil shale is: well under way and showing how the injection and withdrawal tubes have been raised as the, level of silt rises in the chimney.

FIG. 3 is a detail of the lower end of preferred concentric injection and withdrawal tubes.

DESCRIPTION or THE PREFERRED EMBODIMENTS Starting Materials The solvents used with the present invention are, ini" tially, any convenient commercial solvent which will extract shale oil from the kerogen in the oil shale. For example, coker gas oils, kerosine, catalytic cycle oils, stabilized crude oil, or shale oil derived from another subterranean formation can be injected .in order to initiate the process.

See, for example: USBM Bul 533, Thermal Solution and Hydrogenation of Green River Oil Shale. H.B.Jensen, W.I.Barnet, & W.I.R.Murphy, U.S.Govt. Printing Office (1953).

Once the process is initiated, the preferred solvent will be, at least in part, a fraction derived from the oil shale itself so that the process becomes self-sustaining as to the solvent. Preferred fractions are those discussed above under Summary of the Invention.

Of course, other solvents or mixtures of them can be added to the fraction of the shale oil which is circulated through the chimney or shale oil itself can be circulated through the'chimney without fractionation, if desired.

In addition to electricity required for operating the circulating pumps and other apparatus, the only other material needed for use with the present invention is a fuel e.g., natural gas, crude oil, residual oil, coal, or shale oil itself to be used for firing the heater which heats the solvent prior to its recirculation through the chimney.

Temperature: Though not narrowly critical, the temperature of the solvent when it contacts the oil shale should be in the general range of preferably from 750F. to about 950F., more preferably from 800F. to about 900F., and most preferably from 825 to about 850.

Pressure: Although the entire operation can be conducted at substantially hydrostatic pressure, it may, in some instances, be desirable to somewhat pressurize the chimney in order to maintain more intimate contact between the solvent and the oil shale being extracted. The depth of the overburden will determine the maximum pressure which can be employed.

Time: The contact time between the solvent and the oil shale is not narrowly critical and may readily be adjusted for optimum results. The volume of solvent in the chimney at any given time will be adjusted accordingly.

Batch or Continuous Basis: While the examples, and most of the application, of the present invention will utilize the process on a continuous basis, the process can be employed on a batch basis where desirable. For example, the same tube may serve as both the injection tube and the withdrawal tube so that a quantity of solvent is first injected, then allowed to contact the oil shale for a sufficient time, and then withdrawn. Example: Referring to FIG. 1, a cavity has been created by a nuclear blast and is filled with rubble 11. Hot solvent, in this case hot coker gas oil, has been pumped downward through injection pipe 12 forming a pool 13 on top of fine silt-like material 14 at the bottom of the cavity. Solvent plus shale oil is withdrawn through eduction tube 15 located on the other side of the cavity from injection tube 12. Both tubes have means for gradually raising the level at which they communicate with the cavity. A pump 16 located downhole causes the withdrawal of solvent. The withdrawn solvent moves through a settling tank 17 into a fractionator 18 from which a fraction 19 is withdrawn for processing in a conventional refinery. The remaining fraction boiling above about 750F. is sent to heater 20 which heats it to a temperature of approximately 850F. A pump 21 then injects this hot solvent fraction back into the cavity.

FIG. 2 shows the identical cavity after the silt layer has risen much higher to effect extraction of a much larger amount of the oil shale rubble. Note that both tubes have now been raised to remain in the solvent layer but above the level of the silt. This process is continued until the silt level reaches the top of the cavity after which the apparatus is withdrawn and may be moved to another site.

FIG. 3 shows a modification of the invention in which the injection tube 30 and the withdrawal tube 31 are concentric with each other. The apparatus is otherwise similar to that shown in FIGS 1 and 2.

Modifications of the Invention It should be understood that the invention is capable of a variety of modifications and variations which will be made apparent to those skilled in the art by a reading of the specification and which are to be included within the spirit of the claims appended hereto. For example, various pumping devices, distillation apparatus, and heaters may be employed. The distillation apparatus may itself be eliminated and the process practiced, using only a recycle of a portion of the oil shale produced. The various techniques of the prior art are adaptable to the invention. For example, wells can be drilled into a portion of the overburden and fractured either hydraulically or explosively to cause additional quantities of overburden to fall into the original retort.

Also, in some cases, the solvent may be injected at or near the top of the cavity to avoid raising the injection point and to provide maximum solvent-oil shale contact.

What is claimed is:

1. In process for the recovery of shale oil from formations comprising oil shale, the improvement comprising in combination, forming within said formation a vertically fractured chamber by explosive means, injecting hot solvent through an injection point into the bottom of said vertically fractured chamber, to extract shale oil, removing the shale oil and solvent from a recovery point located above the bottom of said vertically fractured chamber, allowing the residual silt to settle within said vertically fractured chamber, and thereafter incrementally raising the recovery point to maintain the recovery point above the level of silt sedimented within said chamber. I

2. The process of claim 1 wherein the hot solvent is stabilized shale oil or a fraction thereof.

3. A process according to claim 1 wherein the hot solvent has a temperature from about 750 to about 950F when it contacts said oil shale.

4. A process according to claim 1 wherein said hot solvent is injected through an injection pipe extending downward into the fractured zone and said shale oil and solvent and removed through a recovery pipe extending from said recovery point to the surface.

5. A process according to claim 4 wherein said injection pipe and said recovery pipe are concentric with each other.

6. A process according to claim 1 wherein said fractured zone is formed by an underground nuclear explosion.

7. A process according to claim 1 wherein said oilshale comprises Green River oil shale.

8. A process according to claim 4 wherein said fractured zone is formed by an underground nuclear explosion and wherein said solvent comprises shale oil and said solvent has a temperature of from about 800 to about 900F. when it contacts said oil shale.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2460620 *Jun 14, 1945Feb 1, 1949Hamilton Watch CoFloating pawl
US3349850 *Aug 9, 1965Oct 31, 1967Deutsche Erdoel AgMethod for the extraction of underground bituminous deposits
US3358756 *Mar 12, 1965Dec 19, 1967Shell Oil CoMethod for in situ recovery of solid or semi-solid petroleum deposits
US3499489 *Mar 13, 1967Mar 10, 1970Phillips Petroleum CoProducing oil from nuclear-produced chimneys in oil shale
US3515213 *Apr 19, 1967Jun 2, 1970Shell Oil CoShale oil recovery process using heated oil-miscible fluids
US3528501 *Aug 4, 1967Sep 15, 1970Phillips Petroleum CoRecovery of oil from oil shale
US3578080 *Jun 10, 1968May 11, 1971Shell Oil CoMethod of producing shale oil from an oil shale formation
US3593790 *Jan 2, 1969Jul 20, 1971Shell Oil CoMethod for producing shale oil from an oil shale formation
US3601193 *Apr 2, 1968Aug 24, 1971Cities Service Oil CoIn situ retorting of oil shale
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4033411 *Jan 2, 1976Jul 5, 1977Goins John TMethod for stimulating the recovery of crude oil
US4033412 *Jun 18, 1976Jul 5, 1977Barrett George MFluid carrier recovery system and method
US4185693 *Jun 7, 1978Jan 29, 1980Conoco, Inc.Oil shale retorting from a high porosity cavern
US4407367 *Oct 14, 1980Oct 4, 1983Hri, Inc.Method for in situ recovery of heavy crude oils and tars by hydrocarbon vapor injection
US4458757 *Apr 25, 1983Jul 10, 1984Exxon Research And Engineering Co.In situ shale-oil recovery process
US7441603Jul 30, 2004Oct 28, 2008Exxonmobil Upstream Research CompanyHydrocarbon recovery from impermeable oil shales
US7857056Oct 15, 2008Dec 28, 2010Exxonmobil Upstream Research CompanyHydrocarbon recovery from impermeable oil shales using sets of fluid-heated fractures
US7980312 *Jun 19, 2006Jul 19, 2011Hill Gilman AIntegrated in situ retorting and refining of oil shale
US8082995Nov 14, 2008Dec 27, 2011Exxonmobil Upstream Research CompanyOptimization of untreated oil shale geometry to control subsidence
US8087460Mar 7, 2008Jan 3, 2012Exxonmobil Upstream Research CompanyGranular electrical connections for in situ formation heating
US8104537Dec 15, 2009Jan 31, 2012Exxonmobil Upstream Research CompanyMethod of developing subsurface freeze zone
US8122955Apr 18, 2008Feb 28, 2012Exxonmobil Upstream Research CompanyDownhole burners for in situ conversion of organic-rich rock formations
US8146664May 21, 2008Apr 3, 2012Exxonmobil Upstream Research CompanyUtilization of low BTU gas generated during in situ heating of organic-rich rock
US8151877Apr 18, 2008Apr 10, 2012Exxonmobil Upstream Research CompanyDownhole burner wells for in situ conversion of organic-rich rock formations
US8151884Oct 10, 2007Apr 10, 2012Exxonmobil Upstream Research CompanyCombined development of oil shale by in situ heating with a deeper hydrocarbon resource
US8230929Mar 17, 2009Jul 31, 2012Exxonmobil Upstream Research CompanyMethods of producing hydrocarbons for substantially constant composition gas generation
US8261823May 11, 2011Sep 11, 2012Hill Gilman AIntegrated in situ retorting and refining of oil shale
US8540020Apr 21, 2010Sep 24, 2013Exxonmobil Upstream Research CompanyConverting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US8596355Dec 10, 2010Dec 3, 2013Exxonmobil Upstream Research CompanyOptimized well spacing for in situ shale oil development
US8616279Jan 7, 2010Dec 31, 2013Exxonmobil Upstream Research CompanyWater treatment following shale oil production by in situ heating
US8616280Jun 17, 2011Dec 31, 2013Exxonmobil Upstream Research CompanyWellbore mechanical integrity for in situ pyrolysis
US8622127Jun 17, 2011Jan 7, 2014Exxonmobil Upstream Research CompanyOlefin reduction for in situ pyrolysis oil generation
US8622133Mar 7, 2008Jan 7, 2014Exxonmobil Upstream Research CompanyResistive heater for in situ formation heating
US8641150Dec 11, 2009Feb 4, 2014Exxonmobil Upstream Research CompanyIn situ co-development of oil shale with mineral recovery
US8770284Apr 19, 2013Jul 8, 2014Exxonmobil Upstream Research CompanySystems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8863839Nov 15, 2010Oct 21, 2014Exxonmobil Upstream Research CompanyEnhanced convection for in situ pyrolysis of organic-rich rock formations
US8875789Aug 8, 2011Nov 4, 2014Exxonmobil Upstream Research CompanyProcess for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US9080441Oct 26, 2012Jul 14, 2015Exxonmobil Upstream Research CompanyMultiple electrical connections to optimize heating for in situ pyrolysis
US9085972Aug 6, 2012Jul 21, 2015Gilman A. HillIntegrated in situ retorting and refining of heavy-oil and tar sand deposits
US9347302Nov 12, 2013May 24, 2016Exxonmobil Upstream Research CompanyResistive heater for in situ formation heating
US9394772Sep 17, 2014Jul 19, 2016Exxonmobil Upstream Research CompanySystems and methods for in situ resistive heating of organic matter in a subterranean formation
US9512699Jul 30, 2014Dec 6, 2016Exxonmobil Upstream Research CompanySystems and methods for regulating an in situ pyrolysis process
US9644466Oct 15, 2015May 9, 2017Exxonmobil Upstream Research CompanyMethod of recovering hydrocarbons within a subsurface formation using electric current
US9739122Oct 15, 2015Aug 22, 2017Exxonmobil Upstream Research CompanyMitigating the effects of subsurface shunts during bulk heating of a subsurface formation
US20070023186 *Jul 30, 2004Feb 1, 2007Kaminsky Robert DHydrocarbon recovery from impermeable oil shales
US20090038795 *Oct 15, 2008Feb 12, 2009Kaminsky Robert DHydrocarbon Recovery From Impermeable Oil Shales Using Sets of Fluid-Heated Fractures
US20090308608 *Mar 17, 2009Dec 17, 2009Kaminsky Robert DField Managment For Substantially Constant Composition Gas Generation
EP1689973A1 *Jul 30, 2004Aug 16, 2006ExxonMobil Upstream Research CompanyHydrocarbon recovery from impermeable oil shales
EP1689973A4 *Jul 30, 2004May 16, 2007Exxonmobil Upstream Res CoHydrocarbon recovery from impermeable oil shales
U.S. Classification166/247, 166/299, 166/303
International ClassificationE21B43/16, E21B43/24
Cooperative ClassificationE21B43/2405, E21B43/2403
European ClassificationE21B43/24K, E21B43/24F
Legal Events
Jun 13, 1983ASAssignment
Effective date: 19830420