Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3737579 A
Publication typeGrant
Publication dateJun 5, 1973
Filing dateApr 19, 1971
Priority dateApr 19, 1971
Also published asCA994869A1, DE2219044A1, DE2219044B2, DE2219044C3, DE7214841U
Publication numberUS 3737579 A, US 3737579A, US-A-3737579, US3737579 A, US3737579A
InventorsBolduc L
Original AssigneeMedtronic Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Body tissue electrode and device for screwing the electrode into body tissue
US 3737579 A
Abstract
A body implantable electrode comprising a flexible insulated conductor having a proximal end adapted for connection to a power supply and a distal end portion comprising an uninsulated, conductive, rigid helix adapted for attachment to body tissue. Means located and engageable at substantially the distal end portion are provided for facilitating the screwing of the helix into body tissue. A device is provided with means for firmly holding the means for facilitating the screwing of the helix into body tissue. The device also has means for holding the conductor and for preventing the transmission of torque to the proximal end of the conductor when the helix is being screwed into body tissue.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Paten Bolduc 1 June 5,1973

Appl. No.: 135,277

US. Cl. ..12s/41s,-12s/419 P- lnt; Cl. ..A6ln 1/04 Field of Search ..l28/404, 4l 8, 419 P References Cited UNITED STATES PATENTS 12/1968 Quinn ..128/418 9/1971 Bolduc ..12s/41s 10/1969 Tachick ..l28l4l8 Primary Examiner-William E. Kamm Attorney-Irving S. Rappaport, Donald R. Stone and Lew Schwartz [5 7 ABSTRACT A body implantable electrode comprising a flexible insulated conductor having a proximal end adapted for connection to a power supply and a distal end portion comprising an uninsulated, conductive, rigid helix adaptedfor attachment to body tissue. Means located and engageable at substantially the distal end portion are provided for facilitating the screwing of the helix into body tissue. A device is provided with means for firmly holding the means for facilitating the screwing of the helix into bodyv tissue. The device also has means for holding the conductor and for preventing the transmission of torque to the proximal end of the conductor when the helix is being screwed into body tissue.

10 Claims, 4 Drawing Figures PAT'ENTEDJUN 5197s FIG.3

INVENTOR. LEE R. BOLDUC BY I ATTORNEY.

BODY TISSUE ELECTRODE AND DEVICE FOR SCREWING THE ELECTRODE INTO BODY TISSUE BACKGROUND OF THE INVENTION Electrical stimulation of body tissue and organs as a method of treating various pathological conditions is becoming quite common-place. Such stimulation generally entails making some type of electrical contact with the body tissue or organ. In particular, with respect to the heart, electrical leads have been developed in which an electrode formed on the end of the lead are physically implanted into the myocardial tissues. Various electrode structures and various techniques for implanting those structures into the myocardium have been developed. One such technique required a plurality of stab wounds to be made in the myocardium both for the location of the electrode as well as the suturing of the lead to myocardial tissue. Obviously, such wounds are undesirable for a variety of reasons. Other techniques have included the percutaneous insertion through the chest wall or an open wound by means of a hollow needle with the subsequent placement of the electrode into the myocardial tissue. Still another technique involved the deformation or flattening of one convolution of a rigid helix serving as the electrode so that a keyed stylet could engage the deformed convolution to permit the electrode to be screwed into the myocardial tissue. However, this technique requires that the stylet be in physical contact with the helix during insertion into the myocardium and in addition has the undesirable effect of imparting torque to the proximal end of the coiled conductor.

SUMMARY OF INVENTION In the present invention a body implantable electrode assembly is provided in which a flexible insulated electrical conductor has a proximal end thereof adaptable for connection to a power supply and a rigid helix serving as the distal end portion thereof. The rigid helix serves as the electrode to be screwed into the body tissue. This procedure is facilitated by a tool or member which is substantially cylindrically-shaped and having a slot located in one end surface thereof, the slot being substantially orthogonal to the longitudinal axis of the member. A groove is located in the outer surface of the member and extends from the end surface opposite the slotted end surface to just short of the slotted end surface and lies in a plane substantially parallel to the longitudinal axis. Also, starting in the same end surface as the groove is a bore extending for the entire length of the member for receiving the proximal end of the conductor.

The assembly is used during the implantation of the electrode into body tissue. A raised portion on the conductor near the distal end thereof is fitted into the slotted end of the cylindrically-shaped member. The insulated portion of the conductor is fitted into the groove and the remaining proximal portion of the conductor is inserted into the bore, connector end first. In this position the electrode comprising the rigid helix is securely held by the tool and by applying a twisting or rotation of the tool, the helical electrode may be screwed into the tissue, which in the case of the heart is the myocardium. When the electrode is securely screwed into the tissue, the portion of the conductor lying in the groove is removed and then the slotted end of thern'embe r is removed from the raised portion of the conductor.

The present invention has a number of advantages and features which include: (1') the tool used in facilitating the screwing-in of the electrode into the tissue or organ never contacts the electrode; (2) the configuration of the cylindrically-shaped member and the positioning of the conductor with respect thereto prevents any torque from being imparted to the conductor along its entire length during the rotation of the member; (3) the electrode assembly permits the use of wrapped on tinsel wire, rather than a coiled wire, which has great strength and a very good flex tolerance; (4) the electrode is extremely easy to install, reduces patient trauma, effects a very sound electrical connection description taken in connection with the accompanying drawings.

DESCRIPTION OF DRAWINGS FIG. 1 shows a diagram of an implantable lead in accordance with the present invention;

FIG. 2 illustrates an embodiment of the device used in conjunction with the lead of FIG. 1 for screwing the electrode into body tissue;

FIG. 3 is a cross-sectional view of the device shown in FIG. 2; and

FIG. 4 illustrates the lead of FIG. 1 and the device of FIGS. 2 and 3 in operative relationship for the insertion of the electrode into body tissue.

DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 shows an implantable lead 10 which includes a flexible electrical conductor 12. Conductor 12 may, for example, be made of wrapped platinum wire or other suitable conducting material adaptable to the intemal environment of a human or animal body. Wrapped platinum wire is generally comprised of a pluv rality of platinum ribbons each helically wound around a separate electrically non-conductive core and then all the platinum ribbons are helically wound around a central electrically non-conductive core. A specific description of this type of conductor may be found in my US. Pat. No. 3,572,344, issued Mar. 23, 197i, and entitled Electrode Apparatus With Novel Lead Construction." Affixed to the proximal end of conductor 12 is an electrical connector 14 having a tip orextension 16 which may be connected to a suitable implantable or external power supply. Affixed to and serving as the distal end portion of conductor 12 is a rigid helical electrode 18 having several convolutions. Helical electrode 18 is a rigid coil which may, for example, be made of platinum irridium, and terminates in a sharply pointed end 19. Electrode 18 serves as the distal end portion of conductor 12 which may be screwed into body tissue as will be explained later. Electrode l8 and of projection 24 are three spaced, substantially vertical ribs 25 which are adapted to permit projection 24 to be more securely engaged as will be explained. The distal portion of casing 22 is terminated and shaped as a circular disc 26 through which helical electrode 18 projects. Helical electrode 18 projects through disc 26 at substantially a right angle to conductor 12. Affixed to the under surface of disc 26 is a circular sheet of netting 28, which may, for example, be made of Dacron which is a trademark of E. I. Du Pont De Nemours and Company for a type of polyester fiber. Netting 28 enhances fibroticgrowth, further insuring a secure connection of the electrode to the tissue.

FIGS. 2 and 3 illustrate the device used in conjunction with lead to facilitate the screwing of electrode 18 into body tissue. Device 40 comprises a substantially cylindrically-shaped member or tool having a longitudi- I nal axis 42 and end surfaces 44 and 46. Member 40 may be made, for example, of a hard plastic material such as Delrin which is a trademark of the E. I. Du Pont De Nemours and Company for acetal resins. Preferably member 40 should be made of a autoclavable material. Formed in end surface 44 is a slot 48. Slot 48 is shaped so as to be adapted to substantially conform to and securely-engage ribs 25 of raised portion 24 of lead 10. The edge defined by end surface 46 is rounded in order to permit member 40 to be used for surgically producing a tunnel in subcutaneous tissue without causing severe tissue damage. Formed in the outer surface of member 40, lying in a plane substantially parallel to axis 42, and extending from end surface 46 for substantially the entire length of member 40 is a groove 50. Groove 40 is substantially aligned with slot 48. Groove 50 is adaptable to receive and securely engage at least a portionof the length of the insulated portion of lead 10 housed in casing 22. Also formed in end surface 46 is an axial opening or bore 52 extending the entire length of member 40 from end surface 46 to slot 48. Bore 52 is adapted to receive at least a portion of the proximal end of lead 10 including connector 14 and tip 16.

FIG. 4 illustrates the operative relationship between lead 10 and member 40 as will now be described. Raised portion 24 is first inserted into slot 48 so that the surfaces defining slot 48 firmly grip ribs 25 to pro vide a friction fit and securely hold projection 24 in the slot. A small loop is left in the portion of casing 22 im- Pointed end 19 is placed against the tissue or organ and member 40 is rotated as indicated by the curved arrow-The diameter of the wound is confined to the diameter of the wire of which helical electrode 18 is formed. As member 40 is rotated, helical electrode 18 is firmly screwed into the tissue or organ until netting 2'8 firmly contacts the outer-surface of the organ. Netting 28 helps to provide a more secure and permanent placement of electrode 18 in the tissues in that the netting promotes more rapid fibrosis in andaround the netting, as well as around disc 26 and raised portion 24 of casing 22.

When electrode 18 is firmly screwed into the tissue and netting 28 firmly seated against theouter surface of the tissue or organ, the connector-end of lead '10 is removed from bore 52, the portion of casing 22 lying in groove 50 is removed from the groove,and then slot 48 is disengaged from projection 24 thereby freeing lead 10 from member 40. With the use of the procedure described, since projection 24 and a substantial portion of casing 22 are firmly secured during the rotation of member 40, no torque is transmitted to lead 10 and consequently to conductor 12. In addition, before, during, and after the insertion procedure, member 40 in no way contacts the helical convolutions of electrode 18, permitting a very positive action in screwing electrode 18 into the tissue at substantially a angle. Then, if desired, end surface 46 of member 40 may be used to provide a tunnel in the subcutaneous layers. The connector-end oflead 10 may then be inserted into bore 52 and member 40 guided back through the tunnel in order to facilitate connecting tip 16 of conductor 14 to a power supplyv to be implanted under the skin.

Obviously, many modifications and variationsof the present invention are possible in the light of the above teachings even though only one embodiment of the invention has been shown. For example, the presence and use of bore 52 are entirely optional and do not affect the screwing of the electrode into body tissue. Also, the exact shape and size of the projection 24 and the matching slot 48, as well as the shape, size and extent of groove 50, are all subject to modification within the scope of the present invention. It is therefore to be understood, that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

What is claimed is:

I. In a body implantable electrode assembly that includes a flexible electrical conductor means having a proximal end thereof adaptable for connection to a power supply and wherein the distal end portion of the conductor comprises an uninsulated, conductive, rigid helix adapted for attachment to body tissue, the improvement which comprises:

means located and engageable at substantially said distal end portion for facilitating the screwing of said helix into body tissue and for preventing the transmission of torque to said proximal end of said conductor means when said helix is being screwed into body tissue, said means including further friction increasing means adapted to be firmly held by means used for screwing said helix into body tissue, said means and said further means being substantially inert to body fluids and tissue; and

means substantially inert to body fluids and tissue enclosing substantially the entire length of said conductor means except for said distal endportion for permitting said electrode assembly to be implanted within the body.

2. The invention as set forth in claim 1 wherein:

said means located and engageable at the distal end portion comprises a raised section of insulation surrounding the conductor, and wherein;

said further means comprises at least one rib on the outer surface of said raised section adapted to frictionally fit with a member having a slot defined therein for receiving said raised section and said at least one rib.

3. The invention as set forth in claim 1 wherein:

said conductor comprises a plurality of electrically non-conducting cores, a plurality of conductive metal ribbons, each of said ribbons being helically wound around a separate one of said electrically non-conducting cores, and a central electrically non-conducting core, said plurality of ribbons wound on said cores being helically wound around said central core.

4. The invention as set forth in claim 3 wherein:

said ribbons are made of platinum. 5. A device for use in screwing the conductive uninsulated distal end portion of a body implantable electrode assembly into body tissue, said assembly being of the type including a flexible insulated electrical conductor having a proximal end thereof adaptable for connection to a power supply, said device comprising:

first means for firmly holding a portion of said electrode assembly near said uninsulated distal end portion thereof, said first means contacting only an insulated portion of said electrical conductor; and

second means adapted to contact an insulated portion of said insulated conductor for holding said conductor to facilitate the screwing of said distal end portion into body tissue and for preventing the transmission of torque to said proximal end of said conductor means when said distal end portion is being screwed into body tissue.

6. A device for use in screwing the conductive, uninsulated distal end portion of a body implantable electrode assembly into body tissue, said assembly being of the type including a flexible insulated electrical conductor having a proximal end thereof adaptable for connection to a power supply, said device comprising:

a substantially cylindrically-shaped member having a pair of end surfaces;

one end surface of said member having a slot defined therein for engagement with a portion of said electrode assembly located proximally with respect to said distal end portion thereof; and the outer surface of said member having a groove formed therein, said groove lying substantially parallel to the longitudinal axis of said member, said groove being engageable with a portion of said insulated conductor, whereby rotation of said member about said longitudinal axis permits said distal end portion to be screwed into body tissue without said member contacting said distal end portion and without imparting any torque to said conductor along its length.

7. The device as set forth in claim 6 wherein:

said member has an axially-extending opening extending from said one end surface to said other end surface.

8. The device as set forth in claim 6 wherein:

said groove extends from said other end surface toward said one end surface.

9. The combination of a body implantable electrode assembly including a flexible insulated electrical conductor means having a proximal end thereof adaptable for connection to a power supply and a conductive uninsulated distal end portion and a device for use in screwing the conductive, uninsulated distal end portion of said assembly into body tissue, said combination comprising:

an electrical conductor having its uninsulated distal end portion formed as a rigid helix;

slot engageable means surrounding said conductor proximally with respect to said distal end portion; first means defining a slot for rigidly engaging said slot engageable means; and second means formed integrally with said first means for rigidly engaging a portion of said insulated conductor, whereby rotation of said first and second means permits said distal end portion to be screwed into body tissue without said first and second means coming into contact with said distal end portion and without imparting any torque to said conductor along its length. 10. The combination as set forth in claim 9 wherein: said device for screwing comprises a substantially cylindrically-shaped member having an axiallyextending bore, said bore extending from said one end surface to said other end surface of said member, said bore being adapted to receive the proximal end of said conductor;

said first means comprises one end surface of said member having said slot formed therein; and

said second means comprises the outer surface of said member having a groove formed therein, said groove lying substantially parallel to the longitudinal axis of said member and extending from the other end surface of said member toward said one end surface.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3416534 *Apr 11, 1966Dec 17, 1968Gen ElectricBody organ electrode
US3472234 *Aug 15, 1967Oct 14, 1969Gen ElectricBody organ electrode
US3572344 *Dec 31, 1968Mar 23, 1971Medtronic IncElectrode apparatus with lead construction
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3875947 *Feb 19, 1974Apr 8, 1975Jula James LDevice for screwing body tissue electrode into body tissue
US3910271 *May 24, 1974Oct 7, 1975Theodore C NewardMethod of making a bipolar electrode structure
US3924639 *Jul 17, 1974Dec 9, 1975Cordis CorpCardiac pacer lead system for interim pacing during pacer changeover
US3943936 *Oct 9, 1973Mar 16, 1976Rasor Associates, Inc.Self powered pacers and stimulators
US3964473 *Sep 19, 1973Jun 22, 1976Telectronics Pty. LimitedBone prosthesis
US4010757 *Jan 24, 1975Mar 8, 1977Jula James LAuxiliary tool for removing electrode from holder
US4010758 *Sep 3, 1975Mar 8, 1977Medtronic, Inc.Bipolar body tissue electrode
US4011861 *Oct 28, 1975Mar 15, 1977Case Western Reserve UniversityImplantable electric terminal for organic tissue
US4026300 *Mar 14, 1975May 31, 1977Liberty MutualMethod and apparatus for interfacing to nerves
US4026301 *Apr 21, 1975May 31, 1977Medtronic, Inc.Apparatus and method for optimum electrode placement in the treatment of disease syndromes such as spinal curvature
US4030509 *Sep 30, 1975Jun 21, 1977Mieczyslaw MirowskiImplantable electrodes for accomplishing ventricular defibrillation and pacing and method of electrode implantation and utilization
US4031882 *Jun 28, 1976Jun 28, 1977Liberty Mutual Insurance CompanyApparatus for interfacing to anatomic signal sources
US4046141 *Jul 14, 1975Sep 6, 1977Liberty Mutual Insurance CompanyMethod and apparatus for interfacing to anatomic signal sources
US4058128 *Aug 26, 1976Nov 15, 1977Frank Howard AElectrode
US4066085 *May 20, 1976Jan 3, 1978Cordis CorporationContact device for muscle stimulation
US4094321 *Feb 7, 1977Jun 13, 1978Rudolph MutoShallow, dome-shaped pacer with bottom storage means for catheter
US4149542 *Jan 28, 1977Apr 17, 1979Siemens AktiengesellschaftEndocardial electrode
US4207903 *Apr 28, 1978Jun 17, 1980Medtronic, Inc.Device for screwing body tissue electrode into body tissue
US4235246 *Feb 5, 1979Nov 25, 1980Arco Medical Products CompanyEpicardial heart lead and assembly and method for optimal fixation of same for cardiac pacing
US4270549 *Apr 30, 1979Jun 2, 1981Mieczyslaw MirowskiMethod for implanting cardiac electrodes
US4271846 *Apr 23, 1979Jun 9, 1981Daig CorporationLead installation tool
US4282885 *Aug 21, 1978Aug 11, 1981Bisping Hans JuergenElectrode for implantation in the heart
US4282886 *Nov 13, 1979Aug 11, 1981Medtronic, Inc.Adhesive bonded positive fixation epicardial lead
US4299239 *Feb 5, 1979Nov 10, 1981Intermedics, Inc.Epicardial heart lead assembly
US4323081 *Jun 30, 1980Apr 6, 1982Medtronic, Inc.Pacing lead
US4355642 *Nov 14, 1980Oct 26, 1982Physio-Control CorporationMultipolar electrode for body tissue
US4444206 *Apr 29, 1982Apr 24, 1984Cordis CorporationMesh tip pacing lead assembly
US4644957 *Apr 8, 1985Feb 24, 1987Ricciardelli Robert HApplicator structure for biological needle probes employing spiral-shaped retaining coils
US4819661 *Oct 26, 1987Apr 11, 1989Cardiac Pacemakers, Inc.Electrode sleeve, crimp tube, recesses containing a drug impregnated matrix
US4865037 *Nov 13, 1987Sep 12, 1989Thomas J. FogartyMethod for implanting automatic implantable defibrillator
US4936306 *Nov 27, 1985Jun 26, 1990Doty James RDevice and method for monitoring evoked potentials and electroencephalograms
US4972847 *Nov 2, 1989Nov 27, 1990Dutcher Robert GPacing lead and introducer therefor
US5052392 *Feb 14, 1990Oct 1, 1991Angeion CorporationCardiac sensing lead
US5143090 *May 30, 1991Sep 1, 1992Possis Medical, Inc.Cardiac lead
US5150709 *Feb 11, 1991Sep 29, 1992Neward Theodore CUse in fetal heart monitoring
US5176137 *Mar 1, 1991Jan 5, 1993Medtronic, Inc.Apparatus for discrimination of stable and unstable ventricular tachycardia and for treatment thereof
US5193535 *Aug 27, 1991Mar 16, 1993Medtronic, Inc.Method and apparatus for discrimination of ventricular tachycardia from ventricular fibrillation and for treatment thereof
US5243980 *Jun 30, 1992Sep 14, 1993Medtronic, Inc.Method and apparatus for discrimination of ventricular and supraventricular tachycardia
US5246014 *Nov 8, 1991Sep 21, 1993Medtronic, Inc.Implantable lead system
US5257621 *Jan 29, 1993Nov 2, 1993Medtronic, Inc.Cardioverter/defibrillator
US5342413 *May 19, 1993Aug 30, 1994Siemens-Elema AbMedical electrode arrangement
US5344430 *Apr 8, 1993Sep 6, 1994Medtronic, Inc.Method and apparatus for termination of ventricular tachycardia and ventricular fibrillation
US5383922 *Mar 15, 1993Jan 24, 1995Medtronic, Inc.RF lead fixation and implantable lead
US5531779 *Jan 24, 1995Jul 2, 1996Cardiac Pacemakers, Inc.Stent-type defibrillation electrode structures
US5851226 *Oct 22, 1996Dec 22, 1998Medtronic, Inc.Temporary transvenous endocardial lead
US5876430 *Dec 17, 1997Mar 2, 1999Medtronic, Inc.Method to stiffen and provide abrasion to connector end of leads
US5928276 *Jun 11, 1998Jul 27, 1999Griffin, Iii; Joseph C.Combined cable and electrophysiology catheters
US6010526 *Sep 18, 1998Jan 4, 2000Medtronic, Inc.Epicardial lead implant tool and method of use
US6718212Oct 12, 2001Apr 6, 2004Medtronic, Inc.Implantable medical electrical lead with light-activated adhesive fixation
US6745079Nov 7, 2001Jun 1, 2004Medtronic, Inc.Electrical tissue stimulation apparatus and method
US6876885Jan 11, 2002Apr 5, 2005Medtronic, Inc.Implantable bifurcated gastrointestinal lead with active fixation
US6952613Jan 11, 2002Oct 4, 2005Medtronic, Inc.Implantable gastrointestinal lead with active fixation
US7146225Oct 30, 2002Dec 5, 2006Medtronic, Inc.Methods and apparatus for accessing and stabilizing an area of the heart
US7251532Oct 17, 2003Jul 31, 2007Medtronic, Inc.Medical lead fixation
US7270669 *Mar 5, 2003Sep 18, 2007Medtronic, Inc.Epicardial lead placement for bi-ventricular pacing using thoracoscopic approach
US7418298Oct 22, 2004Aug 26, 2008Cardiac Pacemakers, Inc.Myocardial lead with fixation mechanism
US7437195Jan 3, 2002Oct 14, 2008Metalure N.V.Regulation of eating habits
US7499757Oct 22, 2004Mar 3, 2009Cardiac Pacemakers, Inc.Absorbable myocardial lead fixation system
US7499759Oct 22, 2004Mar 3, 2009Cardiac Pacemakers, Inc.Distal or proximal fixation of over-the-tether myocardial leads
US7502649Jun 20, 2004Mar 10, 2009Metacure Ltd.Gastrointestinal methods and apparatus for use in treating disorders
US7512442Oct 28, 2005Mar 31, 2009Metacure N.V.Acute and chronic electrical signal therapy for obesity
US7546164Mar 19, 2004Jun 9, 2009Medtronic, Inc.Electrical tissue stimulation apparatus and method
US7720550Dec 3, 2004May 18, 2010Medtronic, Inc.High impedance active fixation electrode of an electrical medical lead
US7840283Sep 21, 2006Nov 23, 2010Pacesetter, Inc.Bipolar screw-in lead
US7862573Apr 21, 2006Jan 4, 2011Darois Roger EMethod and apparatus for surgical fastening
US8170692Jan 29, 2010May 1, 2012Pacesetter, Inc.Implant tool for active fixation lead
US8295932Dec 5, 2006Oct 23, 2012Metacure LimitedIngestible capsule for appetite regulation
US8301256Jun 4, 2006Oct 30, 2012Metacure LimitedGI lead implantation
US8332051May 18, 2010Dec 11, 2012Medtronic, Inc.High impedance active fixation electrode of an electrical medical lead
US8346373Aug 10, 2010Jan 1, 2013Medtronic, Inc.Method and apparatus for delivering a lead to a heart
US8442841Oct 20, 2006May 14, 2013Matacure N.V.Patient selection method for assisting weight loss
US8449569Dec 30, 2009May 28, 2013MiT Capital Partners, LLCApparatus for manipulation of implantable medical device and associated method
US8463404Jan 14, 2007Jun 11, 2013Metacure LimitedElectrode assemblies, tools, and methods for gastric wall implantation
US8612016Aug 18, 2005Dec 17, 2013Metacure LimitedMonitoring, analysis, and regulation of eating habits
US8666495Mar 18, 2005Mar 4, 2014Metacure LimitedGastrointestinal methods and apparatus for use in treating disorders and controlling blood sugar
US8792985Jan 20, 2006Jul 29, 2014Metacure LimitedGastrointestinal methods and apparatus for use in treating disorders and controlling blood sugar
USRE28990 *Feb 6, 1975Oct 5, 1976Corometrics Medical Systems, Inc.Bipolar electrode structure for monitoring fetal heartbeat and the like
DE2917173A1 *Apr 27, 1979Nov 8, 1979Medtronic IncVorrichtung zum anbringen einer elektrode an koerpergewebe
DE3523226A1 *Jun 28, 1985Jan 8, 1987Osypka PeterDefibrillations-elektrode
EP0591680A1 *Sep 2, 1993Apr 13, 1994Pacesetter ABElectrode system for pacemakers
WO1982002663A1 *Feb 4, 1981Aug 19, 1982Mirowski MieczyslawMethod and apparatus for implanting cardiac electrodes
WO1991006339A1 *Oct 30, 1990May 3, 1991Possis Medical IncPacing lead and introducer therefor
WO1992021405A1 *May 29, 1992Dec 10, 1992Possis Medical IncBipolar cardiac lead
WO1998017345A1Oct 14, 1997Apr 30, 1998Medtronic IncTemporary transvenous endocardial lead
WO2004041349A1Oct 27, 2003May 21, 2004Medtronic IncMethods and apparatus for accessing and stabilizing an area of the heart
WO2005037368A1 *Oct 14, 2004Apr 28, 2005Hess Douglas NMedical lead fixation
WO2009134960A2Apr 30, 2009Nov 5, 2009Medtronic, Inc.Extra-cardiac implantable device with fusion pacing capability
Classifications
U.S. Classification607/131
International ClassificationA61N1/375, A61N1/05, A61N1/372
Cooperative ClassificationA61N1/0587, A61N1/375
European ClassificationA61N1/375, A61N1/05P