Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3738372 A
Publication typeGrant
Publication dateJun 12, 1973
Filing dateJan 13, 1972
Priority dateJan 13, 1972
Publication numberUS 3738372 A, US 3738372A, US-A-3738372, US3738372 A, US3738372A
InventorsShioshvili T
Original AssigneeShioshvili T
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for application of local hypothermy to the kidney
US 3738372 A
Abstract
An apparatus for the application of local hypothermy to the kidney, comprising a kidney-cooling heat exchanger made as a confined chamber whose inside surface is so shaped as to suit the renal shape. The walls of the cooling heat exchanger are made double for the refrigerant to circulate therebetween, and fabricated from an elastic material.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 Shioshvili 1 APPARATUS FOR APPLICATION OF LOCAL HYPOTHERMY TO THE KIDNEY [76] Inventor: Tamaz Iosifovich Shioshvili, ul. Barnova, 148, kv. l7, Tbilisi,

USSR.

[22] Filed: Jan. 13, 1972 21 Appl. No.: 217,565

[52] U.S. c1. 128/400, 128/402 [51] 1111. c1. A611 7/00 [58] Field of Search 128/400, 402, 258,

[5 6] References Cited UNITED STATES PATENTS 2,260,134 10/1941 Ballman 128/400 [11] 3,738,372 June 12, 1973 3,091,242 5/1963 Johnson et al 128/402 1,896,953 2/1933 Hassell 128/400 X 3,238,944 3/1966 Hirschhom 128/400 Primary Examiner-Lawrence W. Trapp Attorney-Eric H. Waters, John G. Schivartz and .1.

Harold Nissen [57] 1 ABSTRACT An apparatus for the application of local hypothermy to the kidney, comprising a kidney-cooling heat exchanger made as a confined chamber whose inside surface is so shaped as to suit the renal shape. The walls of the cooling heat exchanger are made double for the refrigerant to circulate therebetween, and fabricated from an elastic material.

2 Claims, 3 Drawing Figures APPARATUS FOR APPLICATION OF LOCAL HYPOTHERMY TO THE KIDNEY This invention relates generally to the art of medicine and has particular reference to apparatus for applying local hypothermy to the kidney excluded from the blood circulation.

Known in the present day medical practice is an apparatus for applying local hypothermy to the kidney, comprising a heat-exchanger to cool down the kidney, which is essentially a big-diameter plastic tube, wherealong refrigerant or cooling agent is free to circulate. The tube embraces the kidney as a ring and due to being in permanent contact therewith, cools it down.

However, said known apparatus suffers from the disadvantage that the distal margin, the portal region or the hilum renis and partly the poles of the kidney, i.e., about 30 percent its external surface, prove to be out of contact with the cooling tube, which results in an inadequate cooling of the kidney and, consequently, in a low rate of cooling thereof.

Another apparatus of the characterset forth above is now known to be used, wherein the heat exchanger is made as two hemispheres formed by a coiler element made of a plastic tube, wherealong refrigerant is under circulation. The kidney being cooled, when placed in between said hemispheres, is in contact with the heat exchanger with but separate areas of its outer surface, this being due to the spherical-shape heat exchanger that is out of correspondence with the shape of the kidney and, besides, due to the fact that the tubes forming the hemispheres, contact the kidney only along the tangential lines.

One more apparatus for the application of hypothermy to the kidney is known to use heretofore,

. wherein the heat exchangeris composed of two stainless-steel members forming a confined space or chamher, said members being kidney-shaped and having double walls for the refrigerant to circulate therebetween.

A disadvantage inherent in the aforesaid heat exchanger resides in the fact that even a great number of diversely shaped heat exchangers will fail to cover a variety of sizes and shapes of the renal curvature with the result that said heat exchangers provide the contact of the kidney with the walls of the heat exchanger only at some separate points.

Thus, due to inadequate contact with the surface, none of the hitherto known apparatus is capable of uniforrnly reducing the temperature of the kidney from 37 down to 20C within a period of time shorter than 8-10 minutes.

Such a low rate of cooling is undesirable not only on account of the fact that is prolongs the period of useless ischaemia and delays the operation but, largely, due to the fact that low cooling rate of the kidney being operated prolongs the period of discrepancy between high energy demand of the renal tissue and a limited amount of energy sources. Thus, even a 8l0-minute period of renal ischaemia occurring in an inadequately cooled .kidney, entails adverse functional sequelae; therefore,

cutting down of the cooling period by every minute is conducive to the successful outcome of the operation.

On the other hand, too high a cooling rate attainable due to the use of more frigorific refrigerants may inflict acceleration of the cooling rate is the attaining of a full contact of the refrigerant with the renal surface and, thereby, more complete heat transfer process.

It is therefore an essential object of the present invention to provide such an apparatus for the application of local hypothermy to the kidney that would comprise a heat exchanger capable of an adequate and safeful cooling of the human kidney of any size and configuration, this being due to a complete adherence of the walls thereof to the entire external renal surface and more perfect heat transfer process.

Said object is accomplished due to the fact that in an apparatus for the application of local hypothermy to the kidney, comprising a cooling heat exchanger made as a confined space or chamber having double walls for the refigerant to circulate therebetween and the inside surface whose shape corresponds to the renal shape, and also incorporating a reservoir for the refrigerant to hold and a pump for the refrigerant to recirculate between the cooling heat exchanger and the refrigerantcontaining reservoir, according to the invention the walls of the cooling heat exchanger are made of an elastic material.

It is expedient that the walls of the cooling heat exchanger be made of rubber.

In the herein-proposed apparatus, when the heat exchanger is moderately filled with refrigerant, a close adherence of the inside surface thereof to the kidney is attained, which establishes the best conditions for a uniform, quick and safe heat transfer to occur. This enables a 3-4 fold increase in the renal cooling rate as compared to the best of the hitherto-known apparatus of similar purpose.

cold injury upon the kidney (cold ulcers, spasms of blood vessels); that is why the optimal way of maximum The apparatus is able to adequately and safely cool the kidney of an adult from 37 down to 20 within 23.5 minutes and the kidney ofa child, for l-l .5 minutes. When used in experiments on dogs the apparatus is instrumental in cooling down the kidney from 37 to FIG. 1 diagrammatically illustrates an apparatus for the application of local hypothermy to the kidney, according to the invention;

FIG. 2 is an enlarged-scale view of the heat exchanger of the apparatus, showing its wallpartly cut away, according to the invention; and

FIG. 3 is a diagrammatic cross-sectional view of the heat-exchanger walls, taken through the refrigerantcarrying tubes, according to the invention.

Now referring to the Drawings, the apparatus for the application of local hypothermy to the kidney comprises a refrigerant tank 1 which is essentially a Dewar vacuum flask provided with. a' union 2 at the bottom thereof, connected to a rubber tube 3 part of which is accommodated inside the housing of a rotary roller pump 4. Rollers 5 of the pump 4 with their spindles 6 are fixed to a hub 7 set on a shaft 8 of a speed reducer 9; the latter is connected to a shaft 10 of an electric' chamber whose inner surface is shaped to suit the shape ofa kidney. A space 15 confined in between the elastic jackets l3 and 14 communicates with the tube 3 running from the rotary roller pump 4 and with a tube 16 through which the space 15 communicates with the tank 1, both of the tubes 3 and 16 being connected to the space 15 in such a way as to let the refrigerant fillthe entire space 15.

A wedge-like recess 17 (FIG. 2) made in the heat exchanger 12 is for convenience in the application of a clamp to the vascular pedicle or the crus renis.

The heat exchanger 12 has also slots 18 to facilitate fitting of the heat exchanger 12 onto the kidney.

The apparatus for the application of local hypothermy to the kidney operates as follows.

The tank 1 (FIG. 1) is filled with the refrigerant, viz., a 96-percent ethanol cooled down to lC.

Then the electric motor 11 is switched on to impart rotation via the speed reducer 9 to the hub 7 connected to the rollers 5. The rollers 5 ride on the tube 3 in the direction indicated with the arrow in the Figure, thus forcing said tube to the inner wall of the housing of the rotary roller pump 4. As a result, the refrigerant from the tank 1 is forced out along the tube 3 to the heat exchanger 12 which is fitted onto the kidney being cooled. From the heat exchanger 12 the refrigerant flows along the tube 16 to return into the tank 1. The

- refrigerant passing through the space (FIG. 2) of the heat exchanger 12 and the surface of the heat exchanger 12 contacting the kidney, have a temperature from +1 to +3C.

The degree of filling of the space 15 of the heat exchanger 12 with the refrigerant depends upon the extent to which the tube 16 is compressed or pinched. When the space 15 is moderately filled with the refrigerant, the inner elastic jacket 14 of the heat exchanger- 12 is made to snugly fit to the kidney over the entire surface thereof which provides for the best conditions for an adequate and rapid heat extraction from the kidney to apply hypothermy thereto.

The elastic jackets 13 and 14 of the heat exchanger 12 are made of rubber, their optimum thickness being 0.4-0.7 mm which enables both the required strength and heat conductance of the walls of the heat exchanger 12 to be attained.

The use of rubber as the material of the heat exchanger is due to its high elasticity and resilience which makes it possible to easily control the degree of filling of the heat exchanger 12 during the operation of the apparatus to suit the size and shape of the kidney being cooled.

I claim:

1. An apparatus for the application of local hypothermy to the kidney, comprising: a cooling heat exchanger made as a confined chamber whose inside surface is so shaped as to suit the renal shape; double walls of said cooling heat exchanger adapted for the refrigerant to circulate therebetween and made of an elastic material; a recess made in said cooling heat exchanger for the kidney to accommodate; a refrigerant tank; a pump for the refrigerant to recirculate between said tank and said cooling heat exchanger.

2. An apparatus as claimed in claim 1, wherein said double walls of the cooling heat exchanger are made of rubber.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1896953 *May 18, 1931Feb 7, 1933Starke Hassell CecilElectric ice cap
US2260134 *Oct 27, 1939Oct 21, 1941William H BallmanBody pad
US3091242 *Apr 4, 1960May 28, 1963Garrett CorpApparatus for local hypothermia
US3238944 *Oct 8, 1962Mar 8, 1966Max L HirschhornTemperature controlling device for living organs
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3865116 *Apr 9, 1973Feb 11, 1975Brooks Harold WMethod of controlling tissue hypothermia
US3967627 *Nov 18, 1974Jul 6, 1976Moore-Perk CorporationHot/cold applicator system
US4111209 *Apr 18, 1977Sep 5, 1978Datascope CorporationTopical hypothermia apparatus and method for treating the human body and the like
US4154245 *Jul 11, 1977May 15, 1979Daily Pat OApparatus for local hypothermia
US4259961 *Jan 24, 1979Apr 7, 1981Hood Iii Andrew GCooling pad
US4335726 *Jul 11, 1980Jun 22, 1982The Kendall CompanyTherapeutic device with temperature and pressure control
US4338944 *Jun 16, 1980Jul 13, 1982The Kendall CompanyTherapeutic device
US4605006 *Feb 28, 1984Aug 12, 1986Minnesota Mining And Manufacturing CompanyHypothermic protection pad
US4934996 *Jan 31, 1986Jun 19, 1990Boston Scientific CorporationPressure-controlled intermittent coronary sinus occlusion apparatus and method
US4969470 *Oct 4, 1989Nov 13, 1990Boston Scientific CorporationHeart analysis using pressure-controlled intermittent coronary sinus occlusion
US4971056 *Aug 7, 1989Nov 20, 1990Daily Medical Products IncorporatedArcuate shaped cooling jacket
US5014695 *Oct 25, 1989May 14, 1991Benak Arnold MKidney cooling jacket
US5174285 *Jan 8, 1990Dec 29, 1992Lake Shore Medical Development Partners Ltd.Localized heat transfer device
US5344436 *Mar 16, 1992Sep 6, 1994Lake Shore Medical Development Partners, Ltd.Localized heat transfer device
US6165207 *May 27, 1999Dec 26, 2000Alsius CorporationMethod of selectively shaping hollow fibers of heat exchange catheter
US6197045Jan 4, 1999Mar 6, 2001Medivance IncorporatedCooling/heating pad and system
US6287326Aug 2, 1999Sep 11, 2001Alsius CorporationCatheter with coiled multi-lumen heat transfer extension
US6299599Oct 27, 1999Oct 9, 2001Alsius CorporationDual balloon central venous line catheter temperature control system
US6368304May 5, 1999Apr 9, 2002Alsius CorporationCentral venous catheter with heat exchange membrane
US6375674Jan 3, 2000Apr 23, 2002Medivance, Inc.Cooling/heating pad and system
US6393320Jul 24, 2001May 21, 2002Alsius CorporationMethod for treating cardiac arrest
US6409747Feb 11, 2000Jun 25, 2002Alsius CorporationIndwelling heat exchange catheter and method of using same
US6419643Aug 18, 1999Jul 16, 2002Alsius CorporationCentral venous catheter with heat exchange properties
US6447474Sep 15, 1999Sep 10, 2002Alsius CorporationAutomatic fever abatement system
US6450990Apr 19, 1999Sep 17, 2002Alsius CorporationCatheter with multiple heating/cooling fibers employing fiber spreading features
US6458150Mar 11, 1999Oct 1, 2002Alsius CorporationMethod and apparatus for patient temperature control
US6474093Oct 23, 2001Nov 5, 2002Cosmo Tech Development, Inc.Expanding barrel system for cooling beverages
US6516224Jul 24, 2001Feb 4, 2003Alsius CorporationMethod for treating cardiac arrest
US6572640Nov 21, 2001Jun 3, 2003Alsius CorporationMethod and apparatus for cardiopulmonary bypass patient temperature control
US6582398Sep 22, 2000Jun 24, 2003Alsius CorporationMethod of managing patient temperature with a heat exchange catheter
US6589271Dec 13, 2001Jul 8, 2003Alsius CorporationsIndwelling heat exchange catheter
US6620131Aug 10, 2001Sep 16, 2003Alsius CorporationDual balloon central venous line catheter temperature control system
US6652565Aug 24, 2001Nov 25, 2003Alsius CorporationCentral venous catheter with heat exchange properties
US6716236Oct 19, 2001Apr 6, 2004Alsius CorporationIntravascular catheter with heat exchange element having inner inflation element and methods of use
US6755851May 2, 2002Jun 29, 2004Alsius CorporationIndwelling heat exchange catheter and method of using same
US7077825Jan 16, 2002Jul 18, 2006Radiant Medical, Inc.Method for gastric cooling using balloon catheter
US7278984Dec 31, 2002Oct 9, 2007Alsius CorporationSystem and method for controlling rate of heat exchange with patient
US7641632Aug 31, 2007Jan 5, 2010Zoll Circulation, Inc.System and method for controlling rate of heat exchange with patient
US7896009Jun 26, 2006Mar 1, 2011Zoll Circulation, Inc.Method for gastric cooling using balloon catheter
US8128595Aug 24, 2001Mar 6, 2012Zoll Circulation, Inc.Method for a central venous line catheter having a temperature control system
US8308710Aug 29, 2002Nov 13, 2012Applied Medical Resources CorporationHigh flow-low pressure irrigation system
US8652190Feb 28, 2011Feb 18, 2014Zoll Circulation, Inc.Heat exchange catheter apparatus and method for manipulating patient's body temperature
US8672988Oct 24, 2005Mar 18, 2014Medtronic Cryocath LpMethod and device for local cooling within an organ using an intravascular device
US20090182400 *Jan 5, 2009Jul 16, 2009Zoll Circulation, Inc.Methods and systems for reducing substance-induced renal damage
CN100431505CJan 29, 2004Nov 12, 2008日本麦迪科思株式会社Heating-type balloon catheter device, and elastic tube device and vibrator device for the cathter device
DE3002496A1 *Jan 24, 1980Jul 31, 1980Cobe LabKuehlvorrichtung fuer medizinische zwecke
Classifications
U.S. Classification607/105
International ClassificationA61F7/00, A61F7/10, A61F7/12
Cooperative ClassificationA61F2007/101, A61F7/12, A61F2007/0056
European ClassificationA61F7/12