Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3738623 A
Publication typeGrant
Publication dateJun 12, 1973
Filing dateJan 13, 1971
Priority dateJan 13, 1971
Publication numberUS 3738623 A, US 3738623A, US-A-3738623, US3738623 A, US3738623A
InventorsC Tuckey
Original AssigneeWalbro Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Diaphragm carburetor
US 3738623 A
A diaphragm-controlled carburetor having a pressure pump actuated by engine pulses wherein a pump diaphragm is supported by a pan-shaped side mount spring to assist pressure pulses of the engine in a manner to improve the pump efficiency at both low speed and high speed conditions.
Previous page
Next page
Description  (OCR text may contain errors)

Unite Tuckey States Patent 1 June 12, 11973 DIAPHRAGM CARBURETOR [7 5] Inventor: Charles H. Tuckey, Cass City, Mich.

[73] Assignee: Walbro Corporation, Cass City,


[22] Filed: 'Jan. 13, 1971 [21] Appl. No.: 106,178

-[52] U'.S. Cl 261/35, 261/D1G. 68, 261/69 A [51] Int. Cl. F02m 17/04 [58] Field of Search 261/35, DIG. 68,

261/69 A; 123/139 AH, 73 A, DIG. 6; 417/395, 413, 470, 471; 48/184 [56] References Cited UNITED STATES PATENTS 2,745,390 5/1956 Heidner et a1. 123/73 A 2,823,905 2/1958 2,835,239 5/1958 943,848 12/1909 1,647,768 11/1927 2,297,653 9/1942 Horton et a1. 417/395 2,307,566 1/1943 Browne 417/395 2,653,552 9/1953 Geeraert 417/395 2,831,758 4/1958 Warner et a1. 48/184 3,182,601 5/1965 Johnson 261/DIG. 68 3,250,224 5/1966 Phillips et a]. 261/DIG. 68 3,308,765 3/1967 Mutschler et a1 417/413 X FOREIGN PATENTS OR APPLICATIONS 1,188,366 3/1965 Germany 261/DIG. 68

Primary Examiner-Tim R. Miles Att0rneyBarnes, Kisselle, Raisch & Choate [57] ABSTRACT A diaphragm-controlled carburetor having a pressure pump actuated by engine pulses wherein a pump diaphragm is supported by a pan-shaped side mount spring to assist pressure pulses of the engine in a manner to improve the pump efficiency at both low speed and high speed conditions.

2 Claims, 2 Drawing Figures DIAPHRAGM CARBURETOR This invention relates to aDiaphragm Carburetor and more particularly to an improvement in a fuel pump for such a carburetor.

It is an object of the invention to provide a return spring for a diaphragm of a fuel pump to improve efficiency at both low speed conditions, idle, and at high speed, full throttle.

Other objects and features of the invention relating to details of construction and operation will be apparent in the following description and claims in which the principles of operation of the invention are set forth together with the best mode presently contemplated.

Drawings accompany the disclosure and the various views thereof may be briefly described as:

FIG. 1, a sectional view of a diaphragm carburetor having a fuel pump and a vapor pump incorporated therein.

FIG. 2, a plan view of a diaphragm control plate.

Referring to FIG. 1, a main carburetor housing 120 has a mixing passage 122 with a choke valve 124 an a throttle valve 126. A main fuel passage 130 controlled by a needle valve 132 leads to a fuel well 134 which is connected to a tube 136 a leadingupwardly through the venturi portion of the mixing passage. The tube has multiple outlets 138a for fuel. The well 134 also has an air inlet 136 and a feed port 138 leading to an intermediate fuel supply chamber 140 with suitable fuel passages 142. An idle recess 144 has some intermediate passages 146 connecting to the mixing passage and also a main idle port 148 controlled by a needle valve 150.

In the bottom of the housing 120 is formed a diaphragm chamber 160 closed by a diaphragm 162 which acts on one end of a lever 164 pivoted in the housing and carrying at its other end a fuel inlet valve 166 operating in a suitable seat thimble 168 which has a top port opening to a recess 170. A small flexible member 172 provides an anti-back bleed check valve 174 for the entrance of fuel into the main fuel passage 130 and this member also has a small port 176 which furnishes fuel from the diaphragm chamber to the idle recess 144. The diaphragm 162 is held in place by a first intermediate plate 178 which has a top recess 180 below diaphragm 162 and a bottom recess 182 which serves as a part of a pumping chamber above a diaphragm 184 which is controlled in its motion by a leaf spring member having a pan support portion 186 with a side extension anchoring portion 188 provided with locating tabs 190 clamped against the bottom of the housing 178 by a second intermediate housing plate 192. The pumping chamber 189 is defined by the diaphragm 184 and the shallow opening below it in plate 192.

tion of the pump, the vacuum pulse will draw fuel into.

the chamber and the spring is intended to assist the pressure pulse to return the diaphragm in the pump-out portion of the cycle. It has been found that the pan-type spring shown in FIGS. 1 and 2 assists the weak pressure pulse at low throttle or idle conditions. On the other hand, when at wide open throttle when vacuum pulses are weaker, the pan type spring does not hinder the vacuum action, that is, it does not subtract from the weaker vacuum pulses. The shape of the spring also gives support to the diaphragm, the edges being panned to prevent cutting into the flexible portion thereof. Accordingly, the pump performs well at the low end idle and, in contrast to the coil spring, does not detract from operation at the high end full throttle. The diaphragm member 184 also has a valve flap 196 backed by a suitable coil spring to control a passage which will be described below.

At the left-hand portion of the assembly, as shown in FIG. 1, a pump diaphragm 200 is provided between recesses in plate 178 and a second intermediate plate 192, this being a secondary vapor pump which has a disc-like inlet valve 202 and a flap-type outlet valve 204. The diaphragms 184 and 200 are pulsed by engine pulses through a connection conduit 206 leading from a crankcase connection of an internal combustion engine to the chamber 182 and thence to a connecting passage 208 to the diaphragm 200.

The bottom side of the intermediate plate 192 has two flat surface recesses 210 and 212 which serve as portions of booster chambers in conjunction with opposed recesses 214 and 216 in a third intermediate plate 220 which holds a diaphragm member 222 in position between these respective chambers. This diaphragm member 222 also provides a flap valve 224 for the pump diaphragm 184. In the bottom of the third intermediate plate 220 is a chamber 226 which provides an inlet chamber together with an annular chamber 228 which surrounds a fuel inlet 230 leading from a tank T.

A filter screen 232 serves to filter fuel entering the chamber 226 before it passes through the valve 224. The normal flow of fuel for the carburetor system will originate at the tank T and flow through the passage 230 and the filter 232 to the valve 224 in response to fluctuation of the fuel pump diaphragm 184. Fuel will then flow through passages leading to the valve 196 to an upwardly extending passage 240 terminating at the recess 170 at the top of the fuel inlet valve. Fuel will then move through the fuel inlet valve 166 in response to control of the lever 164 and the diaphragm 162 so that it is available to the main jet through the one-way valve 174 and also to the intermediate flow chamber and the idle chamber 144. Fuel will thus be available to the mixing chamber as it is called for by reason of the adjustment of the choke and throttle.

The pulse chambers formed by the respectively shallow pockets 210-214 and 212-216 serve to enhance the flow of fuel. It will be noted that chambers 214 and 212 are connected to atmosphere. Chamber 210 is connected to the fuel passage 240 and the chamber 216 is connected to the fuel recess 226.

The vapor removal system of the carburetor is under the control of the pump diaphragm 200 and its respective valves 202 and 204. The inlet valve 202 is connected through a passage 242 which leads to the diaphragm chamber directly adjacent the valve 166 which is a high point in the fuel reservoir above the diaphragm. Thus, any vapor and foam which is created in the diaphragm chamber by reason of the flow of the fuel and the vibration of the carburetor will be pulled through the inlet valve 202 and pushed to the outlet valve 204 which leads to a down passage 244 through the plates 192, 220, and the bottom plate 250 which has formed therein an outlet 252 which will be connected to a fuel tank T. Thus, the out-flow of the vapor pump to passage 244 will carry vapor from the top of diaphragm chamber 160 to the tank. This permits the diaphragm 162 and the related inlet valve 166 to control liquid fuel only and prevents a vapor build-up which interferes with the control system built for handling liquid fuel.

It will be noted that since the pump 200 is actuated by pressure pulsations from the engine, it pumps most vigorously at part or idle throttle conditions when the crankcase pulses are longer and stronger. Since this is the time that the least fuel is being pulled through the carburetor and also the least cooling is being accomplished in the engine cavity, the heat build-up at the carburetor location is apt to be greatest. This contributes to the vaporization conditions. Thus, the pump 200 is most effective when most needed.

What is claimed as new is as follows:

1. A fuel pump for use in a diaphragm-controlled carburetor comprising:

a. a first carburetor section having a pump chamber formed therein,

b. a second carburetor section overlying the first section having a pump chamber formed therein,

c. a diaphragm lying between said sections having its periphery captured therebetween and dividing said recess formed by said chambers into a pumping chamber to be connected to a source of fuel and a pulse chamber for receiving pulses from an engine crankcase, and

d. a spring assist member lying against the diaphragm on the pulse chamber side of said diaphragm comprising a circularly shaped resilient member overlying a substantial portion of the area of said diaphragm only at the center thereof and an integral, co-planar, radial extension from said member having a distal end clamped between said sections, the said member serving as the sole resilient force on the said diaphragm by reason of the inherent resilience of said radial extension.

2. A fuel pump for use in a diaphragm-controlled carburetor comprising:

a. a carburetor body having a pump chamber,

b. a diaphragm lying across said chamber to divide the chamber into a pulse chamber to receive pulses from an engine crankcase and a pumping chamber to be connected to a source of fuel,

c. a spring assist member lying on the pulse chamber side of said diaphragm comprising a circularly shaped member overlying and in contact with a substantial portion of the area of said diaphragm only at the center thereof, and

d. resilient means forming an integral part of said member co-planar therewith and extending radially from said member and rigidly mounted in said body to support said member in said chamber, the said resilient means serving as the sole resilient force on the diaphragm.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US943848 *Jul 6, 1908Dec 21, 1909Simonds Heating And Specialty CompanyVacuum-pump.
US1647768 *Apr 12, 1927Nov 1, 1927Albert E BerdonPressure fuel-feed system
US2297653 *May 27, 1940Sep 29, 1942Trico Products CorpFuel pump
US2307566 *Jul 31, 1940Jan 5, 1943Wright Aeronautical CorpPneumatic drive fuel pump
US2653552 *Aug 15, 1951Sep 29, 1953Geeraert CorpHigh-pressure pump
US2745390 *May 15, 1952May 15, 1956West Bend Aluminum CoTwo-cycle internal combustion engine with improved fuel induction means
US2823905 *Dec 13, 1954Feb 18, 1958Tillotson Mfg CoCharge forming and fuel feeding apparatus
US2831758 *Aug 5, 1954Apr 22, 1958Bert S DavenportGaseous fuel carbureting system
US2835239 *Feb 3, 1955May 20, 1958Kiekhaefer CorpFuel pump
US3182601 *Nov 26, 1962May 11, 1965Acf Ind IncFuel pump
US3250224 *Aug 20, 1962May 10, 1966Tillotson Mfg CoPumping means for a charge forming apparatus
US3308765 *May 21, 1965Mar 14, 1967Erich MutschlerPump construction
DE1188366B *Apr 7, 1961Mar 4, 1965Fritz HintermayrVergaser fuer Brennkraftmaschinen mit einer durch eine Membran geregelten Kraftstoffzufuhr
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4003968 *Oct 31, 1975Jan 18, 1977Borg-Warner CorporationCharge forming method and apparatus
US4046844 *Jun 30, 1976Sep 6, 1977Borg-Warner CorporationCarburetor construction
US4139580 *May 13, 1977Feb 13, 1979Walbro CorporationSelf-lift carburetor
US4159012 *Jun 13, 1977Jun 26, 1979Textron Inc.Diaphragm type carburetor for a two-stroke cycle engine
US4168288 *Jun 29, 1978Sep 18, 1979Briggs & Stratton CorporationCombined carburetor and impulse fuel pump
US6079379 *Apr 23, 1998Jun 27, 2000Design & Manufacturing Solutions, Inc.Pneumatically controlled compressed air assisted fuel injection system
US6092793 *Aug 27, 1998Jul 25, 2000Keihin CorporationConstant vacuum type carburetor
US6135429 *Nov 4, 1998Oct 24, 2000Walbro CorporationCarburetor with automatic fuel enrichment
US6273037Aug 21, 1998Aug 14, 2001Design & Manufacturing Solutions, Inc.Compressed air assisted fuel injection system
US6286469May 24, 2000Sep 11, 2001Design & Manufacturing Solutions, Inc.Pneumatically controlled compressed air assisted fuel injection system
US6293235Feb 14, 2000Sep 25, 2001Design & Manufacturing Solutions, Inc.Compressed air assisted fuel injection system with variable effective reflection length
US6295957Feb 28, 2000Oct 2, 2001Design & Manufacturing Solutions, Inc.Compressed air assisted fuel injection system
US6446939 *Aug 29, 2000Sep 10, 2002Walbro CorporationModular diaphragm carburetor
US6523809 *Mar 22, 2001Feb 25, 2003Walbro CorporationCarburetor with fuel enrichment
US6622992 *Mar 11, 2002Sep 23, 2003Walbro CorporationCarburetor with fuel enrichment
US6644631 *Nov 19, 2002Nov 11, 2003Walbro Japan, Inc.Diaphragm-type carburetor
US6715737 *Aug 23, 2002Apr 6, 2004Walbro CorporationFuel metering system for a carburetor
US7527248 *Aug 28, 2007May 5, 2009Emak S.P.ADiaphragm carburettor with single pump and meter block for internal combustion engines
U.S. Classification261/35, 261/DIG.680, 261/69.2
International ClassificationF02M17/04
Cooperative ClassificationF02M17/04, Y10S261/68
European ClassificationF02M17/04
Legal Events
Apr 9, 1991ASAssignment
Effective date: 19910325