Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3740187 A
Publication typeGrant
Publication dateJun 19, 1973
Filing dateJun 3, 1971
Priority dateJun 3, 1971
Also published asDE2226784A1, DE2226784B2, DE2226784C3, US3766078, US3795625
Publication numberUS 3740187 A, US 3740187A, US-A-3740187, US3740187 A, US3740187A
InventorsKowalski X
Original AssigneeMonsanto Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Processes for bleaching textiles
US 3740187 A
Abstract
Textile fibers which have been de-sized and scoured are bleached with an alkaline aqueous solution containing a peroxy compound and an alkali metal silicate and a "stabilizer" for (1) reducing the decomposition of said peroxy compound and (2) preventing silicate deposition, and which is, for example, a combination of nitrilotriacetic acid, 1-hydroxy ethylidene-1,1-diphosphonic acid, and a magnesium or calcium salt, e.g., magnesium sulfate.
Images(6)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 1111 3,740,187 Kowalski 1 June 19, 1973 PROCESSES FOR BLEACHING TEXTILES 3,630,921 12/1971 Disch et al 252/99 75 l X l C C 3,234,140 2/1966 lrani nventor. avier owa s 1, reve oeur, Mo. 3,356,613 12/1967 Gedge [73] Assignee: Monsanto Company, St. Louis, Mo. 3,368,978 2/1968 lrani 3,556,710 1/1971 Stalter 252/99 [22] 7 Filed: June 3, 1971 [21] Ap No; 149,856 Primary Examiner-Mayer Weinblatt AttarneyHerbert B. Roberts, James J. Mullen and N l E. W'll' 52 us. c1. 8/111, 8/138, 8/139,- ea 1 252/95, 252/99, 252/186 51 Int. Cl D06l 3 02 ABSTRACT [58] Field (1188811311 252/99, 95, 186; Textile fibers which h been i and scoured 8/1 1 1 are bleached with an alkaline aqueous solution containing a peroxy compound and an alkali metal silicate and [56] References C'ted a stabilizer for (l) reducing the decomposition of UNITED STATES PATENTS said peroxy compound and (2) preventing silicate de- 3,384,596 5/1968 Moyer 252/95 x position, and which for p a combination of 3,579,287 5/1971 nitrilotriacetic acid, l-hydroxy ethylidene-l,l- 3,122,417 2/1964 diphosphonic acid, and a magnesium or calcium salt, 3,553,497 1/1971 e.g., magnesium sulfate. 3,392,121 7/1968 3,639,281 2/1972 5 Claims, No Drawings PROCESSES FOR BLEACI-IING TEXTILES The present invention relates to an improved process for bleaching textile materials. Specifically, this invention is concerned with bleaching materials with an aqueous alkaline solution which contains a peroxy compound and an alkali metal silicate and further containing a novel synergistic combination which functions as a stabilizing agent for the reduction of the decomposition of the peroxy compound and prevention of silicate deposition.

Preparing textile materials for bleaching, dyeing and finishing generally involves a series of well known steps. The material is first singed to burn off excess fibers, desized to remove any artificial coating put on the material for processing, rinsed, and then it is scoured. After scouring, the material is again rinsed and then, in succession, it is bleached, soured, rinsed, mercerized, rinsed, dyed or printed, and finished. These steps are more specifically described in Chemistry and Chemical Technology of Cotton, lnterscience Publishers, Inc., New York, NY. 1955, edited by Kyle Ward, Jr., and which is incorporated herein by reference. A discussion per se of the bleaching step starts on Page 190 of said publication.

In general, bleaching is the fifth major step in the above-described textile finishing process. The general purpose of the bleaching step is to oxidize any foreign matter on the textile material in order to provide a substantially absorbent and white material which is readily acceptive to dyeing.

The bleaching (oxidative) process is desirable in order to attempt to remove impurities or foreign matter and thus ultimately prepare a whiteness in color product suitable for subsequent dyeing and effecting a uniformity of color thereon. Generally, commercial bleaching (including boiling) processes involve contacting the textile material with alkaline aqueous solution (bath) containing a peroxy compound such as hydrogen peroxide and an alkali metal silicate such as sodium silicate.

The use of a stabilizing agent to minimize the decomposition of the peroxy compound is well established in the peroxy bleaching art, because, among other things, the oxygen released by decomposition of the peroxy compound in general has no bleaching action as contrasted with the normal autodecomposition of the peroxy compound which does function as a bleaching agent. In fact, the decomposition of the peroxy compound may be harmful. For example, cellulosic materials in strongly alkaline peroxy (bleaching) solutions are attacked by the oxygen from decomposition with the result of loss of strength by the materials. In general, stabilizing agents are of various and diverse nature and the ability of a material to be an effective stabilizing agent is apparently unpredictable. For example, although a few sequestering agents such as sodium pyrophosphate can be considered as stabilizing agents, the majority of sequestering agents are not considered to be effectivestabilizing agents while such nonsequestering materials as sodium stannate and sodium silicate have been reported as being effective stabilizing agents. Therefore, due to their unpredictability and their diverse nature, the stabilizing agents for peroxy solutions vary in their ability with changes in the prevailing conditions such as pH, temperature conditions and the like of the peroxy solutions. For todays bleaching conditions the stabilizing agent should preferably 'be effective in alkaline solutions and under relatively high temperature conditions which are frequently encountered in practice as well as being compatible with other additives usually present in the peroxy bleaching solutions such as optical whiteners, that is, brighteners or fluorescent white dyes, wetting agents and the like.

Therefore, an object of this invention is to provide an improved method for stabilizing aqueous peroxy solutions.

Another object of this invention is to'provide a stabilizing agent which affects synergism in the reduction of the decomposition of the peroxy compound and also prevents water-insoluble silicate deposition.

Another object of this invention is to provide an improved method for bleaching cellulosic materials using aqueous peroxy solutions having dissolved therein novel stabilizing agents.

Other objects will become apparent in view of the subsequent detailed description and appended claims.

It has been unexpectedly found that the above ob jects can be accomplished by including a synergistic stabilizing agent which is a combination of:

l. nitrilotriacetic acid (NTA) N (CH COOH) and water soluble salts thereof; 2. l-hydroxy ethylidene-l, l-diphosphonic acid and water soluble salts thereof; and

3. a water soluble magnesium or calcium salt in the aqueous peroxy solution.

It is to be understood in conjunction with the NTA and HEDP acids per se, the water-soluble salts are also included within the scope of the present invention. The preferred salts are the sodium salts. Other alkali metal salts, such as potassium, lithium and the like, as well as mixtures of the alkali metal salts may be used. In addition, any water-soluble salt, such as the ammonium salt, which exhibit the characteristics of the alkali metal salt may be also used to practice the invention.

The magnesium and calcium salts include, without limitation, magnesium acetate, magnesium benzoate, magnesium bromate, magnesium bromide, magnesium chlorate, magnesium chloride, magnesium chromate, magnesium citrate, magnesium fluosilicate, magnesium formate, magnesium lactate, magnesium nitrate, magnesium nitrite, magnesium hypophosphate, magnesium selenate, magnesium sulfate, magnesium sult'ite, magnesium thiosulfate, calcium butyrate, calcium chlorate, calcium chloride, calcium hypochlorite, calcium chromate, calcium formate, calcium glueonate, calcium lactate, calcium maleate, calcium nitrate, calcium nitrite, calcium propionate, calcium l-quinate, calcium sulfide, calcium di-thionate, calcium thiosulfate, calcium valerate, and mixtures of these salts. The above list is not all inclusive and the magnesium or calcium salt is anyone which is water-soluble and provides magnesium or calcium ions in an aqueous system. It is to be noted that these salts include both inorganic and organic salts.

It is to be understood that the magnesium or calcium salt can be supplied to the aqueous peroxy solution in the form of the magnesium or calcium salts of NTA and/or HEDP. In other words, the novel stabilizing agent can be in the form of (1) a three component combination of NTA, HEDP, and a magnesium or calcium salt (such as magnesium sulfate), or (2) a two component combination of the magnesium or calcium salts of NTA and HEDP.

It is desirable that the mole ratios of NTAzMg or Ca salt2I-IEDP be in the range of from about 1:121 to about 5:3:1, preferably from about 2:111 to about 2:2:1.

It is to be understood that the term textile material as used herein includes any natural and/or synthetic fibrous base material such as cotton, nylon, viscose rayon, polyester, e.g., Dacron, hemp, linen, jute, and blends thereof such as, for example, cotton-Dacron, cotton-Dacron-viscose rayon, cotton-nylon-viscose rayon, cotton-Dacron-nylon, cotton-nylon, and cottonpolyester (all in various weight ratios).

If one so desires to use a surfactant in the peroxy (bleaching) solution, the specific synthetic organic surfactant can be any of a wide variety of surface active agents. Typical surfactants are described in US. Pat. No. 2,846,398 and U.S. Pat. No. 3,159,581, both of which are incorporated herein by reference. Furthermore, other publications which describe surfactants which can be used in the present invention processes include Schwartz and Perry, Surface Active Agents, Interscience Publishers, New York (1949) and The Journal of American Oil Chemists Society, Vol. 34, No. 4, pages 170-216 (April, 1957), both of which publications are incorporated herein be reference. The amount of surfactant will vary, depending upon various process conditions and any amount can be used as long as no substantial adverse effect is incurred in the bleaching operation.

Peroxy solutions which are capable of being stabilized in addition to hydrogen peroxide and its addition compounds, such as the peroxide of sodium and the super oxide of potassium, include urea percompounds, perborates, persulfates, and the peracids such as persulfuric acid, peracetic acid, peroxy monophosphoric acid and their water-soluble salt compounds such as sodium, potassium, ammonium and organic amine salts.

Depending upon, inter alia, the particular peroxycompound used, the pH of the aqueous peroxy solution is usually adjusted with any caustic material in order to effect a pH of greater than 7, e.g. inorganic alkali metal basic materials, such as sodium hydroxide, sodium carbonate, sodium silicate, diand tri-sodium phosphates and the like, including mixtures of these as well as the potassium forms of the foregoing materials, to a pH of between about 7.5 and about 12.5. Usually if the pH is higher than about 12.5 rapid bleaching occurs and the peroxy-compounds rapidly decompose so that it is difficult to control a proper bleaching rate without undue damage to the fibers. At pH values lower than about 7.0, the rate of bleaching in most cases is slow to the extent of being uneconomical for bleaching. In general, the amounts of caustic used are from about 1 to about 4 percent by weight based on the total weight of the alkaline aqueous (peroxy) solution.

The concentration of peroxy solutions can vary depending upon, inter alia, the type of peroxy-compound, pH, temperature, type of bleaching desired and the like, however, normal concentrations, i.e., from about 0.01 to about 5 percent can be used with concentrations from about 0.2 to about 3 percent being preferred. It is to be understood that the concentration is not a limitation herein and that any concentration can be utilized as long as the desired end result is achieved.

The stabilizing agents of the present invention may be dissolved in the peroxy solution which is ready for use or may be incorporated in a concentrated peroxy solution, such as a 35 percent solution of hydrogen peroxide, which is usually further diluted to form the peroxy solution for bleaching. In addition, the stabilizing agent can be incorporated in dry bleach compositions, such as perborate compositions, by admixing therewith, and the resulting composition dissolved in the aqueous system immediately preceding its end use application. In any event, the stabilizing agent is intended to be used with the peroxy solution at the time of its use for bleaching purposes.

The concentration of the stabilizing agent of the present invention in the peroxy solution can vary depending upon, inter alia, concentration of the peroxy solution, type of peroxy-compound used, pH, temperature and the like, and usually for normal concentrations of peroxy solutions and with conventional bleaching methods, the stabilizing agent is preferably present in concentrations from about 0.001 to about 5 percent with from about 0.1 to about 1 percent being especially preferred.

The methods for bleaching using the peroxy solutions containing the stabilizing agents of the present invention vary widely, as for example, from using the peroxy solutions at normal temperatures, i.e., from about 20 C to about 35 C and contacting the textile material by immersion for periods of time of several hours, i.e., from about 12 to about 36 hours, to using the peroxy solutions at temperatures from about C to about C for periods of time from about 30 minutes to about 6-8 hours, as well as continuous bleaching methods which entail the use of the peroxy solutions at normal temperatures, i.e., about 25 C and contacting the textile material by saturation, removing the excess moisture and exposing the textile material to saturated steam at temperatures from about 100 C to about C for periods of time from a few seconds (about 20) to about 1 hour and even longer in some cases. US. Pat. Nos. 2,839,353, 2,960,383, and 2,983,568 are illustrative of being representative of continuous peroxy bleaching methods.

Additional publications which relate to peroxy bleaching and/or bleaching of textile materials include, without limitation, US Pat. Nos. 2,493,740; 2,515,532; 2,524,113; 2,602,723; 2,686,104; 2,718,528; 2,740,689; 2,803,517; 2,820,690, 2,839,353; 2,858,184; 2,868,615; 2,893,814; 2,893,819; 2,917,528; 2,927,082; 2,927,840; 2,950,175; 2,960,383; 2,970,882; 2,983,568; 2,991,168; 3,003,910; 3,043,645; 3,053,634; 3,089,753; 3,122,417; 3,156,654; 3,211,658; 3,234,140; 3,243,378; 3,278,445; 3,383,174; Belgium 661,582; British 793,733; British 852,102; British 866,764; French 1,420,462; French 1,999,350, German 1,027,174; Japanese 9600 (57); Japanese 238 (58); Netherlands 6,515,967; and Preparation and Bleaching," TEXTILE WORLD REFRESHER by K. S. Campbell, 1961 McGraw-Hill Publishing Co., New York. All of these publications are to be considered as incorporated herein by reference.

The temperature of the bleaching (peroxy) solution is desirable in the range of from about 72 F to the boiling point of the bleaching solution but temperatures from about l402 1 F are preferred. it is to be understood that higher temperatures, such as 250 to 300 F, can'be used (with the aid of superatmospheric pressure) where one so desires.

The practice of the invention and the advantages provided thereby are further illustrated by the following examples which are not intended to be limitative:

EXAMPLE l in order to illustrate the stabilizing ability of the stabilizing agents of the present invention, the following test is conducted with the indicated results.

The bleaching solutions shown in Table I are prepared by mixing together 900 milliliters of deionized water, 22 grams of hydrogen peroxide (35 percent aqueous solution), 1 1 grams of sodium silicate, grams of sodium hydroxide (50 percent aqueous solution) and the indicated amount of the stabilizing agent. Ferrous sulfate is added to the resulting solution in an amount to provide 2 parts per million (ppm) of Fe therein.

Each individual bleaching solution is contained in a suitable Pyrex glass beaker which in turn is in a thermostated bath of the Ahiba laboratory dyeing machine. Each bleaching solution is heated to and maintained at 210 F for a period of 120 minutes. At the intervals so indicated in Table l, milliliters (ml.) aliquots of solution are withdrawn by pipette, quenched in 100 ml. of H 0, acidified with 1 ml. concentrated H 80 and the residual B 0, is titrated with 0.1N KM O The percent available oxygen (remaining in the bleaching solution at that particular time) is calculated as follows:

Pefient'fivailabl 05 M (mls. KM O (Normality of KM O (0.008) 100 Weight of original H O in solution.

The results of this test are shown in Table l.

" "TKELE I" Example l above is repeated in toto with the sole exception that in place of the 2 ppm Fe in the bleaching solution, 2 ppm of Cu is present. Substantially the same results are obtained as that shown in Table 1.

EXAMPLE Ill Example 1 above is repeated in toto with the sole exception that in place of the 2 ppm Fe in the bleaching solution, there is present in the solution, by addition of a corresponding water-soluble salt, 0.85 ppm Fe, 0.17 ppm Cu, 0.40 Zn and 0.10 Pb. Substantially the same results are obtained as that shown in Table 1.

EXAMPLE IV The exact mechanism of how the novel combination of NTA, HEDP and a water-soluble magnesium and/or calcium salt effectively act as a stabilizing agent is not known. Table I shows, however, that NTA per se and HEDP per se are poor stabilizing agents in an aqueous alkaline bleaching solution containing a peroxy compound and an alkali metal silicate and catalyticallyactive substances such as iron, copper, manganese which greatly accelerate the decomposition of the peroxy-compound.

It is believed that the addition of a salt of calciu and/or magnesium to a solution of a soluble silicate re- ]sults in a formation of an insoluble metal silicate. For example, it is believed that the reaction occurs between the polysilicic acid through the silanol group and a basic metal ion like Fe(OH) as follows:

'SiOH Fe(Ol-l) ('SiOFeOHY While the iron in this form might still act as a catalyst in peroxy compound decomposition, it is believed that the presence of Mg and/or Ca in the peroxy/silicate solution leads to the formation of an extensive net work of Mg and/or Ca silicates which form a protective colloidal coat over the heavy metal-silicic acid complex, and thus immobilizes the heavy metal as a catalyst.

{Effect of stabilizing agents on peroxide bleach stability in deionized water in the presence of 2 ppm. Fe, 22

i g./1. H202, 35%; 11 g./l. sodium silicate, 5 g./l. NaOH, pH 11.3 at 210 F.]

N0 Present stabilizing HEDP, ATMP, HEDTAJ NTA, invention,

Stabilizing agent agent 2 g./l. 2 g./1. 2 g./l. 2 g./l. 2 g./1.

Percent available oxygen remaining in bleach solu- 120 minutes 0 0 0 0 0 65 1 Low amounts of sodium silicate and high pH contribute to peroxide instability.

1 Disodium salt of l-hytlroxy cthylidenc-l, l-diphosphonic acid.

Tetra sodium salt of amino tri(mcthylcriu plinsnhonlc smi h-40% sollrls; note U l. 3,234,140.

4 llydroxy nthylnnn (llltllllllll tl'lflOtlllllll nnotntu, 40% snllrls; prlor nrt. 'lrlsodlmn salt of nltrllo trlncutlr: nolrl.

0 30.1% solution of 1 mole NTA/0.47 moln Mg (from MgS()4)/0.3 mole HEDP.

It is to be noted in Table I, that in addition to the present invention stabilizing agent, other materials are shown for comparative purposes. Table l readily shows that the sodium salts of NTA and HEDP are poor stabilizing agents as compared to the present invention stabilizing agent (shown in Table l) of the combination of NTA, Mg and HEDP. ATMP is representative of the prior art U.S. Pat. No. 3,234,l40.

EXAMPLE ll shown that this combination of NTA and HEDP is exceptionally unique and results in unexpected results when used in combination with a Mg and/or Ca salt. The addition of Mg and/or Ca salts, without NTA and- /or HEDP, stabilizes peroxy bleaching solutions to a minor degree; however, their use is quite limited because they have poor solubility and promote insoluble silicate precipitates if used in the absence of HEDP and NTA.

The above beliefs are merely ideas as to how possibly the stabilizing agent of the present invention functions in a peroxy-silicate bleaching solution. These ideas are not to be considered as limitations in any manner whatsoever in the present invention.

TABLEiirETFEd'f'oE AbDTTI'VESONTfiE FORMX'T'IGN OF CA AND MG SILICAIE PRECIPITATES IN HYD R GEN PEROXIDE/SODIUM SILICAIE BLEACH SOLUTIONS 1 Grams per liter Hours during which HzOe/ 1 22 g./l. H202 35%, 22 g./l. sodium silicate, 0.25 p.p.m. Cu++, 400 p.p.m. as CaCOflrom 2Ca:1Mg(irom 02.012 and MgsO In order to demonstrate the effect of NTA, HEDP, Ca and Mg alone or in combination regarding silicate precipitation, eleven bleaching solutions (designated solutions 2l2 in Table II) are prepared in the same manner as set forth in Example I. Solution No. 1 is a blank with no additives and is used as a control. Solutions designated Nos. 6-l2 are representative of the present invention.

Table II readily shows that NTA per se and a Mg salt NTA combination (representative of the prior art) are quite inferior if not completely ineffective in preventing silicate precipitation in bleaching solutions as compared to the novel combination of NTA, HEDP TABLE IIL-EFFEC'T 0F STAEI'ITZINT? XGETIIStTN EETEO'XT'ITE 13 ON BLEACHING OF COTTON FABRIC IN DEIONIZED WATER and a Mg and/or Ca salt.

In view of the results set forth in Examples l-lV, it is seen that two conditions must be concurrently satisfied EXAMPLE V in order to illustrate the bleaching ability of a peroxy solution stabilized with the present invention stabilizing. agents (and prior art materials for comparative purposes), the following tests are made with the indicated results set forth in Table III. Several sets of four 5 X 6 inch swatches of unbleached desized sheeting are prewet with distilled water and each set is placed in a suitable stirrer flask containing 1 liter of a bleaching solution of the following initial composition: 22 grams of a 35% H 0 solution, 11 grams of sodium silicate, 5 grams of a NaOH solution, 0.85 ppm Fe**, 0.17 ppm Cu, 0.40 ppm Zn, 0.10 ppm Pb and the stabilizing agent as indicated in Table III. The temperature was thermostated at about 210 F. At intervals of about 15 minutes, 10 ml. aliquots of solution are withdrawn by pipette and residual H;O determined by permanganate titration as described in Example I above. The cloth swatches are withdrawn after 15, 30, and 120 minutes, rinsed well (twice) in distilled water at 210F, and air dried. The swatches are pressed and then reflectance measured vs. the original unbleached cloth. Averages of four readings at different cloth orientations are reported. The degree of bleaching is set forth in terms of fabric whiteness as determined by a Cardner Automatic Color Difference Meter made by Gardner Laboratory, lnc., Bethesda, Maryland. The fabric whiteness numbers shown in- Table III are determined relative to a standard (MgO filter being equal to 100) which was as close to perfect whiteness as is possible. The results of this Example V are set forth in Table Ill. Regarding these whiteness numbers, a difference of LE o'fIsTKEirTITY KIT) IN THE PRESENCE OF SEVERAL HEAVY METALS 2 AND AT PH 11.3

Stabilizing agent DETflA DEPTA us us licsent invention 6 None ATMP, 051812, 0018125 (control) 4.23 gJl. 4.23 g./i. 4.23 g./l. 4.23 g./l. 1.75 g./l.

Fabric whiteness number 06 87 86 92 92 Percent iivtiilzililo oxygen i'vinainin in bleach solutions aitor 5 minutes 7 G1 8.) 7s 77 93 (m 15 minutes 51 in 17 s3 35 30 minutes... 6 1 4 77 r 45 minutes... I) .2 0 1 (is 52 60 minutes 0.5 0 5!) 40 1 cotton fabric, desized and scoured in a textile mill. 2 P.p.m.: Fe, 0.85; Cu, 0.17; Zn, 0.40; Ph, 010. 3 Low amounts of sodium silicate and high pll contribute to peroxide instability. 4 Dicthylene triiimino pnntasodiuni nevtzitc plus "a012, 24.85% solids. 5 Diethyleno triamine pcntnsorlium 11"t' to plus (.zitilz, 32% solids. 36.1% solution of] mole NTA/0.47 mo 0 M g/0.3 nioin ll EDI. 7 This solution is extremely iinstahlczinrl cannot ill. hon up 1.0210" F. 'l'hosu value: an: ubtuinml ultt-i in-niinu to 60 C. This solution is not used for bleaching of fabric smnplv.

one (1) unit is considered significant.

In conjunction with Table II], it is vividly demonstrated that the stabilizing agents of the present invention exhibit an unexpected result and are substantially better than the prior art materials such as Specifically, it can be seen that with no stabilizing agent in the bleaching solution, the fabric had a whiteness number of 66; with ATMP the value was 87 and with DETPA CaCl the value was 85 and 86. But with the novel stabilizing agents of the present invention, the av-' erage value was 92, a significant difference and improvement. The superiority of these novel stabilizing agents is thus seen.

The test swatches bleached with the solution containing the present invention stabilizing agents are cut into one inch strips and measured for tensile strength according to ASTM Designation D-39-49', Revised 1955 Standard General Methods of Testing Woven Fabrics, A Breaking Strength, 11. Raveled Strip method. No substantial degradation of the fabric occurred as a result of bleaching with the stabilized peroxy solution, i.e., the tensile strengths of the bleached swatches compared very favorably with unbleached swatches which are similarly tested. Consequently, peroxy solutions stabilized with the stabilizing agents of the present invention exhibit the ability to bleach cellulosic materials, such as cotton fabric, without impairing the material.

While a peroxy solution in accordance with this invention need contain only a peroxy-compound, an alkali metal silicate and the novel stabilizing agents, it will be appreciated that the incorporation in the solution of additional ingredients commonly used in peroxy solutions, such as inorganic alkali metal basic materials, wetting agents, optical whiteners (brightening agents and fluorescent dyes) and the like, is contemplated as being within the invention.

The foregoing examples have been described in this specification for the purpose of illustration and not limitation. Many other modifications and ramifications will naturally suggest themselves to those skilled in the art based on this disclosure. These are intended to be comprehended as within the scope of this invention.

In view of the foregoing subject matter and particularly the Examples, it is to be expressly understood that the novel combination of NTA, HEDP and a watersoluble magnesium or calcium salt (e.g., magnesium sulfate) functions in two different aspects: (1) reduction of the decomposition of the peroxy compound and (2) prevention of the precipitation of water-insoluble silicates. Thus, the term stabilizer as used herein is intended to encompass both of these aspects. The novelty of this unique combination is predicated upon these two aspects (although the exact physical and/or chemical mechanism is not known) and as such constitutes a significant advancement in the art.

What is claimed is:

1. In a process for treating textile materials which comprises the steps of singeing, de-sizing, scouring, bleaching with an alkaline aqueous solution of a peroxy compound and an alkali metal silicate, souring, mercerizing, dyeing or printing, and finishing, the improvement which comprises incorporating into the bleaching solution, at least 0.001 percent by weight, based on the total weight of the bleaching solution, of a stabilizing agent consisting of (a) l-hydroxy ethylidene-l,ldiphosphonic acid having the formula and water-soluble salts thereof, (b) nitrilotriacetic acid and water-soluble salts thereof, and (c) a water-soluble salt of magnesium or calcium, the mole ratio of (a) to (b) to (c) being from about 5:1:1 to 5:321 respectively.

2. The process as set forth in claim 1 wherein the concentration of the stabilizing agent is from about 0.1 to about 1.0 percent by weight.

3. The process as set forth in claim 2 wherein the temperature of the bleaching bath during the textile treatment is from about F to about 2l0 F.

4. The process as set forth in claim 3 wherein the peroxy compound is hydrogen peroxide and the alkali metal silicate is sodium silicate.

5. The process as set forth in claim 4 wherein the stabilizing agent is a combination of (a) l-hydroxy ethylidene-l,l-diphosphonic acid, (b) a water-soluble magnesium salt, and (c) nitrilotriacetic acid.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3122417 *Jan 31, 1962Feb 25, 1964Henkel & Cie GmbhStabilizing agent for peroxy-compounds and their solutions
US3234140 *Jun 5, 1964Feb 8, 1966Monsanto CoStabilization of peroxy solutions
US3356613 *Sep 27, 1966Dec 5, 1967Procter & GambleBuilt detergent compositions containing a synergistic mixture of stp, nta, and sodium silicate
US3368978 *Dec 28, 1964Feb 13, 1968Monsanto CoBuilder compositions and detergent compositions using same
US3384596 *Dec 30, 1965May 21, 1968Dow Chemical CoPeroxy acid bleaching systems
US3392121 *Sep 23, 1964Jul 9, 1968Procter & GambleBuilt detergent compositions
US3556710 *Dec 20, 1967Jan 19, 1971Du PontMethod for bleaching textile fabrics containing portions dyed with a sensitive dyestuff
US3558497 *Aug 3, 1967Jan 26, 1971Du PontLaundry detergent compositions containing a perborate and a peroxymonopersulfate
US3579287 *Jun 11, 1969May 18, 1971Monsanto CoBleaching process
US3630921 *Dec 27, 1968Dec 28, 1971Henkel & Cie GmbhScouring agents with a bleaching and disinfecting action
US3639281 *Jan 12, 1970Feb 1, 1972Monsanto CoBuilt detergent compositions containing tris(methyl phosphonic acid) phosphine oxide and its salts
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3860391 *Mar 7, 1973Jan 14, 1975Benckiser Knapsack GmbhBleaching of cellulose containing textile fiber material with a silicate-free stabilized peroxide bleaching bath
US3951594 *Mar 25, 1975Apr 20, 1976Pennwalt CorporationHydrogen peroxide bleaching solutions and process
US4302429 *Feb 26, 1979Nov 24, 1981E. I. Du Pont De Nemours And CompanyAlkaline carbonate leaching using hydrogen peroxide as oxidant, alkylidene-1,1-diphosphonic acid stabilizer
US4384970 *Oct 28, 1981May 24, 1983L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges ClaudeStabilizing compositions for peroxide products
US4392975 *Sep 22, 1981Jul 12, 1983L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des ProcedesActivating composition for bleaching with peroxide products
US4496472 *Dec 17, 1982Jan 29, 1985Ciba-Geigy CorporationProcess for bleaching cellulosic fibre materials using oligomers of phosphonic acid esters as stabilizers in alkaline, peroxide-containing bleaching liquors
US4515597 *Dec 1, 1983May 7, 1985Ciba Geigy CorporationMagnesium complexes of oligomeric phosphonic acid esters, a process for their preparation and their use as stabilizers in alkaline, peroxide-containing bleach liquors
US4529534 *Aug 19, 1982Jul 16, 1985The Procter & Gamble CompanyDry, granular mixture containing chelating agent
US4623356 *Nov 6, 1984Nov 18, 1986Spring Industries, Inc.Discoloration inhibition during storage
US4623357 *Apr 2, 1985Nov 18, 1986Lever Brothers CompanyWater-soluble manganese salt catalyst on insoluble support
US4699623 *Nov 18, 1985Oct 13, 1987AtochemProcess of bleaching laundry
US4772290 *Mar 10, 1986Sep 20, 1988Clorox CompanyLiquid hydrogen peroxide/peracid precursor bleach: acidic aqueous medium containing solid peracid precursor activator
US4900469 *Jun 29, 1988Feb 13, 1990The Clorox CompanyThickened peracid precursor compositions
US4912791 *Nov 7, 1988Apr 3, 1990Basf AktiengesellschaftPretreatment of textile materials: alkaline scour or bleach with organo-phosphorus compound
US4916178 *Oct 27, 1988Apr 10, 1990Sandoz Ltd.Stable solutions of poly-α-hydroxyacrylic acid salts
US4963157 *Nov 22, 1988Oct 16, 1990Nippon Peroxide Co., Ltd.Method for bleaching cellulosic fiber material with hydrogen peroxide
US5000874 *Jun 24, 1988Mar 19, 1991Sandoz Ltd.Concentrated compositions and their use as stabilizers for peroxide-containing alkaline liquors
US5130053 *Jul 17, 1990Jul 14, 1992Interox Chemicals LimitedContaining a compound with aminomethylene phsophonic acid groups of substantially fixed configuration
US5464563 *Aug 25, 1993Nov 7, 1995Burlington Chemical Co., Inc.Bleaching composition
US5482516 *Nov 4, 1994Jan 9, 1996Surry Chemicals, Inc.Process for bleaching textiles
US5510055 *Feb 17, 1995Apr 23, 1996Bayer AktiengesellschaftBleaching regulator compositions and bleaching processes using them
US5616280 *Nov 6, 1995Apr 1, 1997Burlington Chemical Co., Inc.Bleaching composition
US5723064 *Mar 25, 1997Mar 3, 1998Surry Chemicals, Inc.Hydrogen peroxide, potassium hydroxide, magnesium salt from magnesium oxide and citric acid
US5912404 *Nov 12, 1996Jun 15, 1999Surry Chemicals IncorporatedBleached textiles
US6117358 *Jun 14, 1999Sep 12, 2000Surry Chemicals, Inc.A silicate-free, aqueous solution comprising hydrogen peroxide, potassium hydroxide and water
US8114344Dec 21, 2010Feb 14, 2012Ecolab Usa Inc.Corrosion inhibition of hypochlorite solutions using sugar acids and Ca
US8343380Nov 9, 2011Jan 1, 2013Ecolab Usa Inc.Corrosion inhibition of hypochlorite solutions using sugar acids and Ca
US8496853Jun 12, 2012Jul 30, 2013Ecolab Usa Inc.Corrosion inhibition of hypochlorite solutions
US8557178Jul 13, 2012Oct 15, 2013Ecolab Usa Inc.Corrosion inhibition of hypochlorite solutions in saturated wipes
US8603392Jun 25, 2012Dec 10, 2013Ecolab Usa Inc.Electrolyzed water system
US20120149117 *Dec 13, 2010Jun 14, 2012Schlumberger Technology CorporationHydrogen sulfide (h2s) detection using functionalized nanoparticles
EP0905226A1 *Sep 19, 1997Mar 31, 1999THE PROCTER & GAMBLE COMPANYThe use of phosphonate compounds in hypochlorite bleaching compositions for treating textiles, for fabric whiteness and safety
WO1996002624A1 *Jul 13, 1995Feb 1, 1996Michael Jeffrey HunterA cleaning kit and a cleaning composition and methods of use
WO1999015615A1 *Aug 28, 1998Apr 1, 1999Andrea BriatoreUse of phosphonate compounds in hypochlorite bleaching compositions
Classifications
U.S. Classification8/111, 8/139, 8/138, 252/186.29, 252/186.26
International ClassificationD06L3/02, D06L3/00, C11D3/39
Cooperative ClassificationD06L3/021, C11D3/394
European ClassificationC11D3/39B4D, D06L3/02B