US3740701A - Protective connector devices - Google Patents

Protective connector devices Download PDF

Info

Publication number
US3740701A
US3740701A US00210935A US3740701DA US3740701A US 3740701 A US3740701 A US 3740701A US 00210935 A US00210935 A US 00210935A US 3740701D A US3740701D A US 3740701DA US 3740701 A US3740701 A US 3740701A
Authority
US
United States
Prior art keywords
electrodes
elongated
metal oxide
oxide varistor
varistor material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00210935A
Inventor
J Harnden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Application granted granted Critical
Publication of US3740701A publication Critical patent/US3740701A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/102Varistor boundary, e.g. surface layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/53Bases or cases for heavy duty; Bases or cases for high voltage with means for preventing corona or arcing

Definitions

  • PROTECTIVE CONNECTOR DEVICES Inventor:
  • the metal oxide varistor extension ofthe protective connector is the last to be disengaged from the electrodes of the mating connector, thereby placing such an extension in series with any discharge currents and thus limiting the magnitude of any voltage developed by the disengagement of the connectors.
  • the present invention relates in general to connector devices for connecting electrical apparatus to sources of electrical signal and power and particularly relates to connector devices in which means are provided for protecting the electrical apparatus. from electrical surges due to the disconnection of such devices and apparatus from the power source.
  • Electrical apparatus such as motors have reactive elements included therein and when such apparatus is disconnected from the power line, high voltages are induced in the circuits of the apparatus producing stress in the insulation thereof and producing arcing in the electrodes as well. Accordingly, a need exists for providing protection of electrical apparatus against voltage surges arising from such disconnecting operations.
  • An object of the present invention is to provide a connector which in addition to providing the connecting function also provides electrical surge protection.
  • Another object of the present invention is to provide a surge protector connector which is simple, reliable and effective in operation.
  • Another object of the present invention is to provide a surge protection connector which has substantially negligible time delay in the operation thereof in the suppression of surges.
  • Another object of the present invention is to provide a connector which is flexible as to the physical form thereof as well as the range of the electrical operation thereof.
  • Another object of the present invention is to provide surge protection connector which is utilizable over a wide range of frequencies and with signal sources as well as power sources.
  • Another object of the present invention is to provide a simple surge protectionconnector with capabilities of absorbing power surges of considerable energy.
  • a pair of elongated electrodes In carrying out the invention, in one illustrative form thereof, there is provided a pair of elongated electrodes.
  • the longitudinal axes of the elongated elements are substantially in parallel.
  • One of the ends of each of the electrodes is adapted to engage a respective conductor of a pair of adjacent mating conductors.
  • the other of the ends of each of the electrodes is provided with means for connecting the electrodes in circuit.
  • a pair of members of metal oxide varistor material is also provided, each of the members being in contact with a respective one of said elongated electrodes and extending beyond said one end thereof.
  • the respective mating conductor makes contact first with the member of metal oxide varistor material in contact with the one electrode.
  • the metal oxide varistor member limits the voltage between the electrode and its mating electrode to a low value determined by the separation of the electrode from the mating electrode and by the voltage gradient versus current density characterisitc of the metal oxide varistor material.
  • FIG. 1 is a sectional view of a connector in accordance with the present invention
  • FIG. 2 is an end view of the embodiment of FIG. 1,
  • FIG. 3 is an end view of a receptacle for receiving the connector of FIGS. 1 and 2,
  • FIG. 4 shows graphs of the electrical characteristics of three materials of differing voltage gradients and alphas suitable for use in the connector devices of the present invention
  • FIG. 5 is a sectional view of another embodiment of the present invention.
  • FIG. 6 is an end view of the embodiment of FIG. 5,
  • FIG. 7 is an end view of a receptacle for use with the connector of FIGS. 5 and 6,
  • FIG. 8 is a-sectional view of a further embodiment of the present invention.
  • FIG. 9 is an end view of the embodiment of FIG. 7.
  • the connector 10 includes a pair of elongated electrodes 11 and 12 having respective longitudinal axes 13 and 14 which are generally parallel in orientation. Each of the electrodes 11 and 12 has a pair of parallel opposed surfaces. One end of each of the electrodes is embedded in a plastic insulated block 15 or casing. Each of the adjacent ends of the elongated conductors 11 and 12 within the casing is connected, for example, by soldering, to a respective conductor of a pair of conductors 16 and 17 of cable 18.
  • a block or body 20 of metal oxide varistor material is provided having a pair of opposed surfaces 21 and 22, in conductive contact with respective inwardly directed surfaces of the respective electrodes 11 and 12.
  • One end 23 of the block is bonded or embedded in insulating block 15.
  • the other end 24 of the block extends beyond the ends of the electrodes 11 and 12.
  • FIG. 3 shows a receptacle 30 for use in connection with the connector 10 of FIG. 1.
  • the receptacle has an enlarged opening 31 which extends inward.
  • Supported on opposed surfaces 32 and 33 of the generally rectangular opening are respective resilient spring conductive members 34 and 35 of elongated configuration forming mating conductors for the respective conductive electrodes 11 and 12 of FIGS. 1 and 2. Accordingly, when the connector 10 is inserted into the opening of the receptacle, the mating conductors 34 and 35 make contact initially with surface portions 21 and 22 of the block 20 metal oxide varistor material and upon further insertion, the conductors 34 and 35 make conductive contact with conductive members 11 and 12.
  • the body of metal oxide varistor material also provides a shunting impedance which maintains the voltage between the electrodes to a value determined by the voltage versus current density characteristics of the material as will be apparent in connection with FIG. 4.
  • the wafer 20 is constituted of a metal oxide varistor material such as described in Canadian Pat. No. 831,691, which has a nonlinear voltage versus current characteristic.
  • the metal oxide varistor material described in the aforementioned patent is constituted of fine particles of zinc oxide with certain additives which have been pressed and sintered at high temperatures to where V is voltage applied across a pair of opposed surfaces or planes,
  • I is the current which flows between the surfaces
  • C is a constant which is a function of the physical dimensions of the body aswell as its composition and the process used in making it,
  • a is a constant for a given range of current and is a measure of the nonlinearity of the current versus voltage characteristic of the body.
  • equation 1) when V is used to denote voltage between opposed planes of a unit volume of material, or voltage gradient, current flow through the unit volume of material in response to the voltage gradient becomes current density.
  • the alpha or is relatively low, i.e., less than 10.
  • the alpha is high, i.e., substantially greater than 10 and relatively constant. In the current density ranges progessively in excess of 10 amperes per square centimeter, the alpha progressively decreases.
  • the alpha is represented by the reciprocal of the slope of the graph in which current density is represented by the abscissa .and voltage gradient is represented by the ordinate of the graph.
  • the reciprocal of the slope is relatively constant.
  • the reciprocal of the slope of the graph progressively decreases.
  • the reciprocal of the slope of the graph progressively decreases.
  • Graphs 40 and 41 are materials of high voltage gradient material and graph 42 is a graph of low voltage gradient material.
  • the alpha is high and is substantially greater than 10 and relatively constant.
  • current densities progressively greater than l0 plied as a slurry in a silk screening operation and fired at about 550C to provide a conductive coating on the surface Other methods such as electroplating or metal spraying could be used as well.
  • the nonlinear characteristics of the material results from bulk phenomenon and is bi-directional.
  • the response of the material to steep voltage wave fronts is very rapid. Accordingly, the voltage limiting effect of the material is practically instantaneous.
  • Heat generation occurs throughout the body of material and does not occur in specific regions thereof as in semiconductor junction devices, for example. Accordingly, the ma terial has good heat absorption capability as the conversion of electrical to thermal energy occurs throughout the material.
  • the specific heat of the material is 0.12 calories per degree Centigrade per gram. Accordingly, on this account, as well, heat absorption capability of the material is advantageous as a surge absorption material.
  • the material in addition to the desired electrical and thermal characteristics described above, has highly desirable mechanical properties.
  • the material has a fine grain structure, may be'readily machined to a smooth surface and formed into any desired shape having excellent compressive strength.
  • the material is readily molded in the process of making it. Accordingly, any size or shape of material may be readily formed for the purposes desired.
  • the spacing of the electrodes 11 and 12, and hence the spacing of the surfaces 21 and 22 of body 20 is fixed by power connector design practice. Accordingly, to provide an appropriate low current drain through the wafer 20 under normal operating voltages for the plug, the metal oxide varistor material with the appropriate voltage gradient versus current density characteristics is selected.
  • the connector includes a pair of elongated 51 and 52 electrodes having respective longitudinal axes 53 and 54 which are generally parallel in orientation.
  • One end of each of the electrodes 51 and 52 is embedded in a plastic insulating block 55 of casing.
  • Each of the adjacent ends of the elongated conductors 51 and 52 within the casing is connected, for example, by soldering, to a re.- spective conductor of a pair of conductors 56 and 57 'of a cable 58.
  • the adjacent other ends of the elongated at the ends of each of the electrodes respectively.
  • Each of the elongated members 51 and 52 of metal oxide varistor material is secured to the respective electrode by means of insulating screws 61 and 62, for example, of nylon which extends through holes along the axis of the body member into threaded portions of the electrodes 51 and 52.
  • the connector of FIGS. 5 and 6 is suitable for use with a receptacle 65 such as is shown in FIG. 6.
  • the receptacle 65 includes a generally insulating support body 66 which has a parallel pair of cylindrical holes 67 and 68.
  • a pair of resilient semi-cylindrical conductive fingers are secured in each of the holes to the body 66 to provide a pair of resilient mating electrodes 69 and 70 for engagement with respective electrodes 51 and 52 of the connector 50.
  • the elongated members 59 and 60 of metal oxide varistor material make initial contact 'with the mating conductors 69 and 70, respectively, and similarly, on removal of the connector 50 from the receptacle 65, contact is initially broken between the elongated electrodes 51' and 52 and the respective mating conductors 69 and 70 and subsequently, between the elongated members 59 and 60 of metal oxide varistor material and the respective mating conductors 69 and 70. Accordingly, when circuit connections in which inductive currents are flowing are broken, the inductive voltage surges are absorbed by the metal oxide varistor material and limted to safe or desired values.
  • the connector 80 includes a pair of elongated electrodes 81 and 82 having respective longitudinal axes 83 and84 which are generally parallel in orientation. Each of the conductors 81 and 82 has a pair of parallel major opposed surfaces. One end ofeach of the electrodes 81 and 82 is embedded in a plastic insulating block 85 or casing. Each of the adjacent ends of the elongated conductors 81 and 82 within the casing is connected for example, by soldering, to a respective conductor ofa pair of conductors 86 and 87 of cable 88.
  • the adjacent other ends of the elongated electrodes 81 and 82 are spaced with their flat opposed surfaces generally parallel for insertion in a power outlet such as shown in FIG. 3.
  • a block of insulating material 89 having a pair of opposed surfaces 91 and 92 to which are secured respective slabs 93 and 94 of metal oxide varistor material.
  • Each of the slabs 93 and 94 have a pair of opposed surfaces, one of which is secured to an adjacent opposed surface of the insulating member 89 and the other opposedsurface of which is connected to a respective inwardly directed opposed surface of an adjacent elongated electrode.
  • the slabs 93 and 94 are co-extensive with the insulating member in direction of the longitudinal axes of the electrodes 81 and 82 and extend beyond the end of the electrodes at one end.
  • the other end of the block 89 and attached slabs 93 and 94 is bonded or embedded to the insulating block 85 or casing.
  • An electrical connector comprising:
  • one of said electrodes being an elongated electrode
  • one end of said elongated electrode adapted to engage a mating conductor, the other end of said elongated electrode being provided with means for connecting the electrode in circuit,
  • the other of said electrodes is an elongated electrode, one end of said other elongated electrode adapted to engage another mating conductor, the other end of said other electrode being provided with means for connecting said other electrode in circuit, another member of metal oxide varistor material in contact with said other elongated electrode and extending said one end thereof, the longitudinal axes of said elongated electrodes being substantially parallel.

Abstract

At least one of the elongated electrodes of a protective connector are provided with elongated extensions of metal oxide varistor material. The metal oxide varistor material has an alpha in excess of 10 in the current density range of 10 3 to 102 amperes per square centimeter. Accordingly, when the electrodes are disengaged from the electrodes of a mating connector, the metal oxide varistor extension of the protective connector is the last to be disengaged from the electrodes of the mating connector, thereby placing such an extension in series with any discharge currents and thus limiting the magnitude of any voltage developed by the disengagement of the connectors.

Description

United States Patent 11 1 Harnden, J r; p
PROTECTIVE CONNECTOR DEVICES Inventor:
Assignee: General Electric Company,
Schenectady, NY.
Filed: Dec. 22, 1971 Appl. No.2 210,935
Y Us. 01. 338/220, 338/21, 339/176 1 Field of Search 338/220, 221,20,
338/21; 337/353, 354; 339/150 R, 150 C, 150 F, 151 R, 151 C, 151 M, 154 R, 153, 176 P, 222, 195 R, 195 A,- 195,S, 191 R,l91 A, 191
References Cited 2 UNITED STATES PATENTS Carr..... Wilenchik Barroso Sykes 339/195 S X John D. Harnden, Jr., Schenectady,
'Crimmins 339/154R I 11 1'] 3,740,701 5] June 19, 1973 2,097,370 10/1937 l-layashi 339/176 P FOREIGN PATENTS OR APPLICATIONS 507,331 6/1929 Germany 339/195 S Primary Examiner-Hemard A. Gilheany Assistant ExaminerA T. Grimley Attorney-John F. Ahern, Louis A. Moucha and Julius J. Zaskalicky [57] ABSTRACT At least one of the elongated electrodes of a protective connector are provided with elongated extensions of metal oxide varistor material. The metal oxide varistor material has an alpha in excess of .10 in the current density range of 10' to 10 amperes per square centimeter. Accordingly, when the electrodes are disengaged from the electrodes of a mating connector, the metal oxide varistor extension ofthe protective connector is the last to be disengaged from the electrodes of the mating connector, thereby placing such an extension in series with any discharge currents and thus limiting the magnitude of any voltage developed by the disengagement of the connectors.
7 Claims, 9 Drawing Figures PAIENTED JUN 1 9 ma sum 1 or 2 PROTECTIVE CONNECTOR DEVICES The present invention relates in general to connector devices for connecting electrical apparatus to sources of electrical signal and power and particularly relates to connector devices in which means are provided for protecting the electrical apparatus. from electrical surges due to the disconnection of such devices and apparatus from the power source.
Electrical apparatus such as motors have reactive elements included therein and when such apparatus is disconnected from the power line, high voltages are induced in the circuits of the apparatus producing stress in the insulation thereof and producing arcing in the electrodes as well. Accordingly, a need exists for providing protection of electrical apparatus against voltage surges arising from such disconnecting operations.
An object of the present invention is to provide a connector which in addition to providing the connecting function also provides electrical surge protection.
Another object of the present invention is to provide a surge protector connector which is simple, reliable and effective in operation.
Another object of the present invention is to provide a surge protection connector which has substantially negligible time delay in the operation thereof in the suppression of surges.
Another object of the present invention is to provide a connector which is flexible as to the physical form thereof as well as the range of the electrical operation thereof. I
Another object of the present invention is to provide surge protection connector which is utilizable over a wide range of frequencies and with signal sources as well as power sources.
Another object of the present invention is to provide a simple surge protectionconnector with capabilities of absorbing power surges of considerable energy.
In carrying out the invention, in one illustrative form thereof, there is provided a pair of elongated electrodes. The longitudinal axes of the elongated elements are substantially in parallel. One of the ends of each of the electrodes is adapted to engage a respective conductor of a pair of adjacent mating conductors. The other of the ends of each of the electrodes is provided with means for connecting the electrodes in circuit. A pair of members of metal oxide varistor material is also provided, each of the members being in contact with a respective one of said elongated electrodes and extending beyond said one end thereof. Accordingly, when one of the'electrodes is caused to engage a respective mating conductor, the respective mating conductor makes contact first with the member of metal oxide varistor material in contact with the one electrode. When an electrode is withdrawn from its mating conductor, the metal oxide varistor member limits the voltage between the electrode and its mating electrode to a low value determined by the separation of the electrode from the mating electrode and by the voltage gradient versus current density characterisitc of the metal oxide varistor material.
The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention itself, however, both as to its organization and method of operation, together with further objects and advantages thereof, may best be understood by reference to the following description taken in connnection' with the accompanying drawings in which:
FIG. 1 is a sectional view of a connector in accordance with the present invention,
FIG. 2 is an end view of the embodiment of FIG. 1,
FIG. 3 is an end view of a receptacle for receiving the connector of FIGS. 1 and 2,
FIG. 4 shows graphs of the electrical characteristics of three materials of differing voltage gradients and alphas suitable for use in the connector devices of the present invention,
FIG. 5 is a sectional view of another embodiment of the present invention,
FIG. 6 is an end view of the embodiment of FIG. 5,
FIG. 7 is an end view of a receptacle for use with the connector of FIGS. 5 and 6,
FIG. 8 is a-sectional view of a further embodiment of the present invention,
FIG. 9 is an end view of the embodiment of FIG. 7.
Referring now to FIGS. 1 and 2, there is shown an embodiment of my inventionas applied to a power connector for connecting electrical apparatus to a source of power. The connector 10 includes a pair of elongated electrodes 11 and 12 having respective longitudinal axes 13 and 14 which are generally parallel in orientation. Each of the electrodes 11 and 12 has a pair of parallel opposed surfaces. One end of each of the electrodes is embedded in a plastic insulated block 15 or casing. Each of the adjacent ends of the elongated conductors 11 and 12 within the casing is connected, for example, by soldering, to a respective conductor of a pair of conductors 16 and 17 of cable 18. The other adjacent ends of the elongated electrodes 11 and 12 are spaced with their flat opposed surfaces, generally parallel for insertion in a power outlet or receptacle 30 such as shown, for example, in FIG. 3. A block or body 20 of metal oxide varistor material is provided having a pair of opposed surfaces 21 and 22, in conductive contact with respective inwardly directed surfaces of the respective electrodes 11 and 12. One end 23 of the block is bonded or embedded in insulating block 15. The other end 24 of the block extends beyond the ends of the electrodes 11 and 12.
FIG. 3 shows a receptacle 30 for use in connection with the connector 10 of FIG. 1. The receptacle has an enlarged opening 31 which extends inward. Supported on opposed surfaces 32 and 33 of the generally rectangular opening are respective resilient spring conductive members 34 and 35 of elongated configuration forming mating conductors for the respective conductive electrodes 11 and 12 of FIGS. 1 and 2. Accordingly, when the connector 10 is inserted into the opening of the receptacle, the mating conductors 34 and 35 make contact initially with surface portions 21 and 22 of the block 20 metal oxide varistor material and upon further insertion, the conductors 34 and 35 make conductive contact with conductive members 11 and 12. Conversely, on removal of the connector 10 from the receptacle, the contact between each of the electrodes 11 and 12 and respective ones of the corresponding mating conductors 34 and 35 is initially broken leaving a portion of the surfaces 21 and 22 of the body 20 in conductive contact with respective electrodes. Accordingly, in the event of high transient current flow through the conductors 11 and 12 due to interruption of an inductive circuit, voltage surges in the circuit are limited by the portions of body 20 in series circuit as will be explained below. The body also has the capability of absorbing considerable energy in the process as will be also explained below. In addition to providing a series impedance of particular characteristics, the body of metal oxide varistor material also provides a shunting impedance which maintains the voltage between the electrodes to a value determined by the voltage versus current density characteristics of the material as will be apparent in connection with FIG. 4.
The wafer 20 is constituted of a metal oxide varistor material such as described in Canadian Pat. No. 831,691, which has a nonlinear voltage versus current characteristic. The metal oxide varistor material described in the aforementioned patent is constituted of fine particles of zinc oxide with certain additives which have been pressed and sintered at high temperatures to where V is voltage applied across a pair of opposed surfaces or planes,
I is the current which flows between the surfaces,
C is a constant which is a function of the physical dimensions of the body aswell as its composition and the process used in making it,
a is a constant for a given range of current and is a measure of the nonlinearity of the current versus voltage characteristic of the body.
In equation 1), when V is used to denote voltage between opposed planes of a unit volume of material, or voltage gradient, current flow through the unit volume of material in response to the voltage gradient becomes current density. For the metal oxide varistor material for current densities which are very low, for example, in the vicinity ofa microampere per square centimeter, the alpha (or is relatively low, i.e., less than 10. In the current density range of from to 10 amperes per square centimeter, the alpha is high, i.e., substantially greater than 10 and relatively constant. In the current density ranges progessively in excess of 10 amperes per square centimeter, the alpha progressively decreases. When the current versus voltage characteristic is plotted on log-log coordinates, the alpha is represented by the reciprocal of the slope of the graph in which current density is represented by the abscissa .and voltage gradient is represented by the ordinate of the graph. For a-centralrange of current densities of from 10* to 10 amperes per square centimeter, the reciprocal of the slope is relatively constant. For current densities below this range, the reciprocal of the slope of the graph progressively decreases. Also for current densities above this range, the reciprocal of the slope of the graph progressively decreases.
The voltage gradient versus current density characteristics of three types of material in log-log coordinates are set forth in FIG. 4. Graphs 40 and 41 are materials of high voltage gradient material and graph 42 is a graph of low voltage gradient material. For all of the graphs in the current density range 10 to 10 amperes per square centimeter, the alpha is high and is substantially greater than 10 and relatively constant. For current densities progressively greater than l0 plied as a slurry in a silk screening operation and fired at about 550C to provide a conductive coating on the surface. Other methods such as electroplating or metal spraying could be used as well.
The nonlinear characteristics of the material results from bulk phenomenon and is bi-directional. The response of the material to steep voltage wave fronts is very rapid. Accordingly, the voltage limiting effect of the material is practically instantaneous. Heat generation occurs throughout the body of material and does not occur in specific regions thereof as in semiconductor junction devices, for example. Accordingly, the ma terial has good heat absorption capability as the conversion of electrical to thermal energy occurs throughout the material. The specific heat of the material is 0.12 calories per degree Centigrade per gram. Accordingly, on this account, as well, heat absorption capability of the material is advantageous as a surge absorption material.
The material, in addition to the desired electrical and thermal characteristics described above, has highly desirable mechanical properties. The material has a fine grain structure, may be'readily machined to a smooth surface and formed into any desired shape having excellent compressive strength. The material is readily molded in the process of making it. Accordingly, any size or shape of material may be readily formed for the purposes desired. For the connector of FIGS. 1 and 2, the spacing of the electrodes 11 and 12, and hence the spacing of the surfaces 21 and 22 of body 20 is fixed by power connector design practice. Accordingly, to provide an appropriate low current drain through the wafer 20 under normal operating voltages for the plug, the metal oxide varistor material with the appropriate voltage gradient versus current density characteristics is selected. The
surfaces 21 and 22 extend beyond the end of the electrodes 11 and 12 for a distance to allow adequate absorption of transient surges which are produced by the disengagement of the connector 10 from its mating connector 30 of FIG. 3.
Reference is now made to FIGS. 5 and 6 which show another embodiment of the presentinvention. The connector includes a pair of elongated 51 and 52 electrodes having respective longitudinal axes 53 and 54 which are generally parallel in orientation. One end of each of the electrodes 51 and 52 is embedded in a plastic insulating block 55 of casing. Each of the adjacent ends of the elongated conductors 51 and 52 within the casing is connected, for example, by soldering, to a re.- spective conductor of a pair of conductors 56 and 57 'of a cable 58. The adjacent other ends of the elongated at the ends of each of the electrodes respectively. Each of the elongated members 51 and 52 of metal oxide varistor material is secured to the respective electrode by means of insulating screws 61 and 62, for example, of nylon which extends through holes along the axis of the body member into threaded portions of the electrodes 51 and 52.
The connector of FIGS. 5 and 6 is suitable for use with a receptacle 65 such as is shown in FIG. 6. The receptacle 65 includes a generally insulating support body 66 which has a parallel pair of cylindrical holes 67 and 68. A pair of resilient semi-cylindrical conductive fingers are secured in each of the holes to the body 66 to provide a pair of resilient mating electrodes 69 and 70 for engagement with respective electrodes 51 and 52 of the connector 50. On insertion of the connector 50 into the receptacle 65 of FIG. 6, the elongated members 59 and 60 of metal oxide varistor material make initial contact 'with the mating conductors 69 and 70, respectively, and similarly, on removal of the connector 50 from the receptacle 65, contact is initially broken between the elongated electrodes 51' and 52 and the respective mating conductors 69 and 70 and subsequently, between the elongated members 59 and 60 of metal oxide varistor material and the respective mating conductors 69 and 70. Accordingly, when circuit connections in which inductive currents are flowing are broken, the inductive voltage surges are absorbed by the metal oxide varistor material and limted to safe or desired values.
Reference is now made to FIGS. 8 and 9 which show anotherembodiment of the present invention. The connector 80 includes a pair of elongated electrodes 81 and 82 having respective longitudinal axes 83 and84 which are generally parallel in orientation. Each of the conductors 81 and 82 has a pair of parallel major opposed surfaces. One end ofeach of the electrodes 81 and 82 is embedded in a plastic insulating block 85 or casing. Each of the adjacent ends of the elongated conductors 81 and 82 within the casing is connected for example, by soldering, to a respective conductor ofa pair of conductors 86 and 87 of cable 88. The adjacent other ends of the elongated electrodes 81 and 82 are spaced with their flat opposed surfaces generally parallel for insertion in a power outlet such as shown in FIG. 3. Also provided is a block of insulating material 89 having a pair of opposed surfaces 91 and 92 to which are secured respective slabs 93 and 94 of metal oxide varistor material. Each of the slabs 93 and 94 have a pair of opposed surfaces, one of which is secured to an adjacent opposed surface of the insulating member 89 and the other opposedsurface of which is connected to a respective inwardly directed opposed surface of an adjacent elongated electrode. The slabs 93 and 94 are co-extensive with the insulating member in direction of the longitudinal axes of the electrodes 81 and 82 and extend beyond the end of the electrodes at one end. The other end of the block 89 and attached slabs 93 and 94 is bonded or embedded to the insulating block 85 or casing. The operation of the connector of. FIGS.
7 and 8 is similar to the operation of the connectors of FIGS. 1 and 5,
While the invention has been described in specific embodiments, it will be appreciated that modifications may be made by those skilled in the art and I intend by the appended claims to cover all such modifications as fall within the true spirit and scope of the invention.
What I claim as new and desire to secure by Letters Patent of the United States is:
1. An electrical connector comprising:
a pair of electrodes,
one of said electrodes being an elongated electrode,
one end of said elongated electrode adapted to engage a mating conductor, the other end of said elongated electrode being provided with means for connecting the electrode in circuit,
a member of metal oxide varistor material in contact with said elongated electrode and extending beyond said one end whereby when said elongated electrode is caused to engage said mating conductor said mating conductor makes contact first with said member of metal oxide varistor material.
2. The combination of claim 1 in which said metal oxide varistor material has an alpha in excess of 10 in the current density range of 10 to 10 amperes per square centimeter.
3. The combination of claim 1 in which said member of metal oxide varistor material limits the voltage between said elongated electrode and said mating conductor to a low value when they are initially disengaged determined by the separation of said elongated electrode from said mating conductor and by the voltage gradient versus current density characteristic of said material.
4. The combination of claim 1 in which the other of said electrodes is an elongated electrode, one end of said other elongated electrode adapted to engage another mating conductor, the other end of said other electrode being provided with means for connecting said other electrode in circuit, another member of metal oxide varistor material in contact with said other elongated electrode and extending said one end thereof, the longitudinal axes of said elongated electrodes being substantially parallel.
5. The combination of claim 4 in which said members of metal oxide varistor material are elongated slabs in which the longitudinal axes thereof are parallel to the longitudinal axis of said elongated electrodes.
6. The combination of claim 4 in which said members of metal oxide varistor material are surface adjacent portion of a block of metal oxide varistor material in contact with adjacent opposed surfaces of the conductive electrodes, said block extending beyond said one end of said conductive electrodes.
7. The combination of claim 4 in which said members of metal oxide varistor material are elongated members secured to the ends of said elongated electrodes.

Claims (6)

  1. 2. The combination of claim 1 in which said metal oxide varistor material has an alpha in excess of 10 in the current density range of 10 3 to 102 amperes per square centimeter.
  2. 3. The combination of claim 1 in which said member of metal oxide varistor material limits the voltage between said elongated electrode and said mating conductor to a low value when they are initially disengaged determined by the separation of said elongated electrode from said mating conductor and by the voltage gradient versus current density characteristic of said Material.
  3. 4. The combination of claim 1 in which the other of said electrodes is an elongated electrode, one end of said other elongated electrode adapted to engage another mating conductor, the other end of said other electrode being provided with means for connecting said other electrode in circuit, another member of metal oxide varistor material in contact with said other elongated electrode and extending said one end thereof, the longitudinal axes of said elongated electrodes being substantially parallel.
  4. 5. The combination of claim 4 in which said members of metal oxide varistor material are elongated slabs in which the longitudinal axes thereof are parallel to the longitudinal axis of said elongated electrodes.
  5. 6. The combination of claim 4 in which said members of metal oxide varistor material are surface adjacent portion of a block of metal oxide varistor material in contact with adjacent opposed surfaces of the conductive electrodes, said block extending beyond said one end of said conductive electrodes.
  6. 7. The combination of claim 4 in which said members of metal oxide varistor material are elongated members secured to the ends of said elongated electrodes.
US00210935A 1971-12-22 1971-12-22 Protective connector devices Expired - Lifetime US3740701A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US21093571A 1971-12-22 1971-12-22

Publications (1)

Publication Number Publication Date
US3740701A true US3740701A (en) 1973-06-19

Family

ID=22784927

Family Applications (1)

Application Number Title Priority Date Filing Date
US00210935A Expired - Lifetime US3740701A (en) 1971-12-22 1971-12-22 Protective connector devices

Country Status (1)

Country Link
US (1) US3740701A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845358A (en) * 1973-06-29 1974-10-29 Gen Electric Integrated polycrystalline varistor surge protective device for high frequency applications
US4814941A (en) * 1984-06-08 1989-03-21 Steelcase Inc. Power receptacle and nested line conditioner arrangement
FR2634952A1 (en) * 1988-08-01 1990-02-02 Labinal IMPROVEMENTS ON ELECTRICAL CONNECTORS
US5167537A (en) * 1991-05-10 1992-12-01 Amphenol Corporation High density mlv contact assembly
US5213517A (en) * 1992-02-10 1993-05-25 G & H Technology, Inc. Separable electrodes with electric arc quenching means
US5278535A (en) * 1992-08-11 1994-01-11 G&H Technology, Inc. Electrical overstress pulse protection
FR2700893A1 (en) * 1992-12-30 1994-07-29 Trw Inc Device and method for protection against electrical spikes.
US5568348A (en) * 1991-04-29 1996-10-22 Trw Inc. Insert device for electrical relays, solenoids, motors, controllers, and the like
EP0745519A1 (en) * 1995-05-30 1996-12-04 Morton International, Inc. Inflator socket pin collar
US5590058A (en) * 1991-04-29 1996-12-31 Trw Inc. Battery monitor for unobstrusive installation with a battery connector
US5692917A (en) * 1991-04-29 1997-12-02 Trw Inc. Computer hardware insert device for software authorization
US6091317A (en) * 1998-07-06 2000-07-18 Ford Motor Company Temperature sensor assembly
US10177506B2 (en) * 2016-08-05 2019-01-08 API Technologies Corporation Connecting conductor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE507331C (en) * 1928-12-19 1930-09-15 Franz Stacherl Electrical plug
US2097370A (en) * 1935-04-06 1937-10-26 Harry T Hayashi Electrical fixture
US2508551A (en) * 1946-06-18 1950-05-23 Bell Telephone Labor Inc Shockproof terminal seal
US2511192A (en) * 1947-08-13 1950-06-13 Barroso Alberto Morin Modeling spatula
US3111641A (en) * 1961-02-03 1963-11-19 Jerzy J Wilentchik Plug and jack resistor
US3414806A (en) * 1967-04-03 1968-12-03 Mc Donnell Douglas Corp Connection indicator for connector having a resistive pin
US3553628A (en) * 1968-09-13 1971-01-05 Thomas & Betts Corp Connector system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE507331C (en) * 1928-12-19 1930-09-15 Franz Stacherl Electrical plug
US2097370A (en) * 1935-04-06 1937-10-26 Harry T Hayashi Electrical fixture
US2508551A (en) * 1946-06-18 1950-05-23 Bell Telephone Labor Inc Shockproof terminal seal
US2511192A (en) * 1947-08-13 1950-06-13 Barroso Alberto Morin Modeling spatula
US3111641A (en) * 1961-02-03 1963-11-19 Jerzy J Wilentchik Plug and jack resistor
US3414806A (en) * 1967-04-03 1968-12-03 Mc Donnell Douglas Corp Connection indicator for connector having a resistive pin
US3553628A (en) * 1968-09-13 1971-01-05 Thomas & Betts Corp Connector system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845358A (en) * 1973-06-29 1974-10-29 Gen Electric Integrated polycrystalline varistor surge protective device for high frequency applications
US4814941A (en) * 1984-06-08 1989-03-21 Steelcase Inc. Power receptacle and nested line conditioner arrangement
FR2634952A1 (en) * 1988-08-01 1990-02-02 Labinal IMPROVEMENTS ON ELECTRICAL CONNECTORS
EP0354074A1 (en) * 1988-08-01 1990-02-07 Société anonyme dite: LABINAL Electrical connectors
US5590058A (en) * 1991-04-29 1996-12-31 Trw Inc. Battery monitor for unobstrusive installation with a battery connector
US5692917A (en) * 1991-04-29 1997-12-02 Trw Inc. Computer hardware insert device for software authorization
US5568348A (en) * 1991-04-29 1996-10-22 Trw Inc. Insert device for electrical relays, solenoids, motors, controllers, and the like
US5167537A (en) * 1991-05-10 1992-12-01 Amphenol Corporation High density mlv contact assembly
US5213517A (en) * 1992-02-10 1993-05-25 G & H Technology, Inc. Separable electrodes with electric arc quenching means
US5278535A (en) * 1992-08-11 1994-01-11 G&H Technology, Inc. Electrical overstress pulse protection
FR2700893A1 (en) * 1992-12-30 1994-07-29 Trw Inc Device and method for protection against electrical spikes.
EP0745519A1 (en) * 1995-05-30 1996-12-04 Morton International, Inc. Inflator socket pin collar
US6091317A (en) * 1998-07-06 2000-07-18 Ford Motor Company Temperature sensor assembly
US10177506B2 (en) * 2016-08-05 2019-01-08 API Technologies Corporation Connecting conductor

Similar Documents

Publication Publication Date Title
US3740701A (en) Protective connector devices
US3742420A (en) Protective electrical feed through assemblies for enclosures for electrical devices
US3821686A (en) Protective connector devices
US3711794A (en) Surge suppression transmission means
US4685025A (en) Conductive polymer circuit protection devices having improved electrodes
US4413301A (en) Circuit protection devices comprising PTC element
US4475138A (en) Circuit protection devices comprising PTC element
USRE28604E (en) Gas shield for load-break cable terminations
US4298900A (en) Overvoltage protective device
US4835650A (en) Apparatus and method for minimizing the let-through voltage associated with circuits used in conjunction with electronic elements to suppress surges, transients and like electrical disturbances
US3743996A (en) Protective pads for electrical devices
US5148345A (en) Prepackaged electrical transient surge protection
US2518789A (en) Heat responsive cable
EP0510019B1 (en) Cable connector
US2504804A (en) Electrical protective apparatus
US3204150A (en) Terminal connections for circuit protective devices
US4237515A (en) Protective electrical discharge device
MY102388A (en) Elongate electrical assemblies
US2168769A (en) Protector
US1266377A (en) Condenser.
SE8204203L (en) ELECTRIC CIRCUIT
US3210588A (en) Surge protector
US4675719A (en) Thyristor device
US2148136A (en) Electric feeder distribution system
US2403468A (en) Protection of communication circuit elements