Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3742947 A
Publication typeGrant
Publication dateJul 3, 1973
Filing dateAug 26, 1971
Priority dateAug 26, 1971
Also published asCA995761A, CA995761A1, DE2236002A1
Publication numberUS 3742947 A, US 3742947A, US-A-3742947, US3742947 A, US3742947A
InventorsJ Hashem
Original AssigneeAmerican Optical Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Optically isolated electro-medical device
US 3742947 A
Abstract
An optically isolated electro-medical device. An electronic device is disclosed that is used for monitoring physiological functions of a patient. The device is electrically connected to the patient and establishes electrical isolation from other patient-connected circuitry by optical coupling. The isolation substantially reduces the hazards of electrocuting a hospitalized, bed-ridden patient who may be connected to several different pieces of electro-medical equipment simultaneously. In an illustrative embodiment, the optical coupling includes a light-emitting diode in operative connection with a light-sensing transistor (photo-transistor) and is arranged to minitor the EKG of a patient.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States. Patent 1191 Hashem OPTICALLY ISOLATED ELECTRO-MEDICAL DEVICE [75] Inventor: James F. Hashem, Malden, Mass.

[73] Assignee: American Optical Corporation,

Southbridge, Mass.

22 Filed: Aug. 26, 1971 211 Appl. No.: 175,121

[52] US. Cl 128/2-06 R, 128/21 R, 250/199, 307/311 [51] Int. Cl ..A61b 5/04 [58] Field of Search 128/206 R, 2.1 A, 128/2.l P, 2.1 R; 250/199; 3l0/9.8; 307/311,

[5 6] References Cited UNITED STATES PATENTS 1/1970 Watrous et a1 128/2.l A UX 8/1971 Sasaki et al. 310/9.8 UX

OTHER PUBLICATIONS Van der Weide et al., Medical & Biological Engineerelectrodes 1 attached to patient [11] 3,742,947 1451 July 3,1973

ing, Vol. 6, No. 4, August, 1968, pp. 447 and 448 Kebo, 1.E.E.E. Transactions on Biomedical Electronics, Vol. 17, No. 2, April, 1970, pp. 163-166 Primary ExaminerWilliam E. Kamm Attorney-William C. Nealon, Joel Wall et al.

571 ABSTRACT An optically isolated electro-medical device. An electronic device is disclosed that is used for monitoring physiological functions of a patient. The device is electrically connected to the patient and establishes electrical isolation from other patient-connected circuitry by optical coupling. The isolation substantially reduces the hazards of electrocuting a hospitalized, bed-ridden patient who may be connected to several different pieces of electro-medical equipment simultaneously. In

an illustrative embodiment, the optical coupling includes a light-emitting diode in operative connection with a light-sensing transistor (photo-transistor) and is arranged to minitor the EKG of a patient.

1 Claim, 2 Drawing Figures OPTICALLY ISOLATED ELECTRO-MEDICAL DEVICE BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to electro-medical equipment, and more particularly relates to monitoring equipment which is electrically conductively connected to a patient but is electrically isolated from: (1.) other circuitry necessary to provide a usable output and (2.) other simultaneously connected electro-medical equipment.

2. Description of Prior Art Prior art in the area of electrically isolated electromedical equipment includes battery-operated heart stimulators. These stimulators are isolated from other patient-connected circuitry and from line voltages by virtue of their batteries. An example of prior art that utilizes a battery is U.S. Pat. No. 3,554,198.

The patent also discloses a high-speed relay switch that closes upon external electrical command to provide a conductive path. Ordinarily, the relay switch remains open to provide isolation. This relay switch scheme of isolation does not permit linear coupling of signal between the isolated command and stimulator circuits. However, linear coupling is not needed in a heart stimulator (the shape of the heart stimulation pulse is not at all that critical). But,,by contrast, substantially linear coupling is required for accurate monitoring and the present invention provides such coupling.

A problem may arise when monitoring a patient in a hospital bed when that patient is electrically connected to several independent pieces of electronic apparatus. For example, a heart monitor and a respiration monitor may be connected simultaneously to the patient where both monitors are powered from line voltage. If the equipment is not grounded properly, the patient may be placed in a ground loop. This could be a dangerous situation where the patient may be electrically shocked by current flow from one piece of equipment to another through the patient. Particularly, in the case of monitoring heart activity with implantable electrodes that are implanted into the heart itself, stray ground loop currents flowing through the heart can kill the patient.

If each piece of electronic equipment were individually battery operated, then ground loops could be avoided. But this is not feasible. Monitoring equipments require too much current, and the batteries would be cumbersome. A hospital usually uses ordinary 60 cycle line voltage and its monitoring equipment is powered in this manner. This gives rise to the possibility of creating dangerous ground loops through the patient.

The present invention is a solution to the isolation problem of electro-medical monitoring apparatus. The present invention includes optical coupling to provide electrical isolation.

SUMMARY OF THE INVENTION An illustrative embodiment of the present invention is arranged to work with an ECG signal from the heart of a patient. A preamplifier receives and amplifies the ECG signal from the patients heart. The output of the amplifier is used to modulate current flowing a lightemitting diode. All of this patient-connected circuitry is powered by an isolated power supply such as a battery or an output from a DC to DC converter.

The modulated light-emitting diode provides a lightenergy output that linearly varies in intensity with modulating signal. The remaining monitoring circuitry is electrically isolated from the patient-connected circuitry. It is powered from a second battery or a conventional regulated power supply. The circuitry includes a photo-coupled device such as a photo-transistor. The photo-trasistor receives a light input from the lightemitting diode and provides an electrical input to the remaining circuitry. Thus, electrical isolation of the signal path is accomplished by optical coupling and electrical isolation of the power supplies is accomplished by using a DC to DC converter.

An advantage of the present invention is that it provides a simple and efficient way to monitor electrical signals representative of physiological functions of the body without danger of electrical shock.

A further advantage of the present invention is an inherent increase in reliability over other isolation schemes because of the few number of components used herein.

It is thus an object of the present invention to provide improved electro-medical monitoring apparatus.

It is another object of the present invention to provide an EKG output signal that is electrically isolated from circuitry connected to the patient.

It is a further object of the present invention to provide equipment which isolates the patient-connected circuitry from leakage currents that may be generated by other equipment attached to the patient.

Other objects and advantages of the present invention will become apparent to one having reasonable skill in the art after referring to the detailed description of the appended drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of an illustrative embodiment of the present invention; and

FIG.'2 is a block diagram of a power supply to be used in conjunction with the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, the circuitry to the left of reference line 40 is hereafter referred to as patient-connected circuitry. The circuitry to the right of reference line 40 is hereafter referred to as optically coupled circuitry. The patient-connected circuitry is electrically isolated from the optically coupled circuitry as will be explained herein below.

Referring first to the patient-connected circuitry,-

electrodes 10 and 11 are attached between the patient (not shown) being monitored and the input to amplifier A Electrode 12 is connected between the patient and isolated ground 13, about which ground additional description is presented in succeeding paragraphs. The output of amplifier A is coupled via conductor 14 to the base of transistor 15. The emitter of transistor 15 is connected to one end of resistor 16, the other end being connected to isolated negative 15 volts (-l5 V The collector of transistor 15 iss connected to the cathode side of light-emitting diode (LED) 17, the anode of whicl is connected to isolated positive 15 volts (+15 I V,). A description of the positive and negative isolated voltages is presented in succeeding paragraphs. Amplifier A is powered by V Optical coupling from the patient-connected circuitry to the optically coupled circuitry is depicted by light energy symbol l8. Photo-transistor 19' is influenced by incident light energy 18. Light-emitting diode 17 and photo-transistor 19 may both be encapsulated together and this is depicted by block 28 representing a photocoupled device.

The collector of photo-transistor 19 is connected to positive 15 volts (+15 V). The emitter of transistor 19 is connected to both capacitor 21 and one end of resistor 20. The other end of resistor 20 is connected to third wire ground 23. This ground differs from isolated ground 13 and will be explained more fully elow. The other side of capacitor 21 is connected to an input of amplifier A and to one end of resistor 22. The other end of resistor 22 is connected to third wire ground 23. The output of amplifier A is obtained on terminal 27. Resistors 24 and 26, and potentiometer 25 are in a series connections between the output of amplifier A and third wire ground 23. The wiper of potentiometer 25 is conductively connected to another input of amplifier A as a feedback path. Amplifier A is powered by 1-15 V.

In FIG. 2, DC to DC converter and regulated power supply 31 are shown as having various DC outputs and grounds. The voltages and grounds shown correspond to those shown in FIG. 1. DC to DC converter 30 is the power supply for the patient-connected circuitry of FIG. 1, is commerically available, and is of conventional design. DC to DC converter 30 is powered by a conventional regulated power supply 31 which provides +15 V and 1S V inputs to converter 30. In turn, supply 31 is powered by ll5 rrns power. Supply 31 is the power supply for the optically coupled circuitry.

The circuitry internal to converter 30 includes transformer circuitry which provides Isolation between the various inputs and outputs. The voltage outputs +15 V,, -1 5 V,, and ground 13 are electrically isolated from voltage outputs +15 V, l5 V, and third wire ground 23. For example, inthe DC to DC converter used in a model constructed in accordance with the principles of the present invention, current flow was less than 1 microampere when 115 volts RMS was applied between any 15 V terminal (either or and any 15 V, terminal (again, either or or between isolated ground 13 and third wire ground 23.

Thus, when converter 30 and power supply 31 are connected to the circuitry of FIG. 1 as shown, there are no conductive paths (between the patient-connected circuitry and the optically coupled circuitry) established through the DC to DC converter. Third wire ground 23 is the ground that other pieces of equipment (not shown) would be referenced to.

Now, consider the operation of the circuitry of FIG. 1. The monitored signal (in this case, an EKG signal but could be other signals) is fed to the input of amplifier A via terminals 10, 11 and 12. The signal is amplified in amplifier A and the output of A is applied to the base of transistor 15. Transistor 15 permits current flow there-through in accordance with the electrical signal input on its base. Current flows from +15 V, through the series circuit of LED 17, transistor 15, and resistor 16 to l 5 V,. The flow of current through LED 17 causes emission of light 18 which is the optical or light input to photo-transistor 19.

The variation of current or voltage applied to the base of transistor 15 is linearly related to the current flow through LED 17. The current flow through LED 17 is linearly related to the intensity of light 18 that is emitted. And, the intensity of light 18 is linearly related to the flow of current through photo-transistor 19. Thus, an electrical signal in the circuitry to the right of line 40 linearly corresponds to the electrical signal in the circuitry to the left of line 40. The signals are connected or coupled by light-intensity variations. Electrical isolation is achieved to the extent that in equipment constructed in accordance with the principles of the present invention less than 5.0 microamperes typically will flow when l 15 volts RMS is applied between any combination of input electrode terminals 10, 11, 12 and third wire ground 23 in FIG. 1.

Variations of current flow through photo-transistor 19 create voltage variations across resistor 20. This voltage variation, or signal, is A.C. coupled through capacitor 21, which removes any D.C. component. The resultant A.C. signal is equivalent to the signal obtained on terminals 10, 11, and 12 and is applied-to amplifier A The amplitude of the signal is controlled by setting feedback potentiometer 25 as desired. It should be understood that amplifiers A and A may comprise considerable circuitry and may not necessarily be a single transistor or amplifying device.

Summarizing, amplifier A is a preamplifier which amplifies an ECG signal from the patient. The output of A feeds the base of transistor 15 which amplitude modulates the current passing through light-emitting diode 17. Because of the properties of light-emitting diodes, modulating this current modulates the light being emitted by light-emitting diode 17. This modulated light 18 is sensed by photo-transistor l9 in'side photo-coupled device 28. Photo-transistor l9 reconverts modulated light 18 into modulated current. The modulated current develops signal voltage across resistor 20, which is a reconverted ECG signal. It is then coupled through capacitor 21 to remove any DC component, and amplified by amplifier A which makes up for any loss of signal amplitude. A also acts as a buffer amplifier to increase output drive capabIlity.

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. For example ultrasonic coupling may be substituted for optical coupling, the substitution incorporating appropriate circuitry changes. A single piezoelectric crystal could be used with two pairs of electrical connectionsone pair conductively connected to the patient and electrically isolated from the other pair conductively connected to the other equipment or apparatus.

The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

What is claimed is:

1. In improved medical-electronic equipment used for monitoring a physilogical function of a patient, said equipment being capable of simultaneous use with a plurality of other electrical apparatus, said equipment including an electronic amplifier and terminal means for conductively connecting the body of said patient to the input of said amplifier, the improvement comprising:

optical coupling means comprising a light-emitting 5 diode in operative connection with a phototransistor for electrically isolating the output signal of said amplifier from said plurality of other electrical apparatus and for linearly coupling said output signal to at least one of said plurality of other electrical apparatus,

generated from said second power supply means.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3488586 *Jun 2, 1965Jan 6, 1970Gen ElectricFrequency modulated light coupled data link
US3598909 *Jul 25, 1968Aug 10, 1971Matsushita Electric Ind Co LtdA high-voltage generator circuit configuration utilizing a ceramic transformer
Non-Patent Citations
Reference
1 *Kebo, I.E.E.E. Transactions on Biomedical Electronics, Vol. 17, No. 2, April, 1970, pp. 163 166
2 *Van der Weide et al., Medical & Biological Engineering, Vol. 6, No. 4, August, 1968, pp. 447 and 448
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3825896 *May 1, 1972Jul 23, 1974Texas Instruments IncComputer input/output interface systems using optically coupled isolators
US3880146 *Jun 4, 1973Apr 29, 1975Donald B EverettNoise compensation techniques for bioelectric potential sensing
US3894229 *Jul 23, 1973Jul 8, 1975Matsushita Electric Ind Co LtdSignal generator
US3912951 *Apr 19, 1974Oct 14, 1975Nippon Electric CoOptically coupled circuit arrangement
US4211934 *Jul 1, 1977Jul 8, 1980Bbc Brown Boveri & Company LimitedCurrent-measuring input for an electronic relay
US4384775 *Mar 17, 1981May 24, 1983Olympus Optical Co., Ltd.Light supply device for an endoscope
US4715384 *Feb 2, 1983Dec 29, 1987Kabushiki Kaisha Daini SeikoshaPulsimeter
US4752693 *Jan 6, 1987Jun 21, 1988Tokyo Shibaura Denki Kabushiki KaishaCircuit with a photo coupler
US4976681 *Apr 27, 1988Dec 11, 1990Aries Medical, Inc.Pacer interface device
US4987902 *Dec 30, 1988Jan 29, 1991Physio-Control CorporationApparatus for transmitting patient physiological signals
US5108389 *May 23, 1990Apr 28, 1992Ioan CosmescuAutomatic smoke evacuator activator system for a surgical laser apparatus and method therefor
US5226431 *Jun 20, 1991Jul 13, 1993Caliber Medical CorporationOptical/electrical transceiver
US5307817 *Jan 23, 1990May 3, 1994Medese AgBiotelemetry method for the transmission of bioelectric potential defferences, and a device for the transmission of ECG signals
US5322069 *May 24, 1993Jun 21, 1994Stuart Medical Inc.Ambulatory ECG triggered blood pressure monitoring system and method therefor
US5522865 *Oct 12, 1994Jun 4, 1996Alfred E. Mann Foundation For Scientific ResearchVoltage/current control system for a human tissue stimulator
US5568814 *Jun 20, 1994Oct 29, 1996Protocol Systems, Inc.Ambulatory patient monitoring system
US5626619 *Oct 11, 1994May 6, 1997Jacobson; PeterOptically isolated shock circuit for implantable defibrillator
US5680104 *May 31, 1996Oct 21, 1997VolutionFiber optic security system
US6391102Mar 21, 2000May 21, 2002Stackhouse, Inc.Air filtration system with filter efficiency management
US6493485Aug 3, 1999Dec 10, 2002Astro Terra CorporationSystems and methods for aligning a laser beam with an optical fiber
US6977540 *Feb 18, 2003Dec 20, 2005Adc Dsl Systems, Inc.High-speed isolated port
US8030891Apr 10, 2008Oct 4, 2011Smiths Medical Asd, Inc.Ambulatory medical device with electrical isolation from connected peripheral device
US8135876 *Dec 31, 2008Mar 13, 2012Fresenius Medical Care Holdings, Inc.Identifying when a USB self-powered device is connected to a medical device by triggering an alert about a potential risk to patient
US8145800Mar 27, 2012Fresenius Medical Card Holdings, Inc.Identifying when a USB self-powered device is connected to a medical device by triggering an alert about a potential risk to patient
US8241217Oct 31, 2007Aug 14, 2012Teratech CorporationPortable ultrasound imaging data
US8255585Aug 28, 2012Fresenius Medical Care Holdings, Inc.Identifying when a self-powered device is connected to a medical device by triggering an alert about a potential risk to patient
US8469893Jan 8, 2008Jun 25, 2013Teratech Corp.Portable ultrasound imaging system
US8628474Jan 4, 2008Jan 14, 2014Teratech CorporationPortable ultrasound imaging system
US8716979Aug 26, 2011May 6, 2014Smiths Medical Asd, Inc.Ambulatory medical device with electrical isolation from connected peripheral device
US20040160719 *Feb 18, 2003Aug 19, 2004Adc Dsl Systems, Inc.High-speed isolated port
US20050001179 *Jun 22, 2004Jan 6, 2005Scott GislerSelf powered serial-to-serial or USB-to-serial cable with loopback and isolation
US20080294046 *Jan 4, 2008Nov 27, 2008Teratech CorporationPortable ultrasound imaging system
US20080300490 *Jan 8, 2008Dec 4, 2008Teratech CorporationPortable ultrasound imaging system
US20090112091 *Oct 31, 2007Apr 30, 2009Teratech CorporationPortable ultrasound imaging data
US20090256527 *Apr 10, 2008Oct 15, 2009Michael WelschAmbulatory medical device with electrical isolation from connected peripheral device
US20100168653 *Jul 16, 2009Jul 1, 2010Fresenius Medical Care Holdings, Inc.Identifying a Self-Powered Device Connected to a Medical Device
US20100169513 *Dec 31, 2008Jul 1, 2010Fresenius Medical Care Holdings, Inc.Identifying A Self-Powered Device Connected To A Medical Device
EP1494124A2 *Jun 25, 2004Jan 5, 2005Becton, Dickinson and CompanySelf powered serial-to-serial or USB-to-serial cable with loopback and isolation
EP1494124A3 *Jun 25, 2004Sep 6, 2006Becton, Dickinson and CompanySelf powered serial-to-serial or USB-to-serial cable with loopback and isolation
WO2009126384A1 *Mar 6, 2009Oct 15, 2009Smiths Medical Md, Inc.Ambulatory medical device with electrical isolation from connected peripheral device
Classifications
U.S. Classification600/508, 128/908, 327/109, 327/514, 250/551
International ClassificationH03F3/08, A61N1/08, A61N1/00, A61B5/00, A61B5/0428
Cooperative ClassificationA61B5/04282, H03F3/087, Y10S128/908
European ClassificationH03F3/08I, A61B5/0428B
Legal Events
DateCodeEventDescription
May 20, 1982ASAssignment
Owner name: WARNER LAMBERT COMPANY 201 TABOR ROAD, MORRIS PLAI
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AMERICAN OPTICAL CORPORATION A CORP. OF DE;REEL/FRAME:004054/0502
Effective date: 19820315
Apr 3, 1981ASAssignment
Owner name: COOK PACEMAKER CORPORATION, P.O. BOX 99, BLOOMINGT
Free format text: LICENSE;ASSIGNOR:ATLANTIC RICHFIELD COMPANY;REEL/FRAME:003852/0285
Effective date: 19810327
Owner name: COOK PACEMAKER CORPORATION, INDIANA