Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3743584 A
Publication typeGrant
Publication dateJul 3, 1973
Filing dateJun 2, 1971
Priority dateJun 6, 1970
Also published asCA961494A1, DE2028803A1, DE2028803B2, DE2028803C3, DE2039831A1, DE2039831B2, DE2039831C3
Publication numberUS 3743584 A, US 3743584A, US-A-3743584, US3743584 A, US3743584A
InventorsW Clauss, W Dahms, H Todt
Original AssigneeSchering Ag
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Acid bright copper plating bath
US 3743584 A
Abstract
Polymeric phenazonium compounds, their method of preparation and their use in acid electrolytes for the deposition of bright, leveling, copper coatings on surfaces.
Images(7)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Todt et al. July 3, 1973 ACID BRIGHT COPPER PLATING BATH [5 6] References Cited [75] Inventors: l-lans-Giinther Todt; Wolfgang UNITED STATES PATENTS Clauss; Wolfgang Dahms, all of 2,707,166 4/1955 Brown et a1 204/52 R Berlin, Germany 2,707,167 4/1955 Hoover 204/52 R 3,267,010 8/1966 Creutz et al. 204/52 R 1 Asslgnw Scherina AG, Berlm, Germany 3,328,273 6/1967 Creutz et al. 204/52 R J 2 3,502,55l 3/l970 Todt ef al. R

[21] App]. No.: 149,335 Primary ExaminerF. C. Edmundson Attorney-Joseph F. Padlon [30] J Fzrilaiggliz) Apglication Priority Dagazo 28 803 3 ABSTRACT um ermany Polymeric phenazonium compounds, their method of [52] Cl 204/52 R 204/1316 2 preparation and their use in acid electrolytes for the de- [51] Int Cl IIIIIIIIIIIIIIIIIIII H C23b position of bright, leveling, copper coatings on sur- [58] faces v Field of Search 204/52 R, DIG. 2

5 Claims, No Drawings ACID BRIGHT COPPER PLATING BATH The invention relates to new polymeric phenazonium compounds, methods for their production, as well as their use in acid electrolytes for the deposition of bright, leveling copper coatings. I

It has long been known that certain organic substances can be added in small quantities to acid copper electrolytes, in particular to the most widely used copper sulfate electrolytes, in order to obtain bright copper coatings instead of a crystalline-dull deposition. For this purpose there have become known, for example, polyethylene glycol, thiourea and derivatives thereof, thiohydantoin, thiocarbaminic acid ester and thiophosphoric acid ester, which, however, no longer have any practical importance since the quality of the copper coatings obtained with them does not meet today's requirements. Thus the coatings are either too brittle or they have too little luster or, within certain current density ranges, they turn out with a relief type finish.

Also the addition of certain safranines, either alone according to the proposal of German Pat. No. 947,656 or in mixture with thiourea or the substitution products thereof according to German Pat. No. 1,004,880, leads to copper coatings with such unsatisfactory properties.

Further there has been proposed the addition of thiourea-formaldehyde condensates (German Pat. Nos. 1,152,863 and 1,165,962) and of certain compounds with C==S groups in the molecule (German Pat. No. 1,218,247).

While one obtains bright copper deposits with these additions, they do not always satisfy the increased requirements of the practice either, since their leveling action is unsatisfactory.

There has been proposed moreover the addition of polyalkylenimines in conjunction with organic thio compounds (German Pat. No. 1,246,374) and polyvinyl compounds in mixture with oxygen-containing high-molecular compounds and organic thiocompounds (German Pat. application No. 1,521,062). Such copper electrolytes, however, do not permit the use of higher cathodic current densities, and the deposited copper coatings can be nickel-plated only after intermediate treatment.

It is the object of the present invention to avoid the moreover to improve these baths so that they can be operated also at higher current densities and in conjunction with other known brighteners to permit the deposition of especially uniform copper deposits, which can be nickel-plated without intermediate treatment.

This is solved accordingwto the invention by an acid copper electrolyte which is characterized by a content of at least one compound of the general formula wherein R R,, R R R R R R and R, are identical or different and represent hydrogen, a low alkyl or possibly substituted aryl, and R and R represent moreover monomeric or polymeric phenazonium radicals, A is an acid radical, and n an integer from 2 to 100, preferably from 4 to 20.

As lower alkyl radicals there may be named for example methyl and ethyl propyl, etc.

An aryl radical may be, for example, phenyl, which may be substituted by methyl, ethyl, methoxy or ethoxy, etc.

As acid radicals there enter into consideration, for example, those of hydro-chloric acid (Cl'), sulfuric acid (HSOf), nitric acid (NO and acetic acid (Cl-[,coo), etc. a

The radicals R and R may signify moreover, for example phenazonium radicals of the parent substance.

The quantities in which the identified compounds must be added to the copper baths in order to obtain a clear improvement of the copper deposition are surprisingly very small and amount to about 0.0005 to 0.1 g/liter, preferably 0.0005 to 0.03 g/liter.

Table l contains examples for substances according to the invention and data on the preferred concentrations in the electrolyte. I

The linkage points of the radicals are not fully clarified. The linkage may take place, besides through the 3-position of the phenazonium radical, also through the disadvantages of the known acid copper baths and S-and the 7-position.

TABLE I Preferred concenii: (for tration, N0. Substance instance) lL/litm- (()ll:;)gN O Ulla Substance l1 s (for lllStZlllCO) Fran.

These substances can be prepared, for example, as follows:

2 moles of an amine sulfate, e.g., 2-methyl-3-amino- 6-dimethylamino-9-phenyl-phenazonium sulfate, are suspended with 4.5 liter of percent sulfuric acid and diazotized within 3 hours at 5 C with 650 ml nitrosylsulfuric acid containing 2.2 moles of nitrous acid. The excess nitrous acid is destroyed with amino-sulfonic acid and the reaction solution is heated to 20 C, nitrogen evolving vigorously. After the nitrogen evolution has come to an end, one neutralizes with a base, e.g., potash lye.

On standing, 800 g of a blue reaction product of substance No. 3 (Table I) crystallize out. After drying, and after proper dilution, this product can be charged immediately into acid copper electrolyte. The molecular weight is about 8,000.

In the following, the preparation of some other substances according to the invention is described. Preparation of substance No. l

1 mole of 3-amino-S-methyl-6-dimethylamino-9- phenyl-phena'zonium-hydrogen sulfate is suspended in 2 liters of percent sulfuric acid and diazotized within 4 hours at -10 C with 300 ml nitrosylsulfuric acid containing 1.1 mole of nitrous acid. The excess nitrous acid is destroyed with urea and the reaction solution slowly heated to C, nitrogen evolving vigorously. After the nitrogen evolution has come to an end, one neutralizes with gaseous ammonia. On standing, 350 g of a polymeric blue phenyl phenazonium salt crystallize out. After drying, this polymeric dye, which has a mean molecular weight of about 5,000, can be charged in proper dilution directly into acid copper electrolyte. Preparation of substance No. 2

1 mole of 2-methyl-3-amino-6-diethylamino-9- phenyl-phenazonium chloride is suspended in 2 liters of 30% HCI and carefully diazotized within 5 hours at 10 C with 1.1 mole NaNo t dissolved in 250 ml of water. The excess nitrous acid is destroyed with aminosulfonic acid and the reaction solution heated to 20 C, nitrogen evolving vigorously. After the nitrogen evolution has come to an end, one neutralizes with potassium hydroxide. After letting stand, 300 g of the blue polymeric dye having a mean molecular weight of 4,000 can be suctioned off. Preparation of substance No. 4

0.1 mole of 3-amino-6-dimethylemino-9-methylphenazonium acetate is suspended in 250 ml of glacial acetic acid and carefully diazotized at --5 C with 0.12 mole of sodium nitrite, dissolved in 50 ml of water. The excess nitrous acid is destroyed with urea and the reaction solution briefly heated to boiling. After concentrating to ml and cooling, the precipitated polymeric dye of a mean molecular weight of about 8,000 can be suctioned off. The yield is: 20g. Preparation of substance No. 5

0.! mole of 2-m35hyl-3-amino-6-phenylamino-9- phenyl-phenazonium-hydrogen sulfate is suspended in '250 ml of 35 percent sulfuric acid and diazotized at 20 C with 30 ml of nitrosylsulfuric acid containing 0.12 mole of nitrous acid. The excess nitrous acid is destroyed with aminosulfonic acid and the reaction mixture slowly heated to 50 C. After the nitrogen evolution has come to an. end, one neutralizes with soda lye, and the polymeric dye contaminated with some sodium sulfate and having a mean molecular weight of about 300 is suctioned off. The yield is: 15g. Preparation of substance No. 6

0.05 mole of 2-methyl-3-amino-6-dimethylaminophenazonium hydrogen sulfate is suspended in 50 ml of 40 percent sulfuric acid and diazotized at 5 C with 15 ml of nitrosylsulfuric acid containing 0.06 mole of nitrous acid. The excess nitrous acid is destroyed with aminosulfuric acid and the acid neutralized with ammonia. After standing for a short time, a blue polymeric dye having a mean molecular weight of about 10,000 can be suctioned off. The yield is: 5g. Preparation of substance No. 7

0.05 mole of 3-amino-6-methylamino-9- phenylphenazonium acetate is suspended in 200 ml of glacial acetic acid and diazotized at 10 C with 0.06 mole of sodium nitrite, dissolved in little water. After destruction of the excess nitrous acid with urea, the reaction solution is heated to 40 C, concentrated, and the precipitated dye having a mean molecular weight of about 5,000 is suctioned off. The yield is 8g. Preparation of substance No. 8

0.05 mole of 2-phenyl-3-amino-6-3thylamino-9- phenyl-phenazonium chloride is suspended in 400 ml of 30 percent hydrochloric acid and diazotized within 1 hour with 0.06 mole of sodium nitrite, dissolved in little water. After destruction of the excess nitrous acid with aminosulfonic acid, the temperature is raised to 30 C; after the nitrogen evolution has come to an end, the product is extensively concentrated, and the precipitated dye having a mean molecular weight of about 2,000 is suctioned off. The yield is: 4g.

Preparation of Substance No. 9

0.05 mole of l,2,5,8-6365amethyl-3-amino-6- diethylamino-9-phenyl-phenazonium hydrogen sulfate is dissolved in 500 ml of 50 percent sulfuric acid and diazotized at -10 C with 15 ml of nitrosylsulfuric acid containing 0.06 mole of nitrous acid. The excess nitrous acid is destroyed with aminosulfonic acid, the diazonium salt is boiled down, and the sulfuric acid neutralized with ammonia. The precipitated dye having a mean molecular weight of about 2,000 is suctioned off. The yield is: 10g. Preparation of substance No. 10

0.05 mole of 2,7-dimethyl-3-amino-6-diethylamino- 9-tolyl-phenazonium chloride is suspended in 50 ml of 30 percent hydrochloric acid and carefully diazotized at 5 C with 0.06 mole of sodium nitrite. dissolved in little water. The excess nitrous acid is destroyed with aminosulfonic acid, the reaction solution heated to 80 C, extensively concentrated, and the precipitated dye having a mean molecular weight of about 4,000 is suctioned off. The yield is: 8g. Preparation of substance No. 11

0.05 mole of 2,8-diphenyl-3-amino-5-methyl-6- dimethylamino-9-phenyl-phenazonium hydrogen sulfate is dissolved in 500 ml of 50 percent sulfuric acid and diazotized at l C with 15 ml nitrosylsulfuric acid which contains 0.06 mole of nitrous acid, and then the excess nitrous acid is destroyed with aminosulfonic acid. After the diazonium compound has been boiled down, one neutralizes with ammonia and the precipitated blue dye having a mean molecular weight of about 1,500 is suctioned off. The yield is: 9g. Preparation of substance No. 12

2 moles of 2,7-dimethyl-3,6-diamino-9-phenylphenazonium hydrogen sulfate are suspended with 4.5 liter of 20 percent sulfuric acid and diazotized within hours at l0 C with 650 ml of nitrosylsulfuric acid which contains 2.2 moles of nitrous acid. The excess nitrous acid is destroyed with aminosulfonic acid and the reaction solution is heated to 25 C, nitrogen evolving vigorously. After the nitrogen evolution has come to an end, one neutralizes with ammonia, and the polymeric red-brown dye precipitated upon standing having a mean molecular weight of about 5,000 is suctioned off. The yield is: 750g of dye (contaminated with ammonium sulfate).

The invention, therefore, further relates to a method for the production of the compounds identified above.

Ashas been described, this method proceeds from compounds of the general formula in which the radicals R R R R R R R R R,

signify hydrogen, a low alkyl or possibly substituted aryl, and A is an acid radical, from which then the desired reaction products are formed by diazotizing in acid solution and subsequent boiling down of the resulting diazonium salts.

Advantageously the diazotizing of the amino compounds is effected in sulfuric acid, hydrochloric acid, or acetic acid solution. These acids then form the above-mentioned acid radical A. As diazotizing agents that are suitable are sodium nitrite or nitrosylsulfuric acid, etc.

The so-called boiling down of the formed diazonium salts may take place at temperatures of about 5 to C, preferably about 10 to 25 C.

The reaction products precipitate from the acid reaction solution or can be precipitated therefrom by neutralization with bases, e.g., ammonia, soda or potash lye. Isolation is then effected by common methods.

As electrolyte for the deposition of copper coatings with addition of the substances according to the invention, there is generally used a sulfuric acid copper sulfate solution of the following composition:

Copper sulfate CuSo 5 H,O -260 g/liter Sulfuric'acid l-l SO 20-85 g/liter Instead of copper sulfate, at least in part, other copper salts may be used. The sulfuric acid may be replaced partly or wholly by fluoroboric acid, phosphoric acid and/or other suitable acids. The electrolyte may be chloride-free, or this being usually advantageous for improving the luster and the leveling, it may contain chlorides, such as, alkali chlorides or hydrochloric acid, in quantities of 0.001 to 0.2 g/liter.

If one or more of the substances of the invention are added to such copper baths, the normally crystallinedull precipitate turns out bright in a wide current density range. Besides, the cathodic current density may be increased by about 50 percent without the formation of flaws, in particular budding, in the range of high current densities. To attain a certain layer thickness, therefore, the time of exposure may be reduced accordingly and in a unit of given size more merchandise can be put through.

The substances according to the invention are also particularly suited for depositing haze-free and highbrighteners coatings in conjunction with other common luster-formers and/or wetting agents. Electrolytes containing the substances of Table I show also excellent ageing. Even after a current passage of 200-400 Ah/ltr and more, the copper coatings turn out just as highly lustrous, leveling and ductile as in a fresh batch of electrolyte. No harmful decomposition products of these substances are formed that would require purification, for example, with active carbon.

One obtains an especially clear and sudden improvement of the luster and of the leveling effect by adding the substances according to the invention to copper electrolytes which contain as brighteners oxygencontaining, high-molecular compounds and organic thio compounds, preferably comprising one or more water-solubilizing groups.

The quantities of these compounds to be added to the copper electrolyte are comprised approximately within the following limits:

Oxygen containing high molecular compounds-0.-

(ll-20.0 g/liter prcferably-0.02-8.0 g/liter.

Organic thio compounds with water solubilizing groups 0.0005-0.2 g/liter, preferably0.0l-0.l g/liter.

Table II below contains examples of oxygencontaining, high-molecular compounds and their preferred concentrations.

TABLE II No. Substance Preferred concentration g/liter l Polyvinyl alcohol 0.05-0.4 2 Carboxymethyl cellulose 0.05-0.! 3 Polyethylene glycol 0.1-5.0 4 Polypropylene glycol 0.05-1.0 5 Stearic acid polyglycol ester 0.5-8.0 6 Oleic acid pol glycol ester 0.5-5.0 7 Stearyl alcoho pol glycol ether 0.5-8.0 8 Nonylphenol-polyg ycol ether 0.5-6.0

Table III below contains examples of organic thio compounds with water-colubilizing groups and their preferred concentrations.

TABLE III No. Substance Preferred concentration g/liter l N,N-diethyl-dithiocarbaminic acid-(sulfopropyl)-ester,

sodium salt 0.0l0.l

2 Sodium mercaptobenzothiazol- S-propanesulfonate 0.02-0. l

3 Sodium 3-mercaptopropane-l sulfonate 0005-01 4 Bis-(S-sodium sulfopropyl)- disulfide 0005-02 5 Thiophosphoric acid-O-ethylbis-(sulfopropyl(-ester,

disodium salt 0.01-0.15

6 Thiophosphoric acid-tris- (sulfopropyU-ester, trisodium sulfonate 0.05-0.2

8 Thioglycolic acid 0001-0003 The addition of substances of Table I to copper electrolytes which contain brighteners of Tables II and Ill thus brings about two decisive technical advantages:

1. The applicable cathodic current density is increased up to 50 percent;

2. The leveling effect, i.e., the reduction of roughness of the ground material, is increased (measured at a layer thickness of 24 microns) from 40-50 percent to about 70-80 percent.

The concentration ratios of the individual compounds in the copper electrolyte may vary within wide limits. It has proved favorable to have a weight ratio of the substances, listed by way of example in Tables I, II and Ill, of about I l 2 to about I 200 20.

The following examples will elucidate the use of the products according to the invention:

EXAMPLE 1 In a copper bath of the composition 220 g/liter copper sulfate (CuSO, H

50 g/liter sulfuric acid, concentrated brass sheets or pre-nickel-plated steel sheets are copper plated at an electrolyte temperature of 20 to 25 C with cathode movement. The deposits are crystalline-dull. When the current density exceeds 4 A/dm, there occur at the corners of the cathode sheets loosely adhering powdery copper depositions. if one now adds to the electrolyte 0.06 g/liter of substance No. 1 (Table l), the current density can be increased to 6 A/dm under the same operating conditions without causing the flaws referred to above. Besides, the deposit turns out bright.

EXAMPLE 2 To a copper bath of the composition 200 g/liter copper sulfate (CuSO, 5 H 0) 60 g/liter sulfuric acid, concentrated 0.05 g/liter sodium chloride there are added as brighteners 0.6 g/liter polypropylene glycol and 0.02 g/liter sodium 3-mercaptopropane-l sulfonate.

Although at an electrolyte temperature of 20 to 25 C one obtains with a current density of 6.0 A/dm and air agitation bright and haze-free copper coatings, the leveling of rugosities of the ground material at a layer thickness of 24 microns is only 45 percent. When adding to the bath 0.008 g/liter of substance No. 3 (Table l), the leveling increases under the same operating conditions to 76 percent, that is, it increases by percent.

EXAMPLES To the electrolyte according to Example 2 there are added 4.0 g/liter nonylphenol-polyglycol ether and 0.02 g/liter N,N-diethyl-dithiocarbaminic (sulfopropyl)-ester, sodium salt. At an electrolyte temperature of 20 to 25 C, a current density of 5.0 A/dm and movement of the cathode rod, the leveling effect at a layer thickness of 24 microns copper is about 50 percenLBy adding 0.01 g/liter of substance No. 6 (Table I), the leveling increases to 78 percent, the increase thus being 56 percent.

What we claim is:

1. in an acid electrolyte for the deposition of bright copper coatings comprising (a) an oxygen containing high molecular weight compound selected from the group consisting of polyvinyl alcohol, carboxymethyl cellulose, polyethylene glycol, stearic acid polyglycol ester, oleic acid polycol ester, and nonylphenol polyglycol ester; (b) an organic thio compound selected from the group consisting of sodium salt of N N-diethyl-dithiocarbamic acid (sulfopropyl ester), sodium mercaptobenzothiazol-S-propanesulfonate, sodium S-mercapto-propane-l-sulfonate, bis-(S-sodium sulfopropyl)-disulfide, disodium salt of thiophosphoric acidacid-O-ethyl-bis-(sulfopropyl) ester, trisodium salt of thiophosphoric acid-tri-(sulfopropyl) ester, and thioglycollic acid; the improvement which comprises a compound of the formula:

ties of 0.0005 to 0.1 g/liter, preferably 0.0005 to 0.03 g/liter.

3. An electrolyte according to claim 2, characterized in that it additionally contains oxygen-containing, highmolecular compounds and organic thio compounds with water-solubilizing groups.

4. Electrolyte according to claim 3, characterized in that it contains the oxygen-containing, high-molecular compounds in quantities of 0.01 to 20.0 g/liter, preferably 0.02 to 8.0 g/liter and the organic thio compounds with water-solubilizlng groups in quantities of 0.0005 to 0.2 g/liter, preferably 0.01 to 0.1 g/liter.

5. An electrolyte for the deposition of bright copper coatings comprising at least one compound of the wherein R through R, are individually selected from the group-consisting of hydrogen, lower alkyl, aryl, and substituted aryl, R and R being additionally a monomeric or polymeric phenazonium radical; A is an acid radical; and n is an integer from 2 to 100.

t t i t

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2707166 *May 26, 1952Apr 26, 1955Udylite CorpElectrodeposition of copper from an acid bath
US2707167 *May 26, 1952Apr 26, 1955Udylite CorpElectrodeposition of copper from an acid bath
US3267010 *Apr 16, 1962Aug 16, 1966Udylite CorpElectrodeposition of copper from acidic baths
US3328273 *Aug 15, 1966Jun 27, 1967Udylite CorpElectro-deposition of copper from acidic baths
US3502551 *Aug 10, 1967Mar 24, 1970Schering AgAcid electrolyte for the deposition of bright,levelling copper coatings
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4376685 *Jun 24, 1981Mar 15, 1983M&T Chemicals Inc.Alkylated epihalohydrin-modified polyalkylenimines
US4786746 *Sep 18, 1987Nov 22, 1988Pennsylvania Research CorporationTrithiopercarbamates as brighteners
US4948474 *Aug 28, 1989Aug 14, 1990Pennsylvania Research CorporationContaining a water solublecoppper salt, a free acid, and a brightener,which is a trithiocarbamate derivative
US5433840 *Jul 22, 1992Jul 18, 1995Atotech Deutschland GmbhPolyoxyalkylene glycol ethers, copper salts and acid
US5730854 *May 30, 1996Mar 24, 1998Enthone-Omi, Inc.Alkoxylated dimercaptans as copper additives and de-polarizing additives
US5849171 *Oct 4, 1996Dec 15, 1998Atotech Deutschland GmbhAcid bath for copper plating and process with the use of this combination
US7786303Nov 9, 2004Aug 31, 2010Atotech Deutschland GmbhAcidic bath for electrolytically depositing a copper deposit containing halogenated or pseudohalogenated monomeric phenazinium compounds
US8691987Sep 24, 2010Apr 8, 2014Andrew M. KrolMethod of producing polymeric phenazonium compounds
US8735580Sep 21, 2011May 27, 2014Andrew M. KrolMethod of producing polymeric phenazonium compounds
CN1882550BNov 9, 2004Apr 18, 2012埃托特克德国有限公司用于电解沉积铜沉积物的含有卤化或拟卤化的单体吩嗪鎓化合物的酸浴
CN101899687A *Aug 3, 2010Dec 1, 2010济南德锡科技有限公司Single dye type bright acidic copper plating additive and preparation method and application thereof
EP1054080A2 *May 15, 2000Nov 22, 2000Shipley Company, L.L.C.Electrolytic copper plating solutions
WO2005049584A1 *Nov 9, 2004Jun 2, 2005Atotech Deutschland GmbhAcidic bath for electrolytically depositing a copper deposit containing halogenated or pseudohalogenated monomeric phenazinium compounds
WO2012040417A1 *Sep 22, 2011Mar 29, 2012Macdermid Acumen, Inc.Improved method of producing polymeric phenazonium compounds
Classifications
U.S. Classification205/298
International ClassificationC08G73/06, C07D241/46, C25D3/38
Cooperative ClassificationC25D3/38, C08G73/0694, C07D241/46
European ClassificationC07D241/46, C08G73/06J2, C25D3/38