Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3744492 A
Publication typeGrant
Publication dateJul 10, 1973
Filing dateApr 7, 1971
Priority dateApr 7, 1971
Publication numberUS 3744492 A, US 3744492A, US-A-3744492, US3744492 A, US3744492A
InventorsLeibinsohn S
Original AssigneeLeibinsohn S
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Drip chamber
US 3744492 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1 Leibinsohn 1 11 3,744,492 [4 1 July 10,1973

1 1 DRIP CHAMBER [76] lnventor: Saul Leibinsohn, l1 Hagardom St.,

Rishon Lezion, lsrael 22 Filed: Apr.7, 1971 [21] Appl.No.: 132,789

[52] US. Cl 128/214 C [51] Int. Cl A6lm 05/16 [58] Field of Search 128/214 R, 214 C, 128/2l4.2; 210/94 [56] References Cited UNITED STATES PATENTS 2,729,212 1/1956 Butler 128/214 C 2,675,000 4/1954 Ford 128/214 C 2,696,818 12/1954 Van Loghem 128/214 C 3,048,171 8/1962 Grau 128/214.2

FOREIGN PATENTS OR APPLICATIONS 200,318 12/1965 Sweden 128/214C 977,039 1211964 Great Britain 128/214 C Primary Examiner-Dalt0n L. Truluck Attorn'ey-Ostrolenk, Faber, Gerb & Soffen [57] ABSTRACT A drip chamber for use in an infusion set for feeding blood, saline solution or other liquids from a container to a catheter or needle for administration to a patient. The drip chamber comprises an inlet section and a larger volume outlet section, liquid filling the latter section before it can escape from the chamber outlet and, when in use, covering the outlet irrespective of the orientation of the drip chamber, such that air bubbles can not escape from the drip chamber to the catheter or needle of the infusion set and thence to the patient.

3 Claims, 9 Drawing Figures DRIP CHAMBER BACKGROUND OF THE INVENTION The present invention relates to infusion apparatus and more particularly to a novel drip chamber for use there-with to prevent the passage of air through its exit opening.

Drip chambers are typically used in conjunction with SUMMARY OF THE INVENTION The present invention is characterized by providing a drip chamber for use with an infusion set which is designed to prevent the passage of air through its exit chamber and which is ruggedized to withstand rough handling without suffering any damage.

In one preferred embodiment, the tubing interconnecting the container for the liquid to be infused and the hypodermic needle or catheter used,'for example, for administration to the patient is provided with a drip chamber of a design which is uniquely adapted to prevent air from entering into the liquid flow, regardless of any change ordeviation in the orientation of the drip chamber. The drip chamber, which may be made of' glass, plastic or any other suitable transparent material, comprises a hollow housing havingan inlet at its narrower end and an outlet at its wider end. The inside of the housing defines a first, inlet section adjacent the inlet end of the chamber and a second, outlet section of greater volume adjacent the outlet end of the chamber. An outlet tube extends into and through at least the outlet section of the drip chamber, the inner end of the tube having an outlet opening communicating with the inlet section of the housing. The interior walls defining the principal inside surfaces of the inlet section taper inwardly from at least the portion of such section adjacent the outlet tube opening toward the inlet end of the drip chamber, such that liquid fed into the drip chamber fills at least the outlet section thereof prior to overflowing through the outlet tube opening and exiting through such tube. The liquid in the drip chamber thus provides a liquid seal preventing the escape of air bubbles from the drip chamber through the outlet tube, irrespective of the orientation of the drip chamber.

Any disruption or deviation in the orientation of the drip chamber, whether deliberate or accidental, will have no effect upon the flow or direction of flow of the infusion liquid. This results from the fact that the volume of the inlet section of the drip chamber is significantly less than the volume of the outlet section of the drip chamber, thereby assuring that the opening of the outlet tube from the chamber will remain covered by the liquid so as to absolutely prevent the escape of air bubbles through such opening.

The outer ends of the inlet'and outlet tubes may be connected with appropriate tubing to the container for the infusion liquid, the administering needle or catheter and, if desired, to a suitable stopcock or other valve. In order, however, to provide a drip chamber which is adaptable for use in a wide variety of applications, the

drip chamber housing, in one preferred embodiment, is provided with reinforcing ribs arranged in a starburst fashion about each of the outwardly extending inlet and outlet tubes to prevent breakage thereof during storage or handling. As another alternative embodiment, the housing is designed to provide for recessed tubular interconnections to prevent breakage or separation of the several components of the infusion set during storage, handling or use.

It is, therefore, among the objects of the present invention to provide a simple, ruggedly designed drip chamber for use with infusion sets and the like to determine the flow rate of a sterile liquid, while simultaneously preventing air bubbles from passing through the drip chamber to the patient being treated.

THE DRAWINGS The preceding as well as other objects and advantages of the invention will be apparent from the following description of a number of preferred embodiments of the drip chamber hereof shown in the accompanying drawings, in which:

FIG. 1 shows a sectional view of a drip chamber designed in accordance with the principles of the present invention; a 7 FIGS. 2a and 2b are sectional and plan views, respectively, showing an alternative arrangement for the drip chamber of FIG. 1;

FIG. 3 is a sectional view of a portion of a drip chamber showing a further modification of the embodiment of FIG. 1; 7

FIG. 4 is a sectional view showing another alternative embodiment of the present invention;

FIG. 5 is a sectional view showing an alternative embodiment of the drip chamber; and

FIGS. 6a, 6b and 6c are schematic views, partially in section, showing a drip chamber as a component of an infusion set (with the drip chamber enlarged for pur-v poses of clarity), and illustrating the liquid, levels maintained in the drip chamber when its orientation is changed, whether accidentally or otherwise, during use.

THE PREFERRED EMBODIMENTS A sectional view of a drip chamber 11 designed in accordance with the principles of the present invention is shown in FIG. 1. The drip chamber comprises a hollow housing indicated generally at 12 and defining an upper or inlet section 13 and a lower, larger volume outlet section 14. The housing inlet section 13 has inwardly tapering walls 15 extending toward inlet wall portion 16 of the drip chamber housing. An inlet tube 17 extends through such wall portion 16 and into the inlet section 13 of the drip chamber.

The outlet section 14, onthe other hand, is defined by generally cylindrically shaped walls 18 and an adjoining outlet wall portion 19. An outlet tube 21 is formed integrally with such wall portion extending into and through the outlet section 14 of the drip chamber. Outlet tube 21 has an outlet opening or port 22 communicating with the interior of the drip chamber housing 12. The outlet tube is of a length such that the outlet port thereof communicates with inlet section 13 of the chamber housing. Thus, the tube may extend to the interface 23' between the inlet and outlet sections 13 and 14 (FIG. 4) or to some further plane 23 intersecting the inwardly tapering interior walls of the drip chamber inlet section.

Inlet and outlet tubes 17 and 21 which may, as shown, be aligned with one another, suitably possess relatively small internal diameters such that the liquid passed through the inlet tube will form discrete drop lets which may be counted as they pass from the inlet tube into the drip chamber housing. The internal diameters of both such tubes may, for example, be of the order of 2 mm. When the tubes are formed with these diameters the liquid droplets pass through the inlet section and are collected in the outlet section 14 of the drip chamber housing rather than passing directly into the outlet portion 22 of the outlet tube.

As the droplets collect in the outlet section 14, no liquid thus escapes from the drip chamber through the outlet tube. Rather, it is not until the liquid level reaches plane 23 (FIG. 1) or 23' (FIG. 4) that any liq uid can overflow through the outlet port 22 and exit from the drip chamber via outlet tube 21. During continuous operation the discrete droplets of the liquid whose rateof flow is to be counted pass into the drip chamber housing, the liquid continuously overflowing through outlet port 22 and exiting from the drip chamher.

The normal orientation for the drip chamber is as shown in FIG. 1 with the inlet port being positioned directly above the outlet port so that their openings are substantially vertically aligned. If the orientation of the drip chamber 11 is either deliberately or accidentally altered from the vertical alignment as shown, the configuration of the drip chamber is such as to prevent the air which may have collected in the inlet section '13 of the drip chamber housing (i.e., in the region above the level 23 or 23') from exiting from outlet port 22. By providing adjoining inlet and outlet sections within the drip chamber housing, the former of which is of smaller volume and which is defined by inwardly tapering (conical, as shown in the drawings) wall surfaces, and extending the outlet tube into and through the outlet section such that the outlet opening communicates with the inlet section of the drip chamber housing, the liquid which overflows through the outlet opening acts as a liquid seal preventing the escape of air therefrom. Moreover, by incorporating inwardly tapering inlet section wall surfaces 15, air bubbles such as might form with orthogonally directed wall surfaces are not produced. Thus, any disorientation of the drip chamber merely displaces the liquid level without permitting air to escape through outlet port 22. Such is the case whether the drip chamber is either momentarily disturbed or'is disturbed for longer intervals of time.

FIG. 4 shows a slightly modified embodiment from that shown in FIG. 1 wherein like components are designated by like numerals. The basic difference between the arrangement of FIG. 4 and that shown in FIG. 1 is that the outlet section 14 of the drip chamber 11' is open ended and that the outlet or base wall portion 19 is provided with an upwardly extending circular flange 19a which may be press fitted into the interior of outlet section 14 in the manner shown. This arrangement simplifies the production techniques employed in producing the drip chamber. Alternatively, the inlet section 13 of the housing 12 may be designed in a similar fashion with the upper or inlet wall portion 16 being provided with a similar flange to be fitted into an open-ended inlet section.

FIG. 5 shows still another alternative embodiment in which the outlet tube assembly 21 incorporates a'separate member 24 having a slightly taperedhollow conical portion 210 integral with a hollow conical skirt 21b of greater taper. This member is preferably press fitted into the outlet surface 19 having an upwardly extending flange 1911. A porous filter sheet 25 is positioned betweenthe lower edge of member 24 and the outlet surface 19. Sterile liquid is collected in the embodiment of FIG. 5 in a manner similar to that described hereinabove with regard to the embodiment of FIG. 1 until the liquid level reaches the height of the outlet port 22' of the member 24, at which time the liquid is then free to pass therethrough and through porous member 25 outwardly from the drip, chamber. The porous filter member 25 acts to prevent any foreign matter from exiting through the outlet tube assembly and may be replaced at any time by a fresh filter member, if desired.

FIGS. 2a and 2b show a portion of a drip chamber,

including the inlet section 13, incorporating a modified structure which may be employed with any of the drip chambers shown in FIGS. 1, 1a or 4. As shown therein, the inlet section 13 of-a drip chamber 11" is provided with a plurality of radially aligned ribs 26 each having a triangular configuration. The lower horizontal edge of each rib 26 is integrally joined to the upper surface of inlet wall portion 16. Each of the vertically aligned edges 26a of ribs 26 lies a spaced distance from the outer surface of the inlet tube 17. The vertically aligned edges 26a, together with the outer surface of the inlet 'tube 17, form a hollow annular region surrounding the outlet tube 21 and to provide an improved fitting therewith. In a preferred embodiment, both the inlet and outlet tubes 17 and 21 are preferably so designed.

FIG. 3 shows another alternative embodiment'for providing an improved fitting between the drip chamber and external connectors 27. In this form of the invention the inlet wall portion 16 of the drip chamber housing comprises a tapered surface which defines an annular opening together with the outer surface of the inlet tube 17 recessed within the opening. In this manner, the inlet tube is protected against undue bending and/or breakage which may occur as a result of rough handling. In addition thereto, the annular opening provides a press fit between the flexible connector 27 and inlet tube 17.

The outlet wall portion 19 of housing 12 (see FIG. 1) may be tapered in a fashion similar to that shown in FIG. 4 so as to provide a recessed arrangement for protecting and coupling the outlet tube 21 to an internal connector.

The use of a typical drip chamber 11 of the present invention as part of an infusion set is illustrated in FIGS. 6a, 6b and 6c. In these drawings there is schematically illustrated an infusion set comprising a bag, bottle or other container 28 for the blood, saline solution or other infusion liquid, a catheter or needle 29, and flexible connectors 27 coupling the liquid container, the drip chamber, and the administering needle or catheter. Preferably, the infusion set additionally includes a valve 31 for regulating the flow of the liquid infused 5 consistent with the desired drip rate determined by periodic inspection of the feed of droplets through the drip chamber. Any conventional stopcock may be used as such valve means; preferably, however, infusion sets incorporating the novel drip chamber hereof additionally include stopcocks of the type described in my application Ser. No. 714,644 filed Mar. 20, 1968, entitled Stop Cock, now abandoned and the continuation-inpart thereof, Ser. No. 48,807 filed June 8, 1970, now Pat. No. 3,678,960 granted on July 25, 1972.

The drip chamber hereof may be advantageously employed in the novel infusion set described in my copending application Ser. No. 132,516 filed Apr. 8, 1971 entitled Non-Gravitational Infusion Set. The rugged construction of the drip chamber of this invention and the fact that such prevents air leakage through the administering needle or cannula irrespective of the orientation thereof makes it particularly useful in the infusion set described in the said application, which set is particularly useful for battlefield or like application in which it may be subjected to adverse conditions.

In FIGS. 60, and 6b and 6c the drip chamber 11 is diagrammatically shown in three varying orientations to illustrate the liquid seal formed therein during use which prevents the escape of air bubbles from the chamber irrespective of the orientation thereof. Since the outlet tube 21 of the chamber extends into the inlet section of the chamber housing and such section possesses a smaller volume than the outlet section 14 thereof, more than half of the chamber volume is filled with liquid before any can overflow through the outlet port and through the connector 27 to the administering needle or catheter 29. The liquid levels 23a, 23b or 230 illustrated in the respective views are thus above the level of the outlet port 22, irrespective of the orientation of the drip chamber. In this manner the desired liquid seal is maintained and air bubbles cannot escape from the inlet section 13 of the drip chamber through the connecting tube to the administering needle or other device.

It may be seen from the foregoing description that the present invention provides a novel drip chamber for determining the flow of a liquid to be administered to a patient by means of an infusion set incorporating the same. Such drip chamber is both simple and rugged in design and construction and may, therefore, be utilized in a wide variety of applications. Moreover, the drip chamber design is such as to prevent the escape of air bubbles from the drip chamber and into the administering needle or catheter, irrespective of the accidental or intentional disorientation of the drip chamber from the 'vertical. lt will be understood that other modifications of the preferred embodiments of the drip chamber described hereinabove may be made without departing from the scope of the present invention. The preceding description should, therefore, be construed as illustrative and not in a limiting sense.

1 claim:

1. A drip chamber for determining the rate of flow of a liquid comprising:

a. a hollow housing having a first inlet section and a second, larger volume outlet section;

b. an outlet tube extending into and through at least the outlet section and having an outlet opening communicating with the inlet section of the housing;

c. interior walls defining the principal inside surfaces of the inlet section and tapering inwardly from at least the portion of the inlet section adjacent to the outlet tube opening toward the inlet end of the drip chamber;

d.-an inlet tube extending from the inlet end of the drip chamber through a portion of the inlet section and having an inlet opening communicating with the inlet section and spaced from the outlet tube opening;

e. means secured to the outside of the housing adjacent to the external opening of the inlet and/or outlet tubes thereof providing a bearing surface spaced from and substantially parallel to the longitudinal axis of such tube and defining a hollow annular region for receiving and securing a tubular connector to either side tube, said means comprising a plurality of radially aligned ribs secured to the adjacent housing portion each of which ribs has an edge substantially parallel to the longitudinal surface of' the adjacent inlet and/or outlet tube and which edges define said bearing surface;

liquid fed into the drip chamber filling at least the outlet section thereof prior to overflowing through the outlet tube opening and exiting through such tube, said liquid defining a liquid seal preventing the escape of air bubbles from the drip chamber through the outlet tube irrespective of the orientation thereof.

2. A drip chamber for determining the rate of flow of a liquid comprising:

a. a hollow housing having a first inlet section and a second, larger volume outlet section;

b. an outlet tube extending into and through at least the outlet section and having an outlet opening communicating with the inlet section of the hous- "8;

c. interior walls defining the principal inside surfaces of the inlet section and tapering inwardly from at least the portion of the inlet section adjacent to the outlet tube opening toward the inlet end of the drip chamber;

d. said outlet section of the housing comprising a cylindrically shaped element open at one end, a discshaped member supporting the outlet tube, and a flange formed integrally with and extending circumferentially of the disc-shaped member and adapted to be press fitted into the open end of the cylindrically shaped element; and said outlet tube being provided with a skirt portion flaring outwardly toward the open end of the cylindrically shaped element, the edge of said skirt being adapted to engage and be supported by the inner surface of the flange of the disc-shaped member;

liquid fed into the drip chamber filling at least the outlet section thereof prior to overflowing through the outlet tube opening and exiting through such tube, said liquid defining a liquid seal preventing the escape of air bubbles from the drip chamber through the outlet tube irrespective of the orientation thereof.

3. The device of claim 2, further comprising a sheet of porous filter material disposed between the outlet tube and the inner surface of the disc-shaped member which is adapted to close off the open end of the cylindrically shaped element.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4143659 *Aug 25, 1976Mar 13, 1979Helmut BiedermannStilligout or dropper particularly for infusion apparatus
US5102400 *Sep 2, 1988Apr 7, 1992Saul LeibinsohnDrip chamber for infusion apparatus
US5503801 *Nov 29, 1993Apr 2, 1996Cobe Laboratories, Inc.Extracorporeal treatment of blood
US5591251 *Dec 22, 1994Jan 7, 1997Cobe Laboratories, Inc.Side flow bubble trap apparatus and method
US5674199 *Sep 21, 1995Oct 7, 1997Cobe Laboratories, Inc.Top flow bubble trap method
US5730730 *Jul 1, 1996Mar 24, 1998Darling, Jr.; Phillip H.Liquid flow rate control device
US6213986Nov 28, 1997Apr 10, 2001Appro Healthcare, Inc.Liquid flow rate control device
US6673045Mar 24, 1998Jan 6, 2004Menachem A. KrausFlow indicators for ambulatory infusion
US7338512Mar 22, 2004Mar 4, 2008Rex Medical, L.P.Vein filter
US7682430Aug 13, 2002Mar 23, 2010Roche Diagnostics CorporationDevice for extracting gas or liquid from microfluidid through-flow systems
US7704266Jul 12, 2004Apr 27, 2010Rex Medical, L.P.Vein filter
US7736383Jan 7, 2005Jun 15, 2010Rex Medical, L.P.Vein filter cartridge
US7736384Jan 7, 2005Jun 15, 2010Rex Medical, L.P.Cartridge for vascular device
US7749246Sep 2, 2005Jul 6, 2010Rex Medical, L.P.Vein filter
US7871462Oct 1, 2007Jan 18, 2011Baxter International Inc.Dialysis systems having air separation chambers with internal structures to enhance air removal
US7887561 *Aug 17, 2004Feb 15, 2011Rex Medical, L.P.Multiple access vein filter
US7892331Oct 1, 2007Feb 22, 2011Baxter International Inc.Dialysis systems having air separation chambers with internal structures to enhance air removal
US7892332Oct 1, 2007Feb 22, 2011Baxter International Inc.Dialysis systems having air traps with internal structures to enhance air removal
US7909847Sep 2, 2005Mar 22, 2011Rex Medical, L.P.Vein filter
US7976562May 10, 2007Jul 12, 2011Rex Medical, L.P.Method of removing a vein filter
US7988768Dec 28, 2010Aug 2, 2011Baxter International Inc.Dialysis systems having spiraling fluid air separation chambers
US7992565May 9, 2008Aug 9, 2011Rex Medical, L.P.Fallopian tube occlusion device
US8025714Feb 15, 2011Sep 27, 2011Baxter International Inc.Dialysis systems and methods having vibration-aided air removal
US8025716Feb 18, 2011Sep 27, 2011Baxter International Inc.Fluid delivery systems and methods having floating baffle aided air removal
US8062326Aug 3, 2007Nov 22, 2011Rex Medical, L.P.Vein filter
US8080091Feb 18, 2011Dec 20, 2011Baxter International Inc.Dialysis systems and methods including cassette with fluid heating and air removal
US8100936Jun 1, 2010Jan 24, 2012Rex Medical, L.P.Vein filter
US8114276Oct 23, 2008Feb 14, 2012Baxter International Inc.Personal hemodialysis system
US8123947Oct 22, 2007Feb 28, 2012Baxter International Inc.Priming and air removal systems and methods for dialysis
US8162972Apr 29, 2010Apr 24, 2012Rex Medical, LpVein filter
US8211140Jun 1, 2007Jul 3, 2012Rex Medical, L.P.Vein filter
US8221529Nov 21, 2011Jul 17, 2012Baxter InternationalDialysis systems and methods including cassette with air removal
US8282668Oct 30, 2003Oct 9, 2012Rex Medical, L.P.Vein filter
US8323492Aug 19, 2011Dec 4, 2012Baxter International Inc.Hemodialysis system having clamping mechanism for peristaltic pumping
US8329030Aug 19, 2011Dec 11, 2012Baxter International Inc.Hemodialysis system with cassette and pinch clamp
US8366736Oct 30, 2007Feb 5, 2013Rex Medical, L.P.Vein filter
US8377093Jun 29, 2011Feb 19, 2013Rex Medical, L.P.Method of removing a vein filter
US8382711Dec 29, 2010Feb 26, 2013Baxter International Inc.Intravenous pumping air management systems and methods
US8444587Sep 24, 2008May 21, 2013Baxter International Inc.Fluid and air handling in blood and dialysis circuits
US8469990Oct 19, 2011Jun 25, 2013Rex Medical, L.P.Vein filter
US8500774Sep 1, 2009Aug 6, 2013Rex Medical, L.P.Vein filter
US8523829Jan 29, 2004Sep 3, 2013Becton, Dickinson And CompanyIntravenous delivery system
US8591541Mar 29, 2012Nov 26, 2013Rex Medical L.P.Vein filter
US8696700Jun 7, 2012Apr 15, 2014Rex Medical L.P.Vein filter
US8715313Jul 9, 2009May 6, 2014Rex Medical L.P.Vessel filter
US8821528Jul 26, 2004Sep 2, 2014Rex Medical, L.P.Removable vein filter
US8834403May 14, 2013Sep 16, 2014Baxter International Inc.Fluid and air handling in blood and dialysis circuits
US8834719Dec 19, 2011Sep 16, 2014Baxter International Inc.Personal hemodialysis system
DE2634121A1 *Jul 29, 1976Mar 3, 1977Biedermann HelmutTropfenzaehler, insbesondere fuer infusionseinrichtungen
EP0228802A2 *Nov 18, 1986Jul 15, 1987Saul LeibinsohnDrip chamber for infusion apparatus
EP0695200A1 *Mar 17, 1994Feb 7, 1996Baxter International Inc.Self-priming drip chamber with enhanced visibility
EP0975381A1 *Mar 24, 1998Feb 2, 2000Teva Medical Ltd.Flow indicators for ambulatory infusion
WO2003015919A2 *Aug 13, 2002Feb 27, 2003Carlo EffenhauserDevice for extracting gas or liquid from microfluidic through-flow systems
Classifications
U.S. Classification604/251
International ClassificationA61M5/14
Cooperative ClassificationA61M5/1411
European ClassificationA61M5/14F