Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3744611 A
Publication typeGrant
Publication dateJul 10, 1973
Filing dateJan 8, 1971
Priority dateJan 9, 1970
Also published asDE2100611A1, DE2100611B2, DE2100611C3
Publication numberUS 3744611 A, US 3744611A, US-A-3744611, US3744611 A, US3744611A
InventorsKnirsch F, Montanari L
Original AssigneeOlivetti & Co Spa
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electro-thermic printing device
US 3744611 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Montanari et al. July 10, 1973 [54] ELECTRO-THERMIC PRINTING DEVICE 2,917,996 12/1959 Epstein et a1. 346/76 R 3,509,980 5/1970 Lou h t al... 346 76 R X Inventors: 3: 3 3,453,648 7/1969 swing? 3 16/76 R 9 1 73 Assignee: Ing. c. Olivetti & c., S.p.A., lvrea Primary EmminerfEdgflr r (T -i 5 Att0rneyB1rch, Swindler, McKie & Beckett [21] Appl. No.: 104,893 An electrothermal printer for non-impact printing on plain paper which makes use of a ribbon which is made up of a substrate having a thermal transferrable ink [30] Forelgn Apphcauon Pnomy Data coated on the surface towards the plain paper and a Jan. 9, 1970 Italy 67046 A/70 coating of electrically resistive material on the other side. The ribbon is held in contact with the paper while 2% 1 3'' 76 d 346/5135 a plurality of selectively energizable electrodes are held f in contact with the resistive material coated side of the 0 arc l ribbon. The electrodes are selectively energized for causing a current to pass through an incremental por- 5 6 R t d tion of the resistive material to another electrode which l e erences is held in contact with said resistive material a short dis- UNITED STATES PATENTS tance from said selectively energizable electrodes. The 3,596,055 7/1971 Elston 346/76 R X current in the incremental portion of the resistive mate- 2,858,633 11/1958 Kane 346/76 R X rial causes enough 1 R heating to soften the wax coated 3,442,699 5/1969 Dalton 346/135 X on the substrate directly pposite to the heated portior g f gfgfi The softened ink transfers to the plain paper sheet as els 3,419,886 12/1968 Ortlieb 346/76 x a a 3,555,241 1/1971 Carlsen.... 346/76 R X 5 Claims, 5 Drawing Figures It N MW R 29 y// /////A 1/ 1s 28 PATENIELJUL 1 01973 14451 1 SHEET 1 0F 2 INVENTORS LUCIO MONTANARI FRANCO mmscu BY W YQLMJN EYS ATTORN ELECTRO-TIIERMIC PRINTING DEVICE CROSS-REFERENCE TO RELATED APPLICATION The convention priority application for this invention is Italian application No. 67046-A/70 filed on Jan. 9, 1970.

BACKGROUND OF THE INVENTION The present invention refers generally to non-impact printing systems, and more specifically to an electrothermic printing device, wherein a thermotransferable ink layer is printed on a receiving surface in areas where the ink is softened by a source of thermal energy.

Many thermal printing devices are known which print on plain paper whereon is superimposed a sheet coated with a pigmented and thermotransfereable layer, which layer is locally softened by heat transfer apparatus receiving exact registration, and which then adheres to the paper. One thermal printer uses as heat transfer apparatus a modulated electronic beam, which requires complex and bulky equipment not suitable, for example, for an office printing machine.

Another thermal printer uses a sheet having a resis tive layer, a low resistance substrate and a pigmented wax layer, in contact with the receiving sheet. A voltage is applied between a point of the resistive layer and the substrate edge by means of an electrode, which voltage causes a current to flow between the point and the substrate edge through a portion of the substrate having a variable length. The PR heating in the segment having a relatively high resistance causes the wax to melt. This device has the disadvantage that, by changing the electrode position, it changes the circuit resistance, and therefore the current rate, which in some positions will be such as not to melt the wax while in others it will be such as to cuase excessive melting. Furthermore, if a plurality of electrodes operate simultaneously, the currents in the substrate are added and can produce enough IR heating to cause printing where it is undesired.

A further thermal printer uses a metal sheet of high conductivity superimposed on a thermotransferable ink layer which is in turn superimposed on plain paper sheet. An electrode of a different metal is pressed on the high conductivity sheet, which electrode is transversely displaceable on the sheet and connected to a generator of electric voltage. When the electrode is dis-.

placed while voltage is applied a current flows therethrough, which heats the ink lying below. This device, however, requires high rated currents; furthermore, since it is based upon the junction effect, it requires a system capable of holding the stylus at a constant pressure against the sheet of high conductivity material, it being required that the electric characteristics of the junction do not change with the stylus position.

SUMMARY OF THE INVENTION corresponding limited portion of the resistive layer sufficient I R heating for locally softening the therrnotransferable ink.

BRIEF DESCRIPTION OF THE DRAWINGS DETAILED DESCRIPTION In FIG. 1 there is schematically illustrated a typewriter which includes a printing device according to the invention. The machine comprises a usual alphanumeric keyboard 11 which controls, by means of a coding device of known type (not shown) a printing head 13. Head 13 is mounted on a carriage 14 which is stepby-step transversely displaceable with respect to the machine by means of a guiding system (not shown). The head 13 presses a special typewriter ribbon 16 on a platen 19. The ribbon 16 is unwound from a payout reel 17 and is wound on a take-up reel 18 by means of a system commonly used in the typewriters. The paper 21, which is to be printed upon, is fed between the platen 19 and theribbon 16.

As shown in FIGS. 2 and 3, the head 13 includes a metal plate 22 whereon is provided a slot 23. Fitted into a projection 24 of the plate 22 are a plurality of L- shaped electrodes 25, for example, five, which are insulated from the plate 22. The shorter legs of the electrodes 25 are inserted into the slot 23 of the plate 22 so as not to contact it, and bear against the ribbon l6. Selectively applied between each of the electrodes 25 and the plate 22 is a voltage from the coding devices controlled by the keyboard 1 1. In FIG. 4 there is represented a section of head 13, of ribbon 16 and of paper 21. The thickness of ribbon 16 is exaggerated for sake of illustration.

The ribbon 16 comprises a flexible insulating substrate 26, for example, of paper, cotton, silk, polyethylene, etc., coated with a resistive layer 27 on the side facing the printing head 13, and a thermotransferable ink layer 28 on the side facing the paper 21. The resistive layer 27 may be a coat of varnish containing conductive pigments such as graphite or conductive carbon black and metal particles. In order to improve the characteristics of the layer, auxiliary agents as plasticizers, dispersants and stabilizers may be added to the varnish.

For satisfactory operation of the printer the resistivity of the layer 27 should be between approximately 50 ohms per square and 1,000 ohms per square. An example of a mixture for a conductive varnish which for a 10 1. thick layer has a resistivity of 800 ohms per square is the following:

Vinilyte Carbon Black 60 grs grs Conductex DOP (Massimiliano Massa) l grs Raybo 6 (Raybo Chemical Co.) 3 grs MEC (RP. Erba) 100 grs In the event of polymeric substrates 26 the conductive additives may be mixed in the same plastic which, when extruded, forms a conductive ribbon.

The thermotransferable ink 28 that is coated on the substrate 26 is made of a binding means colored with pigments or dyes, or both, suitable to melt at a welldetermined melting point, to be transferred by pressure onto the paper 21, and to solidify as soon as heating is discontinued. The ink should be such as not to be transferable at room temperature by means of pressure alone. To this end there have been found to be useful vynil chloride acetate copolymers, butadiene-styrene polymers, acrylic-vynilic copolymers, terpene polymers, etc.

The ink should also include such auxiliary agents as plasticizers, dispersing means and stabilizers.

When the voltage is applied between an electrode 25 and the platen 22, the current paths 31 take up the pattern represented in FIG. 4. The current density is greater near the electrode 25, where the highest IR heating occurs. The heat is transmitted by conduction through the substrate 26 to the thermotransferable ink 28 which accordingly melts and is transferred to the paper 21. The adhesion of the ink 28 to the paper 21 is aided by the pressure the plate 22 exerts between the ribbon 16, the paper 21, and the platen 19 in the next character spacing. Since the ribbon is stationary during the character spacing of the head 13 across the line. with respect to the paper, no quick cooling of the ink is required.

Upon striking a key on the keyboard '11, a voltage is selectively applied to the electrodes 25 of the head 13, whereupon dots corresponding to the energized electrodes are recorded on the paper 21. Subsequently the head 13 is advanced and another column of dots are selectively recorded on the paper 21, and so forth throughout five feeding steps. The selected character is in this way printed by means of a matrix of dots.

In FIG. is represented a different embodiment of the device according to the invention, using a ribbon l6 comprising'a resistive layer 27 of the type as previously described, a flexible highly conductive substrate 29 (for example, of alluminum or in any case of a material combining high flexibility, mechanical resistance and good electric conductivity features) and a thermotransferable ink layer 28. When a voltage is applied between an electrode 25 and the plate 22 the current paths 32 proceed through the resistive layer 27, along a line which is parallel to the electrodes 25, and in the highly conductive substrate 29 following a segment which is perpendicular to the first. Comparing FIG. 5 with FIG. 4, it is noted that in this second ribbon embodiment the area of the highest current path concentration, and therefore the highest heat dissipation, is located at the electrodes 25. In this way the recorded dots are better defined than in the foregoing ribbon. With a ribbon of this type it is also possible to print full characters, by the use of electrodes formed as characters, located, for example, along the periphery of a cylinder having its axis parallel to the ones of the platen 19, and by a character selection device of a known type.

We claim:

1. Electrothermal printing apparatus for printing with thermally transferable ink on a receiving surface comprising:

an ink layer of thermally transferable ink, said ink layer being immediately adjacent said receiving surface;

means for heating an isolated region of said thermally transferable ink layer so as to transfer ink to said surface; said heating means including:

a printing head having at least two electrodes of different electrical potential;

I a conducting layer for conducting electrical current from one to the other of said electrodes attached to said ink layer, a resistive layer attached to said conducting layer, said resistive layer, said conducting layer and said ink layer forming an integral ribbon, said printing head, said ribbon and said receiving surface being movable with respect to each other;

said two electrodes being spaced a predetermined distance from each other and contacting said resistive layer, to allow current to flow through said conducting layer, the heat generated by said current heating said ink layer.

2. Apparatus according to claim 1 further comprising a second less resistive layer interposed between said ink layer and resistive layer, said electrical current passing from one of said electrodes through said resistive layer into said second resistive layer, through said second resistive layer parallel to'said ink layer, and again through said resistive layer to the other said electrode.

3. Apparatus according to claim 1, wherein said printing head includes:

a row of selectively energizable .points, and

two elongated electrodes parallel to said row and positioned on opposite sides of said row. 4. Electrothermic printing device for printing upon a receiving surface by means of a thermally transferable ink comprising, in combination:

a laminated ribbon comprising:

an ink layer carrying a thermally transferable ink, an insulating layer adjacent to said ink layer, and a resistive layer adjacent to said insulating layer for conducting electrical current, first electrode means comprising an electrode member energizable to a first electrical potential, said electrode member having an elongated opening and a contact surface surrounding said elongated opening, said contact surface engaging said resistive layer, 1

second electrode means comprising a plurality 'of wire probes each selectively energizable to a second electrical potential, said probes being positioned in said elongated opening spaced from one another and from said electrode member, each said probe terminating in a contact point aligned with said contact surface engaging said resistive layer, and

means for moving said ribbon and said receiving sur-' face with respect to said first and second electrode means.

5. Apparatus according to claim 4, wherein said resistive layer comprises a conductive varnish and a support material, said varnish being coated on said support ma- (,5 terial, said support material being attached to said ink layer and said varnish contacting said electrodes.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3848720 *Sep 4, 1973Nov 19, 1974Contex Calculators AsPressure spring for a thermoprinter
US3857470 *May 3, 1973Dec 31, 1974Battelle Memorial InstitutePrinter for alphanumeric characters
US3905462 *Feb 20, 1974Sep 16, 1975Olympia Werke AgMultielectrode electrographic printing device
US3955204 *Sep 25, 1974May 4, 1976Triumph Werke Nurnberg A.G.Thermoelectric matrix printing head
US3984809 *Nov 20, 1975Oct 5, 1976Michael L. DertouzosParallel thermal printer
US3995729 *Dec 19, 1975Dec 7, 1976Triumph Werke Nurnberg A.G.Impactless printing apparatus
US4064982 *Sep 20, 1976Dec 27, 1977Triumph Werke Nurnberg A.G.Printing ribbon
US4195937 *Sep 19, 1977Apr 1, 1980Termcom, Inc.Electroresistive printing apparatus
US4236834 *Sep 28, 1978Dec 2, 1980International Business Machines CorporationElectrothermal printing apparatus
US4269892 *Feb 4, 1980May 26, 1981International Business Machines CorporationPolyester ribbon for non-impact printing
US4291994 *Mar 27, 1980Sep 29, 1981International Business Machines CorporationTear resistant ribbon for non-impact printing
US4308318 *Oct 24, 1980Dec 29, 1981International Business Machines CorporationRub resistant ribbon for non-impact printing
US4309117 *Dec 26, 1979Jan 5, 1982International Business Machines CorporationRibbon configuration for resistive ribbon thermal transfer printing
US4320170 *Dec 8, 1980Mar 16, 1982International Business Machines CorporationPolyurethane ribbon for non-impact printing
US4329071 *Jun 30, 1980May 11, 1982International Business Machines CorporationCurrent collector for resistive ribbon printers
US4345845 *Jun 19, 1981Aug 24, 1982International Business Machines CorporationDrive circuit for thermal printer
US4350449 *Jun 23, 1980Sep 21, 1982International Business Machines CorporationResistive ribbon printing apparatus and method
US4384797 *Aug 13, 1981May 24, 1983International Business Machines CorporationSingle laminated element for thermal printing and lift-off correction, control therefor, and process
US4396308 *Aug 13, 1981Aug 2, 1983International Business Machines CorporationRibbon guiding for thermal lift-off correction
US4400100 *Mar 2, 1981Aug 23, 1983International Business Machines Corp.Four layered ribbon for electrothermal printing
US4408908 *Dec 19, 1980Oct 11, 1983International Business Machines CorporationRibbon feed system for a matrix printer
US4419024 *Dec 22, 1981Dec 6, 1983International Business Machines CorporationSilicon dioxide intermediate layer in thermal transfer medium
US4421429 *Dec 22, 1981Dec 20, 1983International Business Machines CorporationResistive substrate for thermal printing ribbons comprising a mixture of thermosetting polyimide, thermoplastic polyimide, and conductive particulate material
US4470714 *Mar 10, 1982Sep 11, 1984International Business Machines CorporationMetal-semiconductor resistive ribbon for thermal transfer printing and method for using
US4484200 *Jun 21, 1982Nov 20, 1984Ricoh Company, Ltd.Non-impact recording apparatus
US4491431 *Dec 30, 1982Jan 1, 1985International Business Machines CorporationMetal-insulator resistive ribbon for thermal transfer printing
US4491432 *Dec 30, 1982Jan 1, 1985International Business Machines CorporationChemical heat amplification in thermal transfer printing
US4547088 *Jun 26, 1980Oct 15, 1985International Business Machines CorporationCorrectable thermal transfer printing ribbon
US4549824 *Dec 30, 1983Oct 29, 1985International Business Machines CorporationInk additives for efficient thermal ink transfer printing processes
US4556891 *Mar 16, 1984Dec 3, 1985Kabushiki Kaisha Suwa SeikoshaPrinting apparatus and method
US4558963 *Aug 10, 1984Dec 17, 1985International Business Machines CorporationFeed rates and two-mode embodiments for thermal transfer medium conservation
US4568621 *Oct 22, 1984Feb 4, 1986International Business Machines CorporationThermal transfer printing processes with electroerosion and materials therefor
US4572684 *Oct 10, 1984Feb 25, 1986Fuji Kagakushi Kogyo Co., Ltd.Heat-sensitive color transfer ribbon
US4588315 *Dec 18, 1984May 13, 1986Fuji Kagakushi Kogyo Co., Ltd.Heat-sensitive color transfer recording media and printing process using the same
US4661393 *Oct 3, 1985Apr 28, 1987Fujitsu LimitedInk compositions and ink sheets for use in heat transfer recording
US4684271 *Jan 15, 1986Aug 4, 1987Pitney Bowes Inc.Thermal transfer ribbon including an amorphous polymer
US4687360 *Jan 15, 1986Aug 18, 1987Pitney Bowes Inc.Thermal imaging ribbon including a partially crystalline polymer
US4692044 *Apr 30, 1985Sep 8, 1987International Business Machines CorporationInterface resistance and knee voltage enhancement in resistive ribbon printing
US4704616 *Aug 19, 1986Nov 3, 1987Seiko Epson Kabushiki KaishaApparatus for electrothermal printing
US4770552 *Mar 19, 1987Sep 13, 1988Tokyo Electric Co., Ltd.Printing apparatus for accentuating the outline portion of a printed character
US4983992 *Jun 20, 1989Jan 8, 1991Teikoku Piston Ring Co., Ltd.Printing head for resistive ribbon type printing apparatus
US5070343 *Apr 30, 1991Dec 3, 1991Teikoku Piston Ring Co., Ltd.Printing head for resistive ribbon type printing apparatus
US5106695 *Jun 13, 1990Apr 21, 1992Presstek, Inc.Method and means for producing color proofs
US5482386 *Jun 25, 1993Jan 9, 1996Francotyp-Postalia GmbhSelection circuit for an electro-thermal printer with a resistance-type ribbon
DE2842772A1 *Sep 30, 1978Apr 26, 1979IbmFarbband zum anschlagfreien drucken
EP0021098A2 *May 29, 1980Jan 7, 1981International Business Machines CorporationApparatus for re-inking a ribbon in a thermal transfer printing system
EP0028334A2 *Oct 15, 1980May 13, 1981International Business Machines CorporationMethod and apparatus for thermally marking a record medium
EP0031453A1 *Nov 20, 1980Jul 8, 1981International Business Machines CorporationRibbons for thermal transfer printing and methods of printing using such ribbons
EP0042950A2 *May 12, 1981Jan 6, 1982International Business Machines CorporationCurrent collector for resistive ribbon printers
EP0053671A1 *Oct 9, 1981Jun 16, 1982International Business Machines CorporationPolyurethane ribbon for non-impact printing
EP0059308A2 *Jan 19, 1982Sep 8, 1982International Business Machines CorporationA resistive ribbon for electrothermal printing and a method of producing the resistive ribbon
EP0082269A1 *Oct 26, 1982Jun 29, 1983International Business Machines CorporationIntermediate layer of silicon dioxide in thermal taransfer ribbon
EP0088156A1 *Oct 5, 1982Sep 14, 1983International Business Machines CorporationResistive ribbon for thermal transfer printing
EP0129379A2 *Jun 8, 1984Dec 27, 1984Matsushita Electric Industrial Co., Ltd.Media and method for printing
U.S. Classification400/118.3, 430/200, 347/199
International ClassificationB41M5/382, B41J2/42, B41M5/26, B41J2/325, G03G17/00, B41J31/00
Cooperative ClassificationB41M5/3825, B41J2/325
European ClassificationB41J2/325, B41M5/382F