Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3745725 A
Publication typeGrant
Publication dateJul 17, 1973
Filing dateJan 11, 1971
Priority dateJan 11, 1971
Publication numberUS 3745725 A, US 3745725A, US-A-3745725, US3745725 A, US3745725A
InventorsBoucaud A
Original AssigneeBoucaud A
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Extensible structure
US 3745725 A
Abstract
An extensible structure comprising in combination a plurality of elements adapted to fit into one another and to slide on a guiding device so as to increase or reduce the volume of the structure, each element having one girder, two lateral walls, a framework and a roof supported on said lateral walls and said girder, means for movably supporting the said elements and means for sequentially moving the said elements.
Images(5)
Previous page
Next page
Description  (OCR text may contain errors)

1Jnited States Patent [.191

Boucaud 1 EXTENSIBLE STRUCTURE [76] Inventor: Andre Jean Boucaud,

Saint-Igny-de-Vers (Rhone), France [22] Filed: Jan. 11, 1971 [21] Appl. No.: 105,383

[52] US. Cl. 52/67, 254/148 [51] Int. Cl [58] Field of Search 52/67, 111, 118, 52/9, 10; 254/148; 182/40, 144, 208, 22,3

[56] References Cited UNITED STATES PATENTS 363,889 5/1887 Gillespie 182/208 375,250 12/1887 Bailey 182/208 3,010,328 11/1961 Forey 182/208 2,944,852 7/1960 Snyder 52/67 2,561,921 7/1951 Gaillot.. 52/67 749,736 1/1904 .letley.... 52/111 401,623 4/1889 Albert 52/118 2,739,833 3/1956 Schenkel 52/67 3,248,830 5/1966 Maynard 52/67 [451 July 17, 1973 FOREIGN PATENTS OR APPLICATIONS 1,522,427 4/1968 France 52/67 1,059,516 3/1954 France.... 52/67 63,401 7/1892 Germany 52/67 566,844 12/1930 Germany 52/67 579,961 7/1946 Great Britain.... 52/67 6,706,913 11/1968 Netherlands 52/67 Primary Examiner-Frank L. Abbott Assistant Examiner-Henry E. Raduazo Attorney-Raymond A. Robic [5 7] ABSTRACT 2 Claims, 14 Drawing Figures PAIENIEDJUH n 7 3.745.725

SHEEN. or 5 PATENIEUJULITISH 3,745,725

sum 2 UP 5 Ark/re J 6006/! 0 a, w W

PAIENED JUL 1 7 I975 SHEET 5 1F 5 lllill-ll-lll ATTORNEY EXTENSIBLE STRUCTURE The present invention relates to an extensible structure characterized by the fact that it comprises a plurality of elements which are susceptible to fit into one another while sliding on a lateral guiding device by manual or automatic means.

An object of the present invention consists in increasing or reducing the volume of a structure.

Usually, the known extensible structures are constitutes by movable elements, each comprising two frameworks or girders which are heavy and cumbersome.

According to the invention, each element comprises only one framework and a light girder supporting a roof, the absence of a framework on the opposite side of the structure which permits the fitting in of the elements, is compensated by the support of the roof on the next element, or, in the case of structures having large surfaces, by an inert framework, that is, disposed over the roof.

Lateral rails and rollers supporting the walls of the said elements are used to guide the elements on the ground.

In order to displace the elements, it is foreseen to use cables with pulleys, levers articulated in parallelogram or screw jacks.

The invention will now be described in greater details by referring to drawings in which FIG. 1 is an elevation view of one of the elements of the structure,

FIG. 2 is a sectional view taken along line lI-II of FIG. 1,

FIG. 3 is an elevation view of a group of fitted-in elements,

FIG. 4 is a sectional view along the line III-III of FIG. 3 of the elements in extended position,

FIG. 5 illustrates the elements of FIG. 4 in a a folded position,

FIG. 6 is a sectional view of a guiding system along the ground of movable elements,

FIG. 7 is a sectional view of the guiding system shown in FIG. 6,

FIG. 8 is a plan view of the guiding system shown in FIG. 6,

FIG. 9 shows a general plan view of a guiding system with a motor driving a device for the elements,

FIG. 10 is a top plan view of a different embodiment of a driving 'system for the elements of the structure,

FIG. 11 is a sectional view taken along line II-Il of FIG. 12,

FIG. 12 is a profile view of a different embodiment of the invention,

FIG. 13 is a plan view of another driving device of the elements for a structure according to the invention, and

FIG. 14 is a plan view of another embodiment of a driving device for the elements. I

The structure represented is constituted by independent elements comprising lateral walls A supporting a roof B reinforced by only one girder C.

Each element has different dimensions so that they can fit in one into the other.

The element D1 may cover the element D2, the latter may cover the element D3, etc., as shown in FIGS. 3, 4 and 5.

In order to obtain a large structure or a structure which is expected to support a big load (such as snow), each element is equipped with a second girder which is disposed on the roof instead of being, as usual, below, so as to permit the fitting in of each element.

In order to easily operate the assembly without deformation, the elements are guided on the ground by a plurality of guiding rails. As illustrated in FIGS. 6 and 7, it is constituted by a rigid member having an appropriate section, and provided on its top surface by projecting guides F1, F2 and F3 on which rotate rollers G1, G2 and G3. Each guide may be limited in length to the expected path of the elements which is supported (FIG. 8). The rollers G1, G2 and G3 support the lateral walls D2, D3 and D4.

For an automatic operation, a hollow guide H is fixed on the side of the support E and a roller I solidly secured to the first wall D1 on the guide H. A rod J fixed to the wall D1 of the first element penetrates in the hollow guide H. This rod permits the hooking of a cable K located also in the guide H so as to pull the element D1 by traction by means of a motor. This device is foreseen on each side of the element Dl. A set of abutments located on each element enables each of them to pull or push the next element. Accordingly, the element D1 may first push the element D2, then elements D1 D2 push the element D3 and so on. In the reverse direction, D1 pulls D2, then the combination of elements D1 D2 pull the element D3 and so on. In this embodiment, the last element D4 is fixed, and therefore the structure may be manipulated only from one side. But it may be contemplated to have rails extending symmetrically to the rear so as to permit a displacement of the structure in both directions.

The driving device illustrated in FIG. 10 comprises, inside each of the lateral walls of the first element Dl, pulleys P1, P2 and P3 over which passes a cable Q1 which extends under the front wall D1 so as to connect the other opposite wall. The driving system of the cable Q1, (such as a motor) may be placed along this path. The extremity of each lateral wall D1 is equipped with a peg T1 fixed on the cable Q2.

Inside each of the lateral walls D2 of the second element of the structure, pulleys P4 and P5 are mounted and over which passes a cable Q2. The free end of each lateral wall of the said element D2 is provided with a,

leys P6 and P7 are mounted on axles and over whichv pulleys passes a cable Q3 on which is fixed a peg T2 of the wall of the preceding element D2. One of the ends of each wall of the said element D3 is provided with a peg T4 secured to the cable Q2 of the preceding elements D2. Each of the two lateral walls of the fourth element D4 of the structure comprises, at the rear, a peg T5 fixed to the cable Q3 of the preceding element D3.

The operation in the direction of the unfolding of the elements when the latter are folded, takes place in the following sequence:

The traction of the cable Q1 in the direction of the arrow 0, pulls the peg T3 which pulls out the element D2. Simultaneously, the pulley P4 pulls on the cable Q2 which, being held by the peg T1 of the wall of the element D1, rotates and drives the peg T4 which leads forward the element D3. Simultaneously, the pulley P6 pulls on the cable Q3 which, being retained by the peg T2 of the wall of the element D2, rotates and drives the peg T which pulls out the latter element D4 of the structure.

To fold back the element, the cable Q1 must be driven in the direction of the arrow F. The movement of the cables Q1, Q2 and O3 is then reversed under the traction of the pulleys P5 and P7, respectively pulling the pegs T4 and T5 of the elements D3 and D4, while the element D2 is pulled by the cable Q1 of the element D1 which drives the peg T3.

It goes without saying that the number of the elements is not limited. The constitution and the operation of the supplementary elements being identical to the ones element D2.

In a different embodiment, such as shown in FIG. 11 (plane view) and FIG. 12 sectional view the pulleys P1, P4, P5, P6 and P7 may also be used as guides. For this purpose, they are made of a wide section S and a narrow section, the latter being provided with a groove to receive the cable. The portion S rotates against a rail fixed on the lateral wall of the corresponding element. The rail R1 corresponds to pulley P5, rail R2 to pulley Pl, rail R2 to pulley P7 and rail R3 to pulley P4.

For these embodiment, the means for moving the elements is not limited to cables per se. Chains and belts may also be used. Similarly, the lateral supporting means, instead of being located at the bottom thereof, may also be located about the center or above the center thereof.

In another embodiment, illustrated in FIG. 13, the movable elements D1, D2, D3 and D4 are controlled by lever systems articulated in parallelograms having X-shapes, fixed on the element D4 and actuating the most remote element D1 which drives the intermediate elements by means of pegs such as already described.

A further embodiment as shown in FIG. 14, consists of a system of threaded telescopic tubes. The tube A1 comprises at its free end, a female screw Bl which cooperates with the coaxial threaded tube A2, the latter also comprises a female screw B2 which cooperates with the threaded tube A3 which comprises a female screw B3 cooperating with the last threaded tube A4 solidly secured to the element D4. The threaded tubes A2, A3 and A4 each comprises a heel respectively V2, V3 and V4.

The present system operates as follows:

By motor means, the tube A1 is driven in rotation and this draws out the threaded tube A2 threadedly abutting against the tube B1. When the heel V2 of the tube A2 abuts against the screw B1, the tube A] drives the tube A2 in rotation, the latter tube A2 draws out the tube A3 threadedly abutting against the tube B2. When the heel V3 of the tube A3 abuts against the screw B2, the tube A2 drives in rotation the threaded tube A3 which draws out the tube A4 secured to the element D4 of the structure.

Instead of only one telescopic central system such as illustrated in FIG. 14, two lateral systems may be foreseen such as in the case of a large structure.

I claim:

1. An extensible structure with front and rear ends comprising in combination a hollow front, a second and a third element adapted to fit into the rear end of one another and to slide on a guiding device so as to increase or reduce the volume of the structure, each of the front and second elements having one girder at the front end thereof, two hollow lateral walls, and a roof supported on said hollow lateral walls and on said girder at the front end thereof, means for sliding said elements on said guiding device, the said front element mounted in the outermost position having a hollow front wall connecting the two hollow lateral walls, the said hollow front element having a pulley system and a first cable over said pulley system inside said hollow front element, a driving system for moving said first cable in the same direction inside both lateral walls of said front element, a first peg means rigidly fixed at each free end of the lateral walls of the front element, the lateral walls of the second element mounted inside and adjacent said front element, each lateral wall of said second element including a pair of pulleys and a second cable mounted over the said pair of pulleys for moving inside the periphery of said lateral walls of the second element, a second peg means fixed to said second element and to the first cable and adapted to move said second element along with said first cable, the said first peg means being fixed to said second cable so as to move said second cable when the lateral walls of said second element are displaced by said second peg means, and a third peg means fixed to said third element and to the second cable and adapted to move said third element along with said second cable,

whereby the sliding of the said second and third elements is obtained by the actuation of the driving system.

2. A structure as recited in claim 1, wherein the lateral walls comprise a rail fixed on said lateral wall, said pulley being adapted to rotate on said rail.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US363889 *Feb 1, 1887May 31, 1887 Folding extension-ladder and truck
US375250 *Oct 17, 1887Dec 20, 1887 Extension
US401623 *Feb 18, 1888Apr 16, 1889 Fire-truck ladder
US749736 *Jan 19, 1903Jan 19, 1904 jetley
US2561921 *Jun 24, 1948Jul 24, 1951Edouard Guillot LucienTrailer
US2739833 *Sep 26, 1952Mar 27, 1956Schenkel Earl ECollapsible one and two story house trailer
US2944852 *Aug 19, 1955Jul 12, 1960Vilas L SnyderVertically collapsible and telescoping trailer body
US3010328 *Apr 22, 1958Nov 28, 1961Lip SaDevice for remote-controlling movable mechanical members through transmission means of the reversible motion type
US3248830 *Dec 12, 1961May 3, 1966Renouf Maynard MurrayRetractable hangar
*DE63401C Title not available
DE566844C *Dec 5, 1930Dec 24, 1932E H Hugo Junkers Dr IngDach aus teleskopartig ineinanderschiebbaren Teilen
FR1059516A * Title not available
FR1522427A * Title not available
GB579961A * Title not available
NL6706913A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3845591 *Jun 11, 1973Nov 5, 1974Stine JExpandable cover system
US4103462 *May 4, 1977Aug 1, 1978"Wohn-Art" - Freizeitartikel Gesellschaft m.b.H.Mobile home
US4234143 *Jan 19, 1978Nov 18, 1980Daf Indal Ltd.Traversing and housing system for helicopters
US4309854 *Oct 15, 1979Jan 12, 1982Vendramini DTelescopic mast
US4351135 *Jun 24, 1980Sep 28, 1982Walter FrellerLength-adjustable structural unit
US4647014 *May 3, 1985Mar 3, 1987Jan EkmanDevice of the kind comprising two telescopically coordinated members
US5178288 *Nov 18, 1991Jan 12, 1993Interroll Canada LimitedPush back pallet rack
US5661928 *Apr 26, 1996Sep 2, 1997B & R Erectors, Inc.Automatic end closure system for bleachers
US5797224 *Oct 19, 1995Aug 25, 1998Gunthardt; Ray R.Prefabricated expandable architecture and method of making
US6430879 *Jan 5, 2001Aug 13, 2002Ramon A. NuiryCollapsible housing
US7029072Dec 17, 2002Apr 18, 2006Wirtgen America, Inc.Modified rumble strip cutter
US7385386 *Aug 25, 2005Jun 10, 2008Tokyo Electron LimitedTransporting mechanism, movable probe card transporting apparatus using transporting mechanism, and prober
US7495247 *Jan 28, 2005Feb 24, 2009Siemens AtiengesellschaftFacility for setting up and system testing of x-ray systems
US8695285 *Oct 13, 2011Apr 15, 2014Strata Products Worldwide, LlcTelescoping modular shelter and method
US8701356 *Jul 18, 2012Apr 22, 2014Cabrio Companies LlcStructure having convertible roof and walls
US20120000141 *Mar 4, 2011Jan 5, 2012Kent Harry ForslandConvertible Enclosure
US20130042541 *Jul 18, 2012Feb 21, 2013Cabreeco Companies LlcConvertible enclosure
US20130091783 *Oct 13, 2011Apr 18, 2013Strata Products (Usa), Inc.Modular shelter and method
DE3541835A1 *Nov 27, 1985Jun 4, 1987Horst SchrumpfApparatus for sheltering terraces, in particular roof terraces
DE19608625C5 *Mar 6, 1996Apr 26, 2007Grob-Werke Gmbh & Co. KgWerkzeugmaschine mit einer Abdeckung des Arbeitsraumes
EP0893201A2 *Jul 10, 1998Jan 27, 1999Gebr. Hennig GmbHTelescoping system
WO2013105044A1 *Jan 10, 2013Jul 18, 2013Shaul ShalevSystem and method for densely packed easily transportable mobile structures
Classifications
U.S. Classification52/67, 254/387
International ClassificationE04B1/343
Cooperative ClassificationE04B1/34305
European ClassificationE04B1/343B