Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3746200 A
Publication typeGrant
Publication dateJul 17, 1973
Filing dateAug 12, 1971
Priority dateAug 12, 1971
Publication numberUS 3746200 A, US 3746200A, US-A-3746200, US3746200 A, US3746200A
InventorsFlider F
Original AssigneeJustrite Manufacturing Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Plastic jerry can
US 3746200 A
Abstract
An all-plastic "Jerry Can" is made with a recessed handle and a screw-top opening. A breather tube extends from the highest part of the inside of the can, through the recessed plastic handle, to a point on the upper ledge surface of the single screw-top opening which point is sealed by the cap, when in place. When the cap is removed, air may pass from the exposed end of the breather tube and into the highest part of the can, thereby allowing the gasoline or other fluid to flow smoothly from the can, without surging caused by the successive creation and breaking of a vacuum pocket inside the container.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 1111 3,746,200

Flider July 17, 1973 [54] PLASTIC JERRY CAN 3,198,367 8/1965 Stickney 215/1 C [75] hwcmon Frank S. Flider Chicago "I. 2,841,313 7/1958 Beall 222/479 [73] Assignee: Justrite Manufacturing Co., FOREIGN PATENTS OR APPUC/fl IONS Chicago, [IL 661,164 7/1965 Belgium 222/468 367,104 3/1963 Sw1tzerland 215/1 C [22] Filed: Aug. 12, 1971 [211 Appl 171 092 Primary Examiner-Donald F. Norton Attorney lrwin C. Alter et a1.

[52] US. Cl 215/10, 215/1 C, 215/100 A,

222/466, 222/468, 222/479, 222/482 [571 ABSTRACT [51] Int. Cl B65d 11/10, B65d 21/02 Ar all-plastic Jerry can is made with a recessed han- [58] Field Of Search 222/466, 467, 468, dle and a screw-top opening A breather tube extends 2 215/1 100 100 A from the highest part of the inside of the can, through 1 the recessed plastic handle, to a point on the upper References Cited ledge surface of the single screw-top opening which UNITED STATES PATENTS point is sealed by the cap, when in place. When the cap 3,066,819 12/1962 Cox 222/468 ux is may 1" mm exposed end of the 2 291 230 7/1942 Johnson 222/479 X breather tube and into the highest part Of the C311, 2 735 339 3 1957 Du Preem 222 479 thereby allowing the gasoline or other fluid to flow 3,214,052 10/1965 Dike 215]] C X smoothly from the can, without surging caused by the 2 6, 10/1332 Sherwood 2l5/l0 successive creation and breaking of a vacuum pocket 1,331,409 2 1920 Barnett 222 466 x inside the contain 1,115,405 10/1914 Davis 222/479 3,251,514 5/1966 Speicher 222/468 9 Claims, 7 Drawing Figures Patented July 17, 1973 3,746,200

3 Shuts-Sheet 1 INVENTOR F FRANK 3.F1 mER A TO RNEYS Patented July 17, 1973 3,746,200

3 Sheets-Sheet 2 &\

F165 FRANK S. FLIDER flax/4km d/AM ATTORNEYS Patented July 17, 1973 3,746,200

3 Sheets-Sheet 3 INVENTOR FRANK S. FuoER I Wa,/d4ao /UMJ ATTORNEYS PLASTIC JERRY CAN This invention relates to plastic safety cans or containers and especially although not exclusively to containers for inflammable fluids, and more particularly to the so-called Jerry Can usually associated with military application.

Containers for inflammables usually have prescribed safety specifications, which are enforced by govemmental, industrial, or trade agencies. In the case of military specifications, the containers must also meet very rigidly prescribed specifications, very often dating back many years. For example, in the case of the so-called Jerry Can, the original specifications were written, at least as early as World War II, and as a result, they are drawn to steel cans having particular types of hardware associated therewith. Thus, there has been little improvement in Jerry Cans" during the last 25 or 30 years. Accordingly, there is a growing need for updating the techniques used to make the cans so that new and superior materials may be used and, at the same time, the cost may be lowered.

Thus, the improved Jerry Can must meet or exceed the existing military specifications. Ideally, it appears that some of the newer plastics may have the best opportunity to advance the state of this heretofore static art. For example, the steel containers have drawbacks in that they were not only expensive to make, but hazardous in explosive atmospheres, and short-lived in use. They tended to rust, corrode, or otherwise deteriorate. They create hazardous sparks and deface the surfaces which they contact. Moreover, when the cans are bumped or dropped, they sometimes leak air and thereafter fail while in service.

Another problem which has been encountered in the manufacture of Jerry Cans and similar containers relates to the storability of filled containers. They should be designed so that they may stack neatly and stably in a service or warehouse area. The cans should fit together when placed side by side, front to back, and top to bottom, and there should be a minimum amount of waste space. Moreover, when so stacked, the aggregate of cans should be a stable mechanical arrangement. There should be very little danger that a can on the top of the stack would fall off if the entire stack is shook or jarred.

If the can is a heavy one, such as the conventional gallon Jerry Can, for example, it should be easy to handle and to manipulate while pouring gasoline into or out of the can. The handle should be arranged to withstand a severe pull, such as the 800-pound pull. This is an exacting requirement for a plastic can.

Accordingly, an object of the invention is to provide plastic containers having new and improved characteristics which meet the military specifications for a Jerry Can."

Another object of the invention is to provide a can having a completely internal venting system, controlled from a single screw-type cap.

Yet another object of the invention is to prevent surging during the pouring of gasoline from a plastic "Jerry Can," which surging might otherwise occur if A further object of the invention is to provide a Jerry Can which stacks uniformly and stably.

A still further object of the invention is to provide a low-cost, explosion-resistant, automatically venting gasoline can.

These and other objects are accomplished by a blow molded, all-plastic Jerry Can" having a completely plastic wall, with an integral handle molded thereon. Molded adjacent the handle is an opening, terminating in screw threads for receiving a cap having a peripheral lip thereon. A breather tube is molded inside the handle to extend from the highest point inside the can (when tipped to a pouring condition) to the screw threaded opening. Thus, when the screw cap is tightened against its lip, it seals both the gasoline within the can and outside vent of the breather tube, to prevent escape of explosive or inflammable fumes from the can.

The nature of a preferred embodiment of the invention for accomplishing these and other objects may be understood best from a study of the following description of the attached drawings, in which:

FIG. 1 is a perspective view of the top of the inventive Jerry Can;

FIG. 2 is a side elevation view of the inventive Jerry Can, showing the bottom with a gripping and lifting portion molded therein, showing the top with the handle, and showing in cross section the screw type openmg;

FIG. 3 is a front elevational view of the Jerry Can;

FIG. 4 is a cross-sectional view, taken along line 44 of FIG. 2, showing the breather vent in the handle portion;

FIG. 5 is a bottom plan view showing the feet on the can and the bottom handle, forming part of the lifting arrangement;

FIG. 6 is (i) a side elevation view of one of two supplemental handles used in combination with the integrally molded handle and (ii) how two cans stack top to bottom; and

FIG. 7 is a fragmentary view of the front of a can having the handle shown in FIG. 6, and taken along line 7-7 thereof.

The principal elements in FIG. 1 and 2 are an allplastic, preferably blow-molded container 20, having thereon a handle arrangement 21. The container 20 is filled and emptied by pouring fluids through a screw threaded necklike opening 22 which is integrally molded in the container 20. Preferably, this opening is internally threaded to receive the conventional Jerry Can cap.

The plastic container 20 may be formed by any suitable means such as blow-molding inside a mold cavity formed by two-piece parts, with a parting line which is thickened, in part, to form an upstanding tin or rib 24 and handle 25. For strength and support, the fin 24 may be made integral with the neckline opening 22 and with a rising portion of the can, shown in 26. The handle 25 is fairly massive structure in the order of an inch in diameter.

Means are provided for preventing the formation of vacuum pockets in the can. More particularly, formed within a handle is longitudinally molded breather. tube 30 which extends from point 31, in the interior of the can, at the highest portion thereof, to a point 32 in fin 24, near the threaded opening 22. A hole 33 is drilled at an angle from the ledge forming the top of opening 22, through the fin 24, and into the molded breather tube opening 30. In this manner, air may pass into the highest part of the can 26 via the path traced from the opening 31, through the hollow tube 30, and the drilled hole 33 to the opening 35 on the top ledge of the neck 22.

The conventional Jerry Can cap 36 has screw threads which fit into the internal threads 34 inside the neck opening 22. When this cap 36 is tightly drawn into its closed position, its lip covers the opening 35 of hole 33 and prevents any escape of vapors from the inside of the can. A gasket 37 may be provided to complete the seal at the top of the neck 22 and opening 35. However, when the cap 36 is unscrewed, the top 35 of opening 33 is exposed to the atmosphere, so that air may pass freely from outside the can to the inside of the can.

Thus, as the can is tipped to pour, a space is formed in the high part 26 of the can where air must displace the fluid poured from the container if a vacuum pocket is to be avoided. Since air may be drawn in through the opening 35 and the tube 33, no vacuum is formed, and the fluid pouring from the container flows smoothly, without surges.

Means are provided for enabling the Jerry Can" handles to withstand the severe pulling test required by the military specifications. In greater details, as shown in FIGS. 6 and 7, two supplemental handle sections are made from a very strong plastic or other material, such as a glass-fiber filled nylon. Preferably, these handle supplements are injection molded pieceparts. Each of the handle supplements comprises a series of strengthening ridges, such as 40, and a series of openings 41-45. These openings are arranged in position to meet with and be superimposed over similarly situated openings 46-50 (FIG. 2) in the blow-molded plastic can.

Accordingly, it is a fairly simple matter to attach the fiberglass handle supplements by placing a piecepart similar that shown in FIGS. 6, 7, on opposite sides of the tin 24. A rivet is passed through an opening 41 on the left handle supplement, opening 46 on the blowmolded fin part, and an opening 41 on the right handle supplement. Thereafter, handle supplement rivets are used in a similar manner to attach the handle supplements of FIG. 6 on opposite sides of the blow-molded handle 25. More particularly, as shown in FIG. 1, the fiberglass handle 51a is on the right and the fiberglass 51b is on the left. The rivets 52-56, used for attaching the two handle supplements, are clearly seen in the drawing. The strength of these handle supplements, together with a multiplicity of attachment points, makes a strong and rigid structure capable of withstanding very severe pull tests.

Means are provided for enabling the cans to stack easily and stably when in storage. More particularly, FIG. 6 and 7 use dotted lines 60, 61 to show how the bottom of the top can fits into the top of the bottomcan when two cans are stacked, one above the other. The

details of this arrangement may be best understood by i a comparison of the FIGS. 6, 7 and 5 (which is a bottom plan view) with FIG. 2, which shows the hand grip 68 in side elevation.

More particularly, the bottom of the can is molded with six feet 62-67 which raise the can above any floor or other flat surface on which it is resting, allowing air to circulate underneath it. The feet 64, 65 also provide stable points for making a cleated connection between the top and the bottom of two stacked cans. Adjacent the end of the bottom of the can which is held by the person who is pouring fluid from the can, is an arched or recessed grip portion 68, adapted to receive the fingers of one hand. Thus, it is easy to pour from the can by holding the handle 25, or one of the handle supple ments 51, with one hand and by holding the area 68 with fingers of the other hand. As best seen in FIG. 6, the finger-gripping area 68 rises above a mating contour where rivet 56 passes through by the upstanding tabs on the blow-molded container 20 and on the handle supplements 51. The feet portions 64, 65 fit down into recesses 70, 71 in the handle supplements 51 (FIG. 1). These intermeshing feet and recessed configurations cleat together when two cans are stacked vertically, thereby adding greatly to the stability of the stack.

Among other things, the described structure enables the use of plastic parts and provides a stronger Jerry Can. For example, the can may be dropped from greater heights than steel cans and yet not break or spill. There is a resistance to dents, and if dentally or subjected to mechanical abuse, any deformation of the can body tends to disappear when the deforming force is removed. This would not be true of a steel can. Plastic has great strength, it resists dents, and it is cooler in handling. The method used for attaching the handle supplement to the upstanding fin makes a good, strong, and durable connection without piercing the walls of the container. There are no spot welds which may break or give way under use (as might occur on steel cans). If any hardware parts are used, they may be dip coated with plastic to preclude exposure bare metal surfaces which rust, corrode or generate sparks.

While the principles of the invention have been described above in connection with specific embodiments, apparatus, and applications, it should be understood that this description is here made only by way of example. It is not to be construed as a limitation upon the scope of the claims. Therefore, the appended claims are to be construed to cover all equivalent structure falling within the true scope and spirit of the invention.

I claim:

1. A safety container comprising an all plastic wall having a continuously closed inner surface terminating at a threaded neck-like opening having an upper ledge surface at the top thereof, a handle and fin combination integrally formed in the outer surface of the wall,

at least one handle supplement attached to said fin,

a breather tube extending from the interior of said wall, through the handle to the upper ledge surface of the neck-like opening,

said breather tube extending from the point of the container which is the highest geometric point inside the container when it is tipped to a pouring position,

said breather tube and neck-like opening sealed by a cap threaded into said opening and opening when the cap opens.

2. The container of claim 1 wherein said highest geometric point is formed by said all-plastic wall having an upstanding contoured part giving a high fluid level inside the container which is above the level of the pouring neck when the container is resting in a storage position, whereby an air pocket is formed inside said container, said breather tube extending from said upstanding contoured part.

3. The container of claim 1 wherein the bottom of said container has integrally molded feet formed therein, and means on the top of said container shaped to receive said feet in cleated interlock when said container are stacked vertically.

4. The container of claim 1 wherein said handle supplement is an injection molded plastic piecepart, there being two of said handle supplements, one being attacked to either side of said fin.

5. The container of claim 4 wherein each of said handle supplements is a glass fiber filled nylon material, or the equivalent thereof.

6. The container of claim 5 wherein each of said handle supplements has trusses molded therein for giving added strength.

7. The container of claim 4 wherein said handle supplements and the bottom of said containers have complementary cleating parts molded therein, whereby the containers are interlocked when one is stacked atop another.

8. The safety container comprising an all-plastic wall having a continuously closed inner surface terminating at a threaded neck-like opening having an upper ledge surface at the top thereof,

a handle and tin combination integrally formed in the outer surface of the wall,

a breather tube extending from the interior of said wall, through the handle to the upper ledge surface of the neck-like opening,

said breather tube extending from the point of the container which is the highest geometric point in.- side the can when it is tipped to a pouring position,

said breather tube and neck-like opening sealed by a cap threaded into said opening and opening when the cap' opens said fin being integral with and ex tending from the neck to the handle, and said breather tube is completed at the neck end by a passageway extending from said ledge through the fin to the tube in the handle.

9. The container of claim 8 wherein said cap has a lip edge which projects over said ledge opening thereby sealing said breather tube opening when said cap is tightened in position in said opening.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US266906 *Oct 31, 1882 Earthenware jug
US1115405 *Sep 12, 1911Oct 27, 1914Benjamin W DavisReceptacle for liquids.
US1331409 *Nov 17, 1917Feb 17, 1920Barnett HerbertOil-can
US2291230 *Oct 1, 1941Jul 28, 1942Johnson William BRemovable spout
US2785839 *Dec 29, 1954Mar 19, 1957Schenley Ind IncUniversal dispensing closure for bottles
US2841313 *Mar 10, 1955Jul 1, 1958Beall Jr Richard WSelf venting dispensing spout
US3066819 *Jul 20, 1961Dec 4, 1962Richard R CoxFree-pouring jug
US3198367 *Jan 30, 1963Aug 3, 1965Donald E StickneyBottle
US3214052 *Aug 10, 1964Oct 26, 1965Climalene CompanyBottle construction
US3251514 *Mar 13, 1964May 17, 1966Container Supply CompanyLiquid dispensing jug having a vented handle
BE661164A * Title not available
CH367104A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3861550 *May 21, 1973Jan 21, 1975Allied ChemLiquid container with perforatable locking closure
US3927797 *Jan 21, 1974Dec 23, 1975Justrite Manufacturing CoPlastic jerry can
US3935968 *Jun 14, 1974Feb 3, 1976Tetra Pak Developpement SaPacking container
US4069946 *Jan 3, 1977Jan 24, 1978Justrite Manufacturing CompanyConsumer safety container for inflammables
US4541529 *Jul 19, 1983Sep 17, 1985Bomatic, Inc.Blow molded container and supplemental handle therefor
US4781314 *Mar 30, 1987Nov 1, 1988Schoonover Michael IFluid container
US4811870 *Mar 29, 1984Mar 14, 1989The Dyson-Kissner-Moran CorporationLiquid container with rotatable spout
US4838464 *Sep 20, 1988Jun 13, 1989Graham Engineering CorporationVented plastic bottle
US4881647 *Nov 15, 1988Nov 21, 1989Schiemann Dr WolframPlastics can
US4881650 *Jun 14, 1988Nov 21, 1989Bartz Richard OFluid collection container
US4889255 *Oct 3, 1988Dec 26, 1989Schiemann Dr WolframDevice suitable for use as a plastic can
US4899885 *Nov 6, 1987Feb 13, 1990Wiva Verpakkingen B.V.Plastic container with stacking attachment piece
US4923098 *Jul 13, 1988May 8, 1990Schoonover Michael IFluid container
US4969571 *Nov 13, 1989Nov 13, 1990Innovative Technology Inc.Container for fluids
US5108016 *Oct 4, 1990Apr 28, 1992Waring Roy FFuel container system
US5115951 *Jan 23, 1991May 26, 1992Sterling Drug, Inc.Dispensing wand and combination of dispensing wand with container
US5277343 *Aug 21, 1992Jan 11, 1994Parsonage Harvey JContainer with pouring spout
US5299710 *Jan 27, 1993Apr 5, 1994Strottman International, Inc.Drink container
US5392950 *Apr 20, 1993Feb 28, 1995Continental Plastic Containers, Inc.Plastic container with a completely sealed handle
US5711355 *Apr 9, 1996Jan 27, 1998Kowalczyk; John FrancisPortable liquid transfer container and dispensing nozzle with non-movable part free flow, vapor recovery and overfill prevention system
US5779051 *Sep 9, 1996Jul 14, 1998Boutin; RaymondTwo-plane stacking container for liquids
US5794824 *Dec 27, 1996Aug 18, 1998Jeong; Chang-RockVessel for containing liquid
US6003735 *Sep 22, 1997Dec 21, 1999Strecker; Dean A.Hand-portable safety-canister w/vari-flow thumb-valve
US6138853 *Jul 18, 1997Oct 31, 2000Frechette; Ronald J.Hand portable fuel container with cleaning opening
US7000794 *Mar 11, 2003Feb 21, 2006Creative Edge Design Group, Ltd.Increased reservoir for fluid container
US7959044Jul 1, 2010Jun 14, 2011Alharr Technologies, IncDual air vent bypass (DAVB) container
US8701929 *Feb 12, 2013Apr 22, 2014Cheri LongPortable gas can
US9302809Feb 4, 2015Apr 5, 2016Timothy W. HooperStackable, stabilized fuel containers
US20040007488 *Mar 11, 2003Jan 15, 2004Creative Edge Design Group, Ltd.Increased reservoir for fluid container
US20060175283 *Jan 28, 2005Aug 10, 2006Graham Packaging Company, L.P.Plastic container with improved petaloidal base
US20070023385 *Aug 1, 2005Feb 1, 2007Janeczek James DContainer and blow mold assembly
US20070023461 *Aug 1, 2005Feb 1, 2007Chrisharr Technologies, Inc.Flow controls for containers of liquids and viscous materials
US20070251465 *Mar 13, 2007Nov 1, 2007The Iams CompanyPet container
US20100059536 *Oct 16, 2008Mar 11, 2010Terry StolkMulti-handled jerry can
USD734425Oct 1, 2013Jul 14, 2015Michael GilliamGasoline container with bottom recessed handle
USD769068 *Jul 17, 2015Oct 18, 2016Kendall MurdockBeverage container
EP0238494A1 *Dec 4, 1985Sep 30, 1987Goodall Donald TLiquid container.
EP0238494A4 *Dec 4, 1985Nov 9, 1988Goodall Donald TLiquid container.
WO1987001677A1 *Dec 4, 1985Mar 26, 1987Goodall Donald TLiquid dispenser
Classifications
U.S. Classification215/10, 215/46, 222/468, 215/398, 222/482, 222/479, 222/466, 215/375
International ClassificationB65D25/38, B65D21/02
Cooperative ClassificationB65D21/0231, B65D25/385
European ClassificationB65D25/38A, B65D21/02E12B