Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3746350 A
Publication typeGrant
Publication dateJul 17, 1973
Filing dateMar 12, 1970
Priority dateMar 17, 1969
Also published asDE1913397A1, DE1913397B2, DE1913397C3
Publication numberUS 3746350 A, US 3746350A, US-A-3746350, US3746350 A, US3746350A
InventorsE Mayer, R Koch
Original AssigneeE Mayer, R Koch
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Sealing assembly with pump device
US 3746350 A
Abstract  available in
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Mayer et al.

SEALING ASSEMBLY WITH PUMP DEVICE Inventors: Ehrhard Mayer, Birkenallee 13,

819i Eurasburg; Rudolf Koch, Torringstrasse 57, 819 Wolfratshausen, both of Germany Filed: Mar. 12, 1970 Appl. No.: 18,820

Foreign Application Priority Data Mar. l7, I969 Germany P l9 13 397.2

US. Cl 277/67, 277/15, 277/96, 415/169 A, 415/73, 277/134 Int. Cl Fl6j 15/40 Field of Search FI6j/l5/34; 415/72, 4l5/l 10, I12, 169 A; 277/134, 3,15, 22, 67, 96

References Cited UNITED STATES PATENTS I/l97l Van Herpt ..4lS/l69AUX Primary Examiner-Samuel B. Rothberg A tlorney--Dezsoe Steinherz [57] ABSTRACT Asealing assembly for a rotatable shaft, wherein a cooling, lubricating, or buffer medium is circulated by means of an external thread on a rotatable member and an internal thread in a non-rotatable member. The internal thread has a hand opposite to that of the external thread and surrounds the latter with a small radial clearance.

4 Claims, 7 Drawing Figures PAIENImJuL 1 1 ms SHEEI 1 BF 4 PATENIED 3. 746.350

saw u 0F 4 SEALING ASSEMBLY WITH PUMP DEVICE This invention relates to sealing assemblies or mechanical seals of the kind having at least onepump de vice arranged adjacent to the slide surfaces within the shaft-receiving bore containing the seal, said pump device serving to circulate a cooling, lubricating, buffer or sealing medium, the partof said pump rotating with the shaft having an external thread coaxially surrounding the shaft and intended to convey the medium. Such sealswill be referred to hereinafter as seals of the type stated.

In aknown seal of such type, the pump device serves as a rule to convey a fluid-coolant to a heat-exchanger arrangedoutside of the seal, and back to the seal. A disadvantage in pump devices in which the externalthread rotating with the shaft is surrounded by a smooth, stationary, cylindrical bore, is that the necessary circulating quantity and thus adequate cooling can be achieved only at high numbers of revolution. This is attributable to the fact that the known conveying thread results only at high circumferential speeds in apressure which is sufficient to overcome the flow resistance of the circulatory path in which magnetic filters, separators and the like may be arranged.

Other pump devices known in sea] assemblies have a relatively large radial dimension and, therefore, cannot be arranged in the shaft-receiving. bore containing the seal assembly, or are very inefficient, which, in itself, is disadvantageous on account of the additional heating thereby generated in the coolant.

An object of the present invention is to provide a seal of the kind stated whose pump device has a small radial dimension, but produces a high conveying pressure and output of the conveyed medium, even at relatively low numbers of revolution.

According to the invention we provide a seal of the kind stated, inwhich an internal thread stationary in relation to the casing containing the shaft-receiving bore surrounds the external thread with a small radial clearance, the hand of said internal thread being opposite to that of the outer thread. Tests have established that the pressure generated by such a pump device is up to eight times higher than by one wherein a conveyor thread rotates in a smooth bore, and thus a very high degree of hydraulic efficiency can be attained.

I The internal thread is preferably formed in a separate, immovable bush set in the shaft-receiving bore.

The external thread may be formed on a component adapted to rotate with the shaft but axially movable relative thereto. The component may be a rotating slidering itself. The axial reactive thrust generated by the conveyance of the medium on the external thread may be used to modify the pressure force exerted by the slide-ring on the counter-ring, depending on the direction of rotation and on the number of revolutions.

Embodiments of the invention will now be described by way of example, with reference to the drawings, in which:

FIG. I is a fractional axial section through a first embodiment of a seal assembly according to the invention, in which the outer thread serving for conveyance is arranged on a sleeve carrying the rotating counter-ring member;

FIG. 2 is a fractional axial section through a second embodimentof a seal assembly according to the invention, in which the outer thread is arranged in a sleeve 2v. carrying the rbtatingslide-ring member and a guideplate is proyided to direct the flow of fluid to the sealing surfaces;

FIG. 3 is a fractional axial section through a third em,- bodiment showing a double sealaccordingto the invention, wherein the outer thread is formed in a bush,

which is separate from and surrounds carrier-sleeve means;

FIG. 4 is a fractionalaxial section through a fourth.

embodiment showing a double seal according to the invention, in which two pairsof outer and inner threads.

are provided;

FIG. 5 is a fractional axialsectionthrough a fifth embodiment of a seal according to the invention, in which the pressure spring of the slide-ring forms the conveyor. thread; I

FIGS. 6 and 7 show details.

Identical or identically-acting components are designated with corresponding reference numerals throughout the drawings. The suftixed letters a and b indicate whether certain sealing elements are non-rotatable or rotatable, respectively.

In the embodiment of FIG. 1, a shaft sleeve 2 is rigidly mounted about ashaft I in apfluid-tight manner, a carrier sleeve 3b being mounted on the shaft sleeve 2 and held in; place by a screw 4. AnO ring 6 in an annular groove 5 of the carrier sleeve 3b serves as a seal between the sleeves 2 and 3b. A counter-ring member 7!; is rigidly seated in carrier sleeve 3b, a non-rotatable slide-ring member 8a bearing against said counter-ring member 7b and being rigidly seated in a carrier sleeve 9a which is in turn seated non-rotatably but in the axial direction movably in an annular groove 10 of a cover 13 closing off the stepped, shaft-receiving through-bore ll of a casing 12. Cover 13 is secured in a fluid-tight manner to casing 12 which is stationary relative to shaft 1 and may be mounted on a support (not shown). Casing 12 and cover 13 together form the housing of the sealing assembly. The carrier sleeve and slide-ring 8a are urged towards the counter-ring 7b by a plurality of springs 14a, one of which is shown in FIG.] An 0- ring 10 R is positioned between carrier sleeve 9a and cover 13.

A multiple external thread 15 is tapped in the outer circumference of carrier sleeve 3b, said thread, in axial section, having a rectangular shape. It should be noted that thread 15 is positioned within bore 11 in spaced relationship to the wall of the bore. ,7

The carrier sleeve 3b, whose bounding surface envelope is cylindrical, is surrounded with slight radial clearance by a bush or bushing 16 of approximately the same axial length, which is immovably set in the stepped bore ll. A thread 17 is tapped in the cylindrical bore of bush l6, the thread 17 being similar to the thread 15 in carrier sleeve 3b, but the hands of the threads being opposite to each other. Thus, a left-hand thread 15 will be associated with a right-hand thread 17, and vice versa. i

The two threads 15 and 17 form the active parts of a pump device which, when shaft 1 rotates, sucks in a cooling, lubricating, buffer or sealing medium by way of an inlet bore 18 provided incasing l2, and conveys or propels it from there above counter-and slide-ring members 7b and 8a to an outlet bore 19 passing through cover 13. The inlet bore 18 and outlet bore 19 are connected by way of conduits with a heatexchanger (not shown in FIG. 1) which cools the medium before it enters the seal again.

Screw 4 is preferably provided in the vicinity of the axial end region of thread 15, and then only a small reduction in the hydraulic efficiency occurs because of the disturbance in the contour of the conveying threads. The required pump capacity and pressure can be obtained by changing the number of threads, the thread pitch and the groove dimensions. 7 It will be clear that the arrangement shown is adapted to prevent leakage from the casing interior at the left hand side of FIG. 1 to the outside in the direction towards cover 13 while effectively circulating a cooling, lubricating or buffer medium through the casing.

The embodiment according to FIG. 2 differs from that just described in that slide-ring member 8b, which is set into carrier sleeve 9b and is strutted in the axial direction by a spring 14b, rotates with the shaft, whereas the counter-ring member 7a is arranged to be stationary and is supported by two O-rings 6b in a twopart cover 13,13. An annular guide-plate 20, which directsthe coolant flow into the immediate vicinity of the contacting faces of slide-ring member 8b and counter-ring member 7a, is provided apporoximately in the radial plane containing said contacting faces which form a seal.

The internal thread serving to convey the medium as in the first embodiment, is formed in a bush 16 mounted in the shaft bore 11, while the external thread is formed in the cylindrical circumference of carrier sleeve 9b. The external coolant circuit may be the same as that described for FIG. 1.

FIG. 3 shows a double seal constructed according to the invention, such as is used, for example, in rendering a nuclear reactor fluid-tight or a pump intended therefor. The sealing medium is in this case active in the space or chamber between the two pairs of slideand counter-ring members 7'a, 8b and 7"a, 8"b and circulates through a high-pressure heat-exchanger 21 which is connectedto the chamber. According to the invention, a supply container 22 adpated to replenish the circulating medium and charged with gas keeps the sealing medium at a pressure a few atmospheres above the highest pressure to be sealed off and thus augments the sealing effect. A further feature is that the external thread 15 is cut into a separate sleeve 23 which is mounted independently of the sealing means and surrounds the carrier-sleeves 9'b and 9"b over a part of the axial length, and which is prevented from substantially moving axially and circumferentially relative to shaft 1 by a grub-screw or setscrew 24. An internal shoulder 25 on an extension of the bush 16 which has the internal thread, at the same time provides a support for the stationary counter-ring member 7"a.

' In the present embodiment it is possible to use units comprising slide-and counter-ring members and carrier sleeves of normal construction such as are employed for seals which do not have circulation of a sealing medium.

In the further embodiment according to FIG. 4, which corresponds in some essential details of construction and arrangement of the slideand counterring units to the double seal of FIG. 3, no separate sleeve is provided for the external thread 15. On the contrary, in a manner partly similar to that shown in FIG. 2, two external threads 15' and 15" are provided on two rotating slide-ring members 9'b and 9"b, while two internal threads 17' and 17" cooperating with the two external threads are provided in separate bushes l6, 16". Each of the internal threads 17' and 17" has a hand opposite to that of the external thread 15' or 15" with which it is associated, the hands of the external threads in turn being opposite to each other. It follows that the internal threads likewise are of opposite hands. As a result, a conveyance of the medium takes place in a direction depending on the direction of rotation of the shaft, the medium passing through the space or chamber remaining between the two bushes 16, 16'. A bore 19 connected to the heat-exchanger 21 opens into said chamber while two bores 18 and 18" which are likewise connected to the heat exchanger terminate at opposite ends of the bushes l6 and 16" which ends are disposed axially at opposite sides of bore 19. In a certain direction of rotation of the shaft as assumed in the embodiment of FIG. 4, the bores 18', 18" will serve as the inlet openings and bore 19 as the outlet opening, but the functions of the bores would be reversed if the shaft rotates in the opposite direction.

According to the embodiment shown in FIG. 5, the pressure-spring 26 for the rotating slide-ring member 8b which spring preferably has multiple coils of rectangular cross-sections, can at the same time be used as an external thread for conveying the enclosed medium, resulting in a saving in manufacturing costs and radial height. Spring 26 is connected to shaft sleeve 2 for rotation therewith.

In all embodiments of the invention it is preferable, in particular in the case of highly loaded seals, to form groove means in the sliding surfaces of the slideor counter-ring units. This is indicated, by way of example, at 27 in FIG. 1 where the rotatable counter-ring 7b is provided with groove means, and at 28 in FIGS. 3 and 4 where the stationary counter-rings 7'a and 7"a are provided with such groove means.

FIG. 6 shows the grooved end face of the rotatable counter-ring 7b of FIG. 1 in elevation and illustrates the shape of grooves 27, each of which starts at one point of the outer circumference of the ring and leads back to another point of the same circumference so that each groove communicates with the medium under pressure, the medium surrounding the ring, see FIG. I. Preferably, the grooves are symmetrically arranged on the respective end face as shown in FIG. 6, and each groove has the shape of a circular arc, but other forms may likewise be used, for example, a straight chord-like shape or a polygonal shape.

FIG. 7 shows an elevational view of the grooved end of stationary counter-ring 7'a as provided in FIGS. 3 and 4. It will be apparent that the grooves 28 0f FIG. 7 correspond in principle to grooves 27 of FIG. 6.

The described arrangement of grooves results in an intended irregularity in the cooling of at least one of the rings which both slide upon each other and tend to heat up due to friction. This in turn will result in warping of the irregularly cooled ring. Though the extent of such warping will be very small, particules of the cooling and lubricating medium to be sealed will then wedge into the interstices formed between the cooperating end faces of the sealing rings; thus, beneficial hydrodynamic lubrication will be obtained in a manner similar to that observed in the case of thrust bearings. Accordingly, metal to metal contact will be minimized at the cooperating end faces of the sealing rings so that the amount of friction and resulting wear will be reduced.

Smalllosses of cooling and lubricating medium may occur due to slight leakage caused by warping, but this is inconsequential in view of the great advantages obtained by hydrodynamic behavior. When rotation of shaft 1 is stopped, the development of heat will cease and the warping will disappear so that both cooperating end faces of the rings will again be plane and full contact of these end faces will be reestablished.

What is claimed is:

l. A shaft sealing assembly with a pump device for circulating a liquid medium around a rotatable shaft, a

housing stationary relative to said shaft and provided with a wall having a bore, said housing provided with openings for admission and discharge of said medium, said shaft extending through said bore; sealing means comprising a slide-ring unit coaxially surrounding said shaft within said bore and arranged for movement axially of said shaft under resilient pressure; a counter-ring unit similar to said slide ring unit but prevented from axial movement relative to said shaft when in operating position; one of said ring units being mounted for rotation with said shaft, and each of said ring units having an end face for mutual contact under said resilient pressure to form a seal; an external thread of a predetermined hand on said one ring unit; and means stationary relative to said housing and forming an internal thread within said bore, said internal thread having a hand opposite to said hand of the external thread and surrounding thelatter with a radial clearance so small that upon rotation of the shaft said external and internal threads are adpated to cooperate for propelling said medium over said end faces and through said openings in the housing, each of said internal and external threads having thread length and thread spacing essentially equal to one-half pitch.

2. A sealing assembly according to claim 1, wherein said sealing'means includes groove means formed in said end faces, said groove means starting and terminating at the circumference of one end face for communication with said medium.

3. A sealing assembly according to claim 2, wherein said groove means has the shape of a circular arc.

4. A sealing assembly according to claim 2, wherein said groove means comprises a plurality of grooves symmetrically arranged on one end face.

* t a: a 1:

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3811658 *Jan 22, 1973May 21, 1974Heidrich HExtruder for processing plastics and rubber
US3884482 *Mar 8, 1973May 20, 1975Borg WarnerCooled seal cartridge
US3888495 *Jun 11, 1973Jun 10, 1975Ehrhard MayerDual-cooled slide ring seal
US3937477 *Dec 26, 1973Feb 10, 1976Borg-Warner CorporationMechanical seal system
US3938811 *Oct 11, 1974Feb 17, 1976Kommanditbolaget United Stirling (Sweden) Ab & Co.Sealing means for stirling engine crankcases
US3963247 *Feb 19, 1975Jun 15, 1976Stamicarbon B.V.Shaft seal
US3968969 *Feb 26, 1975Jul 13, 1976Ehrhard MayerSealing arrangement
US3999882 *Mar 17, 1975Dec 28, 1976Dresser Industries, Inc.Flushing and cooling system for shaft seals and pumps
US4084825 *Mar 31, 1976Apr 18, 1978The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationCounter pumping debris excluder and separator
US4224009 *Mar 9, 1978Sep 23, 1980Termomeccanica Italiana S.P.A.Submersible pump with improved sealing means
US4243230 *Oct 1, 1979Jan 6, 1981Crane Packing Co.Low energy tandem seal
US4300772 *Sep 21, 1979Nov 17, 1981Pintsch Bamag Antriebs-Und Verkehrstechnik GmbhSealing arrangement for rotatably mounted shafts
US4368895 *Dec 1, 1980Jan 18, 1983Mitsubishi Denki Kabushiki KaishaShaft sealing device utilizing a non-uniform groove depth
US4377290 *Mar 22, 1982Mar 22, 1983John Crane-Houdaille, Inc.Symmetrical seal package for multiple face seals
US4416586 *Apr 9, 1981Nov 22, 1983Klein, Schanzlin & Becker AktiengesellschaftSubmersible motor pump assembly
US4463957 *Jul 1, 1981Aug 7, 1984Tanken Seiko Corp.Sealing device for rotary shaft and string-like member for defining spiral therefor
US4466619 *Jun 2, 1983Aug 21, 1984Durametallic CorporationMechanical seal assembly with integral pumping device
US4545588 *Jul 6, 1984Oct 8, 1985Tanken Seiko Corp.Mechanical face seal for sealing slurry liquid
US4606712 *Nov 14, 1984Aug 19, 1986Abex CorporationSelf-pumping pump shaft seal
US4621975 *Oct 25, 1984Nov 11, 1986Graco Inc.Centrifugal pump seal
US4709930 *Mar 6, 1985Dec 1, 1987Firma Carl FreudenbergShaft and sealing ring
US4723781 *May 20, 1987Feb 9, 1988Man Gutehoffnungshutte GmbhLiquid sealed shaft seal
US5217234 *Mar 22, 1991Jun 8, 1993John HornsbyMechanical seal with barrier fluid circulation system
US5409241 *Jul 14, 1993Apr 25, 1995Woodex Bearing Company, Inc.Positive drive compensating shaft seal
US5487550 *May 26, 1993Jan 30, 1996Bw/Ip International, Inc.Secondary gas/liquid mechanical seal assembly
US5516121 *Jan 28, 1994May 14, 1996FramatomeDry slip ring seal having independent cooling loops
US6210107 *Feb 14, 1995Apr 3, 2001John Crane Inc.Barrier seal systems
US6361271Nov 19, 1999Mar 26, 2002Capstone Turbine CorporationCrossing spiral compressor/pump
US6494458Dec 19, 2000Dec 17, 2002Karl E. UthRotary sealing assembly
US6565095 *Jul 12, 2001May 20, 2003Honeywell International, Inc.Face seal with internal drain
US6688601 *Nov 20, 2001Feb 10, 2004Eagle Industry Co., Ltd.Mechanical seal
US6969071 *Aug 13, 2002Nov 29, 2005Perkinelmer, Inc.Face seal assembly
US7343968Aug 24, 2005Mar 18, 2008Deublin CompanyWashpipe seal assembly
US8814508Sep 15, 2004Aug 26, 2014General Electric CompanyHeat exchanger for centrifugal compressor gas sealing
US8992213 *Feb 3, 2010Mar 31, 2015Ipsen, Inc.Sealing mechanism for a vacuum heat treating furnace
US20100196836 *Feb 3, 2010Aug 5, 2010Craig MollerSealing Mechanism for a Vacuum Heat Treating Furnace
US20120133100 *Nov 23, 2011May 31, 2012Zainal Abidin Azhar BinCompression unit
CN100482951CSep 15, 2004Apr 29, 2009诺沃皮尼奥内控股有限公司Heat exchanger device for a gas seal for centrifugal compressors
CN101858435BApr 10, 2009Nov 9, 2011江苏华阳重工科技股份有限公司Hydraulic self-balancing mechanical sealing device
DE2844335A1 *Oct 11, 1978Apr 30, 1980Burgmann Dichtungswerk FeodorShaft seal with rotating slide ring - has segment-section wings causing centrifugal deflection, to give oil pressure areas on slide surface
WO1995002777A1 *Jun 29, 1994Jan 26, 1995Woodex Bearing Company IncPositive drive compensating shaft seal
WO2005026589A1 *Sep 15, 2004Mar 24, 2005Banchi NicolaHeat exchanger device for a gas seal for centrifugal compressors
Classifications
U.S. Classification277/399, 415/73, 277/408, 277/366, 415/168.3, 277/930
International ClassificationF16J15/34
Cooperative ClassificationY10S277/93, F16J15/3404
European ClassificationF16J15/34B