Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3749101 A
Publication typeGrant
Publication dateJul 31, 1973
Filing dateFeb 9, 1972
Priority dateFeb 9, 1972
Also published asCA991707A1, DE2306266A1
Publication numberUS 3749101 A, US 3749101A, US-A-3749101, US3749101 A, US3749101A
InventorsWilliamson D
Original AssigneeCordis Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Nonpolarizable muscle stimulating electrode
US 3749101 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Williamson July 31, 1973 [54] NONPOLARIZABLE MUSCLE 3,345,989 10/1967 Reynolds 128/419 P STIMULATING ELECTRODE 3,474,791 10/1969 Benton 128/418 3,476,116 11/1969 Parsennet et al...... 128/417 Inventor: Donald Williamson, Mlaml. 3,590,822 7/1971 Ackerman 128/404 [73] Assignee: Cordis Corporation, Miami,'Fla.

[22] Filed: Feb. 9, 1972 Primary Examiner-William E. Kamm At W'll' B t l 1 pp No: 224,831 torney L 1 1am er e sen [52] US. Cl 128/418, 128/419 P [57] ABSTRACT I [51] Int. Cl A6111 1/04 [58] Field Of Search 128/404, 405, 410, A nonpolarizable muscle Stimulating electrode is 128/411, 416, 418, 419 C, 419 E, 419 P formed of a platinum black insert in a housing of inert electrode metal, preferably titanium. It features high [56] References C'ted current density at low pulse voltage.

UNITED STATES PATENTS 164,184 6/1875 Kidder 128/404 7 Claims, 2 Drawing Figures NONPOLARIZABLE MUSCLE STIMULATING ELECTRODE BACKGROUND OF THE INVENTION The electrical stimulation of muscular contraction, such as encountered in cardiac pacemaking, generally makes use an electrode for contacting the muscle. .In cardiac pacemaking for instance, the electrode may be surgically implanted in the myocardium or, more commonly, it is inserted pervenously into the right ventricle into contact with the endocardium.

The stimulation of muscular contraction generally requires the application of an electrical pulse which exceeds a certain threshold current density. The voltage of the pulse must be sufficient to attain this current density but should be as low as possible in order to conserve energy and minimize the running down of the batteries generally employed.

The nature of the electrical circuit established by the stimulating electrode can generally be represented by a capacitor and a resistor in parallel. The application of each pulse causes charging of the capacitor; after the end of the pulse the discharge of the capacitor results in a current reversal of greater or lesser amplitude and duration depending upon the relative magnitudes of the resistor and capacitor. It isgenerally desirable that the discharge current following termination of the pulse be of short duration.

Thus, it is desirable that the resistance component be small, such that the pulse is carried for the most part by the resistance component. Such electrodes are commonly called nonpolarizable.

BRIEF DESCRIPTION OF THE INVENTION The present invention provides an electrode for muscle stimulation characterized by a current density many times greater than those achieved by presently known electrodes, yet capable of being energized by an electrode-electrolyte interface voltage of the order of one volt or less. In general this invention features a platinum electrode which has preferably been platinized to develop a coating of platinum black, contained in a second electrode housing of suitable electrode metal which is compatible with platinum such as titanium. With such an electrode the current is delivered to the muscle electrolyte almost exclusively through the platinum black portion. As this may be quite small in size, extremely high current densities are obtained. On the other hand if for any reason the functioning of the platinum black should be impaired, the surrounding electrode body is still effective for stimulation.

DETAILED DESCRIPTION This invention is described below in detail with respect to the preferred embodiments wherein reference is made to the accompanying drawings in which:

FIG. 1 is a longitudinal cross-section of the tip portion of a heart pacer electrode illustrating one preferred embodiment of this invention, and

FIG. 2 is a longitudinal cross-section of the tip portion of a heart pacer electrode illustrating a second preferred embodiment.

The transverse cross-sections are circular.

Experiments with a variety of metals including Elgiloy, commercially pure titanium, tantalum, and platinum clearly indicate that the amount of voltage necessary to drive a given current through an electrode in vitro varies greatly between these metals. It has also been found that if platinum is coated with platinumblack according to the well known platinizing" technique, the characteristics of the surface are further improved such that a given current can be passed across the electrode-electrolyte interface at even lower voltage.

The improved electrode, according to the present invention, utilizes these discoveries in an electrode design of a standard shape which is known to be readily implantable by the pervenous technique in the tip of the right ventricle.

One form of this electrode is shown in FIG. I. The conductor from the heart pacer to the electrode is shown at l and is of the coiled Elgiloy lead construction which has now become standard with many manufacturers. The lead is insulated by Silastic tubing 2 which is connected to and molded to the metal housing 5 by molded Silastic 3. A molded Silastic flexure sleeve 4 provides protection for the lead against sharp bends where it leaves the tip. The housing 5 can be made of any metal suitable for such an electrode in consideration of its corrosion and electrical properties, but commercially pure titanium is the metal of choice. The housing 5 is held onto the wire coil by staking against staking slug 6, a small piece of the same metal of which the lead is made which is placed inside the coil to give support to the staking operation.

Inserted into a hole at the end of the housing is a piece of platinum 7. This platinum can be inserted by electro-plating, by pressing in a platinum sleeve, or as is shown in the illustration by pressing in a tight-fitting coil of platinum wire. One of the choices of titanium for the electrode tip is that platinum and titanium do not form a galvanic couple and will not corrode in the presence of body fluids. After the lead has been completed as shown, it is cleaned and immersed in a platinizing solution consisting of 3.5 percent chloroplatinic acid and 0.005 percent lead acetate. An anode of inert metal is provided, such as platinum. A sufficient current is passed through the cell thus formed so that fine bubbles are just visible from the electrode (cathode). After a few minutes a black deposit will form over the entire electrode. The electrode is then washed gently in distilled water and the platinum-black removed from the outer titanium surface with a soft absorbent paper or by any other convenient means, leaving the platinumblack, of course, in the hole at the end.

Measurements in vitro on an electrode of this type indicate that at a total current of 7.6 milliamperes the current density at the hole (whose area is 0.0l 37 cm) should be about 555 milliamperes per square centimeter. This is to be compared with 24 milliamperes per square centimeter if the entire tip surface of 0.32 cm was conducting. Experiments were conducted in which the titanium surface of the housing 5 was insulated from the solution by a thick layer of enamel, and from such experiments it was established that the principal electrical current carrier is the platinum-black in the hole.

Another electrode design is shown in FIG. 2. In this design a thin slot, for instance 0.25 millimeters, has been cut in the titanium housing and a platinum ring staked in place well below the surface of the titanium. This electrode is then platinized as described above and the black coating removed from the titanium, taking care not to remove it from the slot. With a single slot in a tip of 2.25 millimeters diameter, the caculated area of the groove is 0.018 cm and the current density at 7.6 milliamperes would be calculated as 422 milliamperes per square centimeter.

DISCUSSION An advantage to the design of FIG. 2 is that it is much less dependent upon its position in the right ventricle of the heart. FIG. 1 would be most efficient if the hole at the end could be reliably positioned in contact with the inner wall of the myocardium. Since this is not necessarily the case, the circular groove of FIG. 2 may be an advantage since one side of the tip is likely to be in contact with the inner wall of the ventricle. Of course, additional grooves can be added or the groove can be made spiral to suit manufacturing and other design convenience.

As mentioned above, one of the features of this electrode design is that its basic support is a near-noble metal which is perfectly adequate as a pacer electrode and which can function by itself in the same manner as previous electrodes should the platinum-black surface become seriously obstructed.

The electrical performance of the platinum-black electrode is assumed to be due to the rather special nature of platinum in that it is readily capable of absorbing atomic hydrogen and freely trading across its surface atomic hydrogen for hydrogen ions. The production of platinum-black greatly increases the effective platinum surface. The combination of these two effects is believed to account for the ability of the platinumblack to be the principal current carrier in spite of the adjacent large area of the titanium tip.

From the foregoing description it will be seen that this invention provides an advantageous muscle stimulator electrode construction which is easy to manufacture and capable of being of acceptable medical configuration. It is essentially non-polarizable by virtue of the extremely low resistance offered by the platinum surface, and further features a second electrode housing which is itself capable of carrying the stimulating current should there be any malfunction of the platinum.

Having thus described my invention and described in detail the preferred embodiments thereof, I claim and desire to secure by Letters Patent:

1. A muscle stimulator electrode comprising,

a housing composed of a chemically inert conductor having a portion adapted to make electrical contact with the stimulation site, and

a platinum surface within said portion.

2. An electrode as defined in claim 1 wherein said platinum is provided with a surface of platinum black.

3. An electrode as defined by claim 1 in which the projected surface area of the platinum is smaller than the surface area of the chemically inert portion of the housing.

4. A muscle stimulator electrode comprising,

a housing composed of a chemically inert conductor having a portion adapted to make electrical contact with the stimulation site, and

a surface of a non-polarizable electrode material within said portion.

5. An electrode as defined by claim 4 in which the projected surface area of the non-polarizable material is smaller than the surface area of the housing.

6. An electrode as defined by claim 1 wherein the housing is titanium.

7. An electrode as defined by claim 4 wherein the housing is titanium.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3880169 *Jan 2, 1974Apr 29, 1975American Hospital Supply CorpControlled entry pacemaker electrode for myocardial implantation
US3935864 *Jun 18, 1974Feb 3, 1976Hans LagergrenEndocardial electrode
US3964470 *Jul 25, 1974Jun 22, 1976Medtronic, Inc.Percutaneous intradermal electrical connection system and implant device
US3964473 *Sep 19, 1973Jun 22, 1976Telectronics Pty. LimitedBone prosthesis
US3981309 *Dec 23, 1974Sep 21, 1976American Optical CorporationPatient stimulating pacer electrode
US4026302 *Apr 30, 1975May 31, 1977Joseph GrayzelMethod of implanting a permanent pacemaker bipolar lead apparatus and an implantable permanent pacemaker bipolar lead apparatus
US4027677 *Jan 9, 1976Jun 7, 1977Pacesetter Systems, Inc.Myocardial lead
US4030508 *Feb 4, 1976Jun 21, 1977Vitatron Medical B.V.Low output electrode for cardiac pacing
US4127134 *Apr 11, 1977Nov 28, 1978Cordis CorporationPalladium getter
US4135518 *May 21, 1976Jan 23, 1979Medtronic, Inc.Body implantable lead and electrode
US4236529 *Feb 21, 1979Dec 2, 1980Daig CorporationTined lead
US4323081 *Jun 30, 1980Apr 6, 1982Medtronic, Inc.Pacing lead
US4325389 *Sep 22, 1980Apr 20, 1982Cordis CorporationTip assembly for a carbon fiber implantable lead
US4328812 *Mar 21, 1980May 11, 1982Medtronic, Inc.Ring electrode for pacing lead
US4413636 *Mar 25, 1982Nov 8, 1983Phillip R. BeutelCatheter
US4440178 *Dec 23, 1981Apr 3, 1984Kontron AgImplantable electrode
US4475560 *Apr 29, 1982Oct 9, 1984Cordis CorporationTemporary pacing lead assembly
US4502492 *Apr 28, 1983Mar 5, 1985Medtronic, Inc.Implantable lead
US4534366 *Aug 3, 1983Aug 13, 1985Soukup Thomas MIn a tissue stimulation lead
US4865037 *Nov 13, 1987Sep 12, 1989Thomas J. FogartyMethod for implanting automatic implantable defibrillator
US4972847 *Nov 2, 1989Nov 27, 1990Dutcher Robert GPacing lead and introducer therefor
US5143090 *May 30, 1991Sep 1, 1992Possis Medical, Inc.Cardiac lead
US5282845 *Oct 1, 1990Feb 1, 1994Ventritex, Inc.Multiple electrode deployable lead
US5385579 *Mar 30, 1993Jan 31, 1995Siemens Pacesetter, Inc.Myocardial body implantable lead
US5531779 *Jan 24, 1995Jul 2, 1996Cardiac Pacemakers, Inc.Stent-type defibrillation electrode structures
US5991667 *Nov 10, 1997Nov 23, 1999Vitatron Medical, B.V.Pacing lead with porous electrode for stable low threshold high impedance pacing
US6430447Nov 7, 2000Aug 6, 2002Pacesetter, Inc.Stimulating electrode having low polarization and method of making same
US6430448Nov 7, 2000Aug 6, 2002Pacesetter, Inc.Stimulating electrode having low polarization and method of making same
US7010856Mar 18, 2002Mar 14, 2006Nihon Kohden CorporationLead wire attachment method, electrode, and spot welder
US7945337Aug 27, 2003May 17, 2011Medtronic, Inc.High impedance and low polarization electrode
US8277458Jan 23, 2009Oct 2, 2012Biomet Sports Medicine, LlcApparatus and method for arthroscopic transhumeral rotator cuff repair
US8461042Dec 1, 2009Jun 11, 2013Cochlear LimitedElectrode contact contaminate removal
US8738144May 12, 2009May 27, 2014Ingenium, LlcBioelectric implant and method
US8740913Dec 6, 2011Jun 3, 2014Biomet Sports Medicine, LlcApparatus and method for arthroscopic transhumeral rotator cuff repair
US8763244May 26, 2009Jul 1, 2014Cochlear LimitedMethod of forming conductive elements
US8782884Dec 1, 2009Jul 22, 2014Cochlear LimitedManufacturing an electrode assembly having contoured electrode contact surfaces
DE3134896A1 *Sep 3, 1981Mar 10, 1983Heraeus Gmbh W CKabelzuleitung fuer herzschrittmacher-elektroden
EP0042551A1 *Jun 11, 1981Dec 30, 1981SORIN BIOMEDICA S.p.A.Electrode for cardiac stimulators
EP0043461A1 *Jun 11, 1981Jan 13, 1982SORIN BIOMEDICA S.p.A.Process for manufacturing electrodes for cardiac stimulators
EP0054781A1 *Dec 4, 1981Jun 30, 1982Kontron AgImplantable electrode
EP0064289A2 *May 3, 1982Nov 10, 1982Medtronic, Inc.Body implantable lead
EP0126981A1 *Apr 26, 1984Dec 5, 1984Medtronic, Inc.Low-polarization low-threshold electrode
WO1992021405A1 *May 29, 1992Dec 10, 1992Possis Medical IncBipolar cardiac lead
Classifications
U.S. Classification607/121
International ClassificationA61B5/0408, A61N1/05
Cooperative ClassificationA61N1/0565
European ClassificationA61N1/05N2
Legal Events
DateCodeEventDescription
Nov 13, 1989ASAssignment
Owner name: TELECTRONICS, U.S.A., INC., CONNECTICUT
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:SOUTHEAST BANK N.A.;REEL/FRAME:005181/0530
Effective date: 19890831
Dec 5, 1988AS17Release by secured party
Owner name: CORDIS LEADS, INC., 10555 W. FLAGLER STR., MIAMI,
Owner name: SOUTHEAST BANK, N.A., MIDLAND BANK PLC AND CREDIT
Effective date: 19880615
Dec 5, 1988ASAssignment
Owner name: CORDIS LEADS, INC., 10555 W. FLAGLER STR., MIAMI,
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:SOUTHEAST BANK, N.A., MIDLAND BANK PLC AND CREDIT LYONNAIS;REEL/FRAME:004996/0829
Effective date: 19880615
Owner name: TPL-CORDIS, INC., A DE CORP., FLORIDA
Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:CORDIS LEADS, INC.;REEL/FRAME:005003/0158
Effective date: 19881130
Jun 14, 1988ASAssignment
Owner name: SOUTHEAST BANK, N.A., AS SECURITY AGENT
Free format text: SECURITY INTEREST;ASSIGNOR:CORDIS LEADS, INC., A CORP. OF DE;REEL/FRAME:004896/0372
Effective date: 19880610
Jun 10, 1988ASAssignment
Owner name: SOUTHEAST BANK, N.A.
Free format text: SECURITY INTEREST;ASSIGNOR:CORDIS LEADS, INC., A DE CORP.;REEL/FRAME:004896/0205
Effective date: 19880602
Jul 27, 1987AS02Assignment of assignor's interest
Owner name: CORDIS CORPORATION, A CORP. OF FLORIDA
Effective date: 19870430
Owner name: CORDIS LEADS, INC., 10555 WEST FLAGLER STREET, MIA
Jul 27, 1987ASAssignment
Owner name: CORDIS LEADS, INC., 10555 WEST FLAGLER STREET, MIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CORDIS CORPORATION, A CORP. OF FLORIDA;REEL/FRAME:004747/0313
Effective date: 19870430
Owner name: CORDIS LEADS, INC., FLORIDA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CORDIS CORPORATION, A CORP. OF FLORIDA;REEL/FRAME:004747/0313
Jul 1, 1987ASAssignment
Owner name: SOUTHEAST BANK, N.A., MIDLAND BANK PLC (SINGAPORE
Free format text: SECURITY INTEREST;ASSIGNOR:CORDIS HEADS, INC.;REEL/FRAME:004734/0550
Effective date: 19870630
Jun 15, 1987ASAssignment
Owner name: SOUTHEAST BANK, N.A., MIDLAD BANK PLC (SINGAPORE B
Free format text: SECURITY INTEREST;ASSIGNOR:CORDIS LEADS, INC., A CORP. OF DE;REEL/FRAME:004747/0320
Effective date: 19870612