Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3749247 A
Publication typeGrant
Publication dateJul 31, 1973
Filing dateSep 21, 1970
Priority dateSep 21, 1970
Also published asUS4066559
Publication numberUS 3749247 A, US 3749247A, US-A-3749247, US3749247 A, US3749247A
InventorsRohde R
Original AssigneePhillips Petroleum Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Addition of oxidation inhibitor to lubricating oil
US 3749247 A
Abstract
Addition of oxidation inhibitor (antioxidant) or other additive to lubricating oil as in a working engine is effected by placing into the oil a container, e.g., a polyolefin container or capsule, for example, a polypropylene capsule containing said additive which permeates through the container wall into the oil gradually. A polypropylene capsule containing zinc dialkyldithiophosphate is described. Other container materials and other polyolefin, e.g., polyethylene and copolymers of monoolefins such as ethylene-propylene copolymers can be used. The container or capsule is found to release increasing quantities of additive as the oil temperature surrounding the same increases, with container rupture at extreme operating conditions of temperature to release remaining additives to further protect the oil under such conditions.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1 Rohde [4 1 July 31,1973

[54] ADDITION OF OXIDATION INHIBITOR TO LUBRICA'IING OIL [75] Inventor: Raymond Rohde, Bartlesville, Okla.

' [73] Assignee: Phillips Petroleum Company 221 Filed: Sept. 21,1970 21 Appl.No.:73,789

[52] US. Cl 210/205, 210/501, 210/502 [51] Int. Cl 001d 27/00 [58] Field of Search 210/149, 198, 205, 210/206, 501, 502

[56] Relerences Cited UNITED STATES PATENTS 2,262,529 11/194-1 Fairlie et al.;..'...;....'. 210/501 X 2,785,805 3/1957 Hough 210/501 X 2,846,057 8/1958 Polin 210/198 R Primary Examiner-John Adee Attorney-Young and Quigg [57] ABSTRACT Addition of oxidation inhibitor (antioxidant) or other additive to lubricating oil as in a working engine is effected by placing into the oil a container, e.g., a polyolefin container or capsule, for example, a polypropylene capsule containing said additive which permeates through the container wall into the oil gradually. A polypropylene capsule containing zinc dialkyldithiophosphate is described. Other container materials and other polyolefin, e.g., polyethylene and copolymers of monoolefins such as ethylene-propylene copolymers can be used. The container or capsule is found to release increasing quantities of additive as the oil temperature surrounding the same increases, with container rupture at extreme operating conditions of temperature to release remaining additives to further protect the oil under such conditions.

1 Claim, 5 Drawing Figures PATENIED M31 I975 3. 749 247 sum 1 or 3 HOURS INVENTOR. RAYMOND ROHDE ATTORNEYS PATENIED JUL 3 1 I975 sum 2 OF 3 5 4. 1 o o 0 3273 wzzmmoxuoitn 02E is HOURS FIG. 2

INVENTOR. RAYMOND ROHDE A TTORNE Y5 ADDITION OF OXIDATION INHIBITOR T LUBRICATING OIL This invention relates to the addition of oxidation inhibitor (antioxidant) or other additive to a lubricating oil as in a working engine. It also relates to protection of an oil as in a working engine at elevated temperature against oxidation or other deterioration. Further, the invention relates to gradually adding or dosing an inhibitor into a substance such as an oil under elevated temperature conditions as can prevail in a working engine.

According to a concept of the invention, it provides a container containing an additive to be added to an oil, the container walls being of a material selected to permit the additive to permeate therethrough into the oil to which the inhibitor is to be added. In another of its concepts, the invention provides such a container the walls of which are responsive to increase in temperature to permit increased permeation therethrough of an oil additive.

It has been found that at elevated crankcase temperatures, particularly in cases of severe high temperature engine operation such as in the high speed towing of house or boat trailers, an oil thicknening problem, even to the extent of oil gelling, arises. It has been found that after a number of hours of severe engine operation even with a high quality detergent type oil, the oil viscosity begins to increase rather rapidly. It has further been found that this extreme rate of viscosity increase coincides with depletion of oxidation inhibitor which, in turn, permits increased oxidation of the oil. lndeed, in one severe test during which a charge of oxidation inhibitor was added to the oil periodically, a rapid increase in viscosity could be avoided.

l have now conceived that the periodic addition of additive can be dispensed with if there is placed into the lubricating oil in the engine a capsule container or bottle" which, in effect, encloses a predetermined or measured amount of an oxidation inhibitor, for example, zinc dialkyldithiophosphate. It has occurred to me that the capsule can be inserted into a standard oil filter, where it will be washed by the oil passing through the same. Still further, a now preferred capsule or bottle is one made from a polypropylene. Further, I have found the permeation of the zinc dialkyldithiophosphate through the capsule varies with the temperature of the oil passing through the filter with permeation being greatest at highest temperatures and, therefore, when most needed.

An object'of this invention is to provide for addition of inhibitor to lubricating oil. A further object of the invention is to provide for the gradual addition of an oil additive such as an oxidation inhibitor to an oil. Still further, it is an object of this invention to provide in an operating engine the addition of an inhibitor such as an oxidation inhibitor to the oil wherein which oil is at an elevated temperature. It is a still further object of the invention to provide for increased addition of inhibitor to oil as the temperature of the oil increases. A further.

object still of the invention is to provide for a sudden release of the inhibitor into an oil when said oil reaches a temperature ordinarily encountered under extremely severe operating conditions. A further object still is to provide a container containing an oxidation inhibitor of gradually releasing inhibitor therefrom at elevated temperature. Further still, an object of the invention is to provide for such a container containing an additive which the container will release in toto under extremely severe operating temperature.

Other aspects, concepts, objects and several advantages of the invention are apparent from a study of this disclosure, the drawings and the appended claims.

or other oil additive, the container having the property According to the present invention, an oil additive such as an oxidation inhibitor is capsulated or bottled in a container, at least a portion of the wall of which is made of a material which permits oil to permeate therethrough at an elevated temperature, for example, a temperature reached by oil in an engine under operating conditions.

Further, according to the invention, there is provided. a polyolefin, e.g., polyethylene, polypropylene, ethylene-propylene copolymer, container containing an oil additive.

Still further, according to the invention, there is provided in an operating engine a container containing an additive as herein described.

Further, still according to the invention, there is provided an oil filter and/or oil cooling mechanism containing a capsule containing an inhibitor as herein described.

The shape, size, wall thickness, and other physical factors affecting the desired degree or rate of permeation and, in the extreme case, the rupture of the container can be determined by mere routine testing under actual operation conditions of temperature of the oil to be inhibited.

The nature of the plastic, polymer, or copolymer can also be varied and can be determined by mere routine testing.

In a preferred embodiment, the shape and size of the plastic oil additive container is such that it occupies a space extant in present engine oil filters, such as those commonly in use on motor vehicles. This will have the advantage of reducing the amount of oil needed to fill the unit without significantly reducing its ability to filter. This feature of the invention, namely the combination the filter element and the plastic oil additive container, is particularly advantageous when using heavy duty or high detergency oils where the filter functions mainly to arrest the solids which are not carried by the oil.

Generally speaking, the choice of polymer, the wall thickness of the polymeric container, the size and location of the container, the amount and concentration of the oil additive within the container, and other such variables will be such as to provide little or no permeation at engine oil temperatures up to about 200F., moderate permeation at 2 00-250F., substantial permeation at 250-300F., and still greater permeation and/or rupture of the walls of the container at 300325F. Such a schedule is particularly applicable for oil additives, such as antioxidants, for which there is a greater need as crankcase temperatures increase.

The wall thickness of the plastic container, depending upon the specific application and result desired, will generally be in the range of 5-50, preferably 20-35, mils. in a typical oil filter, the plastic container can be in the general form of a relatively long narrow tube of a size and shape to conveniently fit into the generally triangular voids which exist between the pleats or folds on the inlet side of a typical filter element. One or more such containers can be used in one or more of such spaces. As an example, the plastic container can be a tube about l-4 inches long and %l inch in diameter.

The plastic container of oil additive can be utilized in still other locations within the crankcase or within the oil circulation line separate from the oil filter. Any lo cation at which the plastic container can be contacted with at least a portion of the lubricating oil at a temperature which is representative of the temperature of the bulk of the lubricating oil. In such a location, the plastic containers can be replaced at suitable intervals.

The process of the invention is applicable for use in engine oil lubricating systems using any suitable lubricating oil compositions and any suitable viscosity grades such as the conventional SAE 10 to SAE 50 grades.

In addition to antioxidants, such as zinc dialkyldithiophosphates, other polyolefin-permeable oil additives can also be used. Preferably, to insure compatibility, the oil additives in the plastic container should be the same or similar to those already in the oil. However, a number of additives including the zinc dialkyldithiophosphates, have essentially universal compatibility and utility in all lubricating oil formulations.

The permeable oil additives can be present in the plastic container either diluted or undiluted with a carrier oil. If the additive is already in the liquid form it can be used in that state but dilution with at least a minor quantity of a suitable hydrocarbon liquid, preferably a lubricating oil, is preferred in order to speed diffusion of the additive through the walls of the plastic container. Any lubricating oil or lubricating oil fraction is suitable as a diluent. The lighter lubricating oils will promote permeation to a greater degree than heavier fractions. Thus, diluents can be present in amounts in the range of -50 parts diluent per part additive, by weight.

The polymers from which the plastic containers can be fabricated can be any through which liquid oil additives or their solutions can slowly diffuse and which do not melt or significantly soften at temperatures below the operating temperature range of a given lubricating oil in a crankcase. Generally speaking, hydrocarbon polymers are operable and polymers and copolymers of l-olefins are very satisfactory. Polystyrene can be permeated by suitable oil additives but its relatively low melting point restricts its use to relatively low temperature lubricating oil systems or to systems where rupture of the oil additive container and a sudden release of ad ditive is desired at an intermediate temperature. Polyethylene is in this same general class in that it is permeable but relatively low melting. The preferred hydro carbon polymers are polypropylene and copolymers of propylene with minor amounts of l-olefin comonomers having up to about eight carbon atoms per molecule.

The amount of oil additive within the plastic container can vary over a wide range and will depend upon the nature of the additive and the amount of oil in the lubricating oil reservoir. Frequently, the amount of supplemental additive, such as an antioxidant, in the plastic container will be in the range of from about 0.5 to about times the amount of the same additive present in the oil at the initial charging or formulating. As an example, a new lubricating oil can contain about 0.74 weight per cent of a zinc dialkyldithiophosphate additive or about 0.068 lb. of the additive per gallon.

Hence, a typical amount of the zinc additive in the plastic container can be about 0.068 lb. for each gallon of oil in the crankcase.

In the drawings, FIG. 1 is a correlation of weight per cent additive v. hours of run showing the effect of temperature upon the permeation of additive through walls of a container according to the invention. FIG. 2 shows the effect of concentrations and amounts of additive on permeation rate. FIG. 3 is a diagrammatic showing of the flow of oil from an engine to a container of additive and back again to the engine. FIGS. 4 and 5 are elevation and plan cross-sectional views of a filter vessel containing a container according to the invention.

Referring now to FIG. 3 of the drawing, 1 is an engine from which oil passes by 3 to vessel 5 wherein is contained a container of additive according to the invention. The oil at operating temperature causes additive to be released. The additive is picked up by the oil and is returned therewith by 7 to engine 1.

Referring now to FIGS. 4 and 5, 9 is the shell of an oil filter material containing vessel termed hereinafter oil filter. Oil entering at 3 passes downwardly into the oil filter and emanates therefrom by 7. In passing through the oil filter, the oil must pass through the folds of filter element 11. According to the invention, there are disposed as shown at 13 containers of additive according to the invention. The oil passing through the filter raises the temperature of container 13 to operating temperature and receives from 13 the desired amount of additive. Obviously, at different times, different portions of oil will be passing in contact with containers 13. In any event, the additive which is soluble in the oil will be distributed throughout the entire body of the oil as it moves about being pumped through various parts of engine and, of course, through the oil filter.

EXAMPLE I The permeation of an oil solution of a commonly used oil antioxidant additive through the walls of a propylene-ethylene copolymer container, which was submerged in a lubricating oil, was carried out at several different temperatures. The antioxidant additive was a commercial zinc dialkyldithiophosphate, hereinafter referred to simply as L-l395. This commercially available (Lubrizol Corporation, Cleveland, Ohio) additive contains a mixture of isobutyl and amyl alkyl groups, has a specific gravity of about 1.18, and typically contains about 9.5 per cent P, 20.0 per cent S, and 10.6 per cent Zn, by weight. The commercial material also normally contains a minor amount of diluent or carrier oil. For simplicity, the presence of this carrier oil was neglected in the computations which follow.

The polymeric container through which the oil additive was permeated was a l-ounce capacity bottle of a commercial propylene-ethylene copolymer resin (Nalgene, Catalog No. 2006, Nalge Company, Rochester, N.Y.). The predominantly propylene polymer contained from about 2 to about 5 weight per cent ethylene and had a melting point of about 327F. The bottle fashioned from this resin had an average wall thickness of about 30 mils.

Into each plastic bottle was placed 1 g of L- l 395 and 9 g of a lO-stock lubricating oil. The lO-stock lubricating oil was a lubricating fraction of a highly refined ity was about 100 SUS at 100F. The bottles were then capped and submerged in a beaker containing 150 g of 10-stock oil. The bottles were submerged in the oil either by the weight of a steel ball placed inside the bottle or by fastening the cap of the bottle to the beaker cover.

Using duplicate samples, the beakers containing the oil and the plastic bottles with the oil additive contained therein, were stored at different temperatures. Periodically, the oil in the beaker, but outside the plastic container, was analyzed for the additive content. Results of these tests are shown in Table 1.

In the Table 1, it is seen that in the runs carried out at 75F. there was no diffusion of the oil additive from its plastic container into the bulk of the oil. Thus, at a temperature which is below the normal operating temperature of an engine, there would be no movement of the additive from its container.

The data in Table 2 shows that the amount of oil additive, such as the L-l395, which permeates through the wall of a given container can be increased by either increasing the concentration of the additive inside the container or by increasing the amount of additive inside the container, or both. This demonstrates the effectiveness of still another variable which can be utilized to control the addition rate of a given additive into a body of lubricating oil according to the process of this invention.

The L-l 395' additive, in its liquid but relatively undiluted commercial form, was also found to permeate sati'sfactorily but at a somewhat slower rate.

EXAMPLE 3 Table 1 [Permeation of L-1395 through propylene-ethylene copolymerbottle into engine oil at various temperatures] Runs at75 F. Runs at 200 F. Runs at 250 F. Runs at 295 F.

, Fermented Perrneated a Permeated Pcrmeated h additive, additive, additive, additive, Hours percent Hours percent Hours percent Hours percent;

Sample No. 1. I 0 0 0 0 0 O 0 0 )6 0 72 0. 100 23 0. 090' 5 0. 10 216 0 108 0. 130 71 0. 230 12 0. 64 216 0. 160 97. 5 0. 290 23 0. 91

Sample N o. L 0 0 0 0 t) 0 0 i 0 168 0 48 0. 050 0, 150 5 0. 0) 254 0 JG 0. 090 47 0. 200 12 O. 77 360 0 192 0. 126' 98 0. 445 23 0. 91 240 0,160

in terms of the concentration of the additive found in the oil outside the container. Maximum concentration would beabout 0.6 weight percent.

In. runs at 200F;, 250F., and 295F., on the other was demonstrated. The container was a 250 ml capachand, the data indicate that there was substantial diffusion of the additive into the bulk of the oil and the rate of diffusion increased with the temperature. Thus, the movement of additive out of its container and into the bulk of the oil would be directly proportional with the severity of operation and, hence, proportional with the need.

EXAMPLE 2 Several additional runs were carried out in essentially the same manner as described in Example 1 to show the effect of increasing the concentration of the oil additive in the plastic bottle and the effect of increasing. the quantity of the oil additive in the plastic bottle. These results are shown in Table 2.

TABLE? Premcation oi L-1395 at 250 F. Through Propylene-Ethylene Copelymer at Different Concentrations Bottle contains 5 g. Bottle contains 2 g. additive and 5 g. 10- additive and 18 g. 10- stock and is immersed stock and is immersed in 150 g. iii-stock in 150 g. of IO-stoek Permeated Icrmeated b additive, additive, llours percent Hours percent Sample No. l 0 0 0 O 23. 5 0. 510 23 0. 450 72 1. 200 71 0. 890 97. 5 1. 430 07. 5 l. 000

Sample No. 2 0 0 0 0 25 0. 495 26 0, 405 4 0. 801 47 0. 685 97. 5 1.130 73 0. 815 98 0. 050

in terms of concentration of additive found in oil outside bottle. Maximum concentration would be about 3 weight percent.

' Maximum concentration would be about 1.3 percent.

ity bottle also having a wall thickness of about 30 mils, and prepared from a homopolymer of propylene having a melting point of about 340F.

Runs at 250F. and 295F. were carried out. into the bottle of each run was placed 60 grams of a 10 weight per cent solution of L-l395 in lO-stock oil. The bottle was then submerged by means of a steel ball within the bottle in another vessel containing 900 grams of the 10- stock oil. The vessels were then placed in storage at different temperatures and periodically the oil outside the plastic bottle was analyzed for L-1395 contact. The results of these tests are shown in Table 3.

TABLE 3 Permeation of L-l395 Through Propylene l-lomopolymer Bottle into Engine Oil Run at 250F. Run at 295F.

Permeated Permeated Hours Additive,% Hurs Additive,% 0 0 0 0 24 0.095 3.5 0.075 48 0.190 9 0.l 72 0.275 15 Ruptured 98 0.375

(a) in terms of concentration of additive found in the oil outside the plastic container. Maximum concentration would be about 0.6 weight per cent.

The data in Table 3 shows that the container of propylene homopolymer is also satisfactory for oil additive diffusion according to the process of the present invention and it also shows that larger containers areas effective as small containers for this use. The run at the relatively extreme temperature of 295F. also illustrates the feature of the invention in which a sudden re- EXAMPLE 4 The satisfactory diffusion of still other commonly used oil additives through the wall of a plastic container according to the process of this invention was also demonstrated. In one run, a commercial sulfonate oil additive A (Bryton-T Sulfonate, a sodium sulfonate) was tested in the manner of Example 1 and using the copolymer bottle of Example 1. Twenty grams of a 40 weight per cent solution of the oil additive A in 10- stock oil was placed in the bottle.

Similarly, oil additive B (Paranox-64, a mixture of barium phenate and calcium sulfonate) was tested in the same propylene-ethylene copolymer bottle and in the same manner.

Still another commonly used oil additive, an ashless dispersant (Lubrizol 934) was also demonstrated as being suitable for use in the present invention. This additive is believed to be a mixture of 10 per cent of a material which is a mixture of a polyisobutenyl succinimide and succinamide derived from polybutenyl succinic anhydride and alkenyl polyamines, and 90 per cent of a polyisobutenyl succinic ester. The polyisobutenyl groups are derived from a polyisobutylene having a molecular weight in the range of 700-1500 (aver-' age of 1,000).

A 10 g quantity of a 40 weight per cent solution of oil additive C in l-stock oil wascharged into the 1- ounce copolymer bottle and also submerged at 250F. in a beaker containing 100 g of -stock oil.

The results of these tests are shown in Table 4.

The data in Table 4 shows that three other commonly used additives are also operable according to the pres- TABLE 4 Permeation oi Various Oil Additives at 295 F. Through Propylene- Ethyiene Copolymer into Engine Oil n in terms of concentration oi additive found in oil outside bottle. Maximum concentration would be about 7 weight percent.

Maximum concentration about 3.5 percent.

ent invention. It is seen that not all additives diffuse through a given polymer container at the same rate. However, not all oil additives are required in the same amounts within a given motor oil formulation and, with the number of variables available to control the release of each additive at the desired rate, it can be possible to replenish, on a continuous basis, each individual oil additive as it is consumed and while the engine is in operation.

in the drawing, FIG. 1 shows the effect of temperature upon the permeation of the zinc dialkyldithiophosphate through the walls of the polypropylene container and the ethylene-propylene copolymer container. The curves are graphical representations of the data in Tables 1 and 3. Curve 4 shows that essentially no permeation is observed at F. Curve 5 shows increased permeation through the copolymerat 200F. Curves 6A and 6C show still more permeation through the copolymer at 250F. Curve 6B shows the relatively high rate of permeation at 250F. through the propylene homopolymer container as well. Curve 7 shows the still more rapid rate of permeation through the homopolymer at 295F.

In FIG. 2 of the drawing, the effect of various concentrations and amounts of the zinc additive in the copolymer containers on the permeation rate is shown. The curves are the graphical representations of data in Tables 1 and 2. Curves 1A and 1B show the permeation rate of 10 g of a 50 weight per cent solution of the zinc additive. Curves 2A and 2B show the permeation rate of 20 g of a 10 weight per cent solution, while curves 3A and 3B show the permeation rate of 10 g of a 10 weight per cent solution.

Reasonable variation and modification are possible within the scope of the foregoing disclosure and the appended claims, the essence of which is that an additive is added to an oil, for example, an engine oil, during operation by encapsulating or enclosing the additive into a container capsule or bottle" and permitting the container, capsule, or bottle" to be washed by the oil at its operating temperature, thus, obtaining by permeation from within the container the additive into the oil desired to be protected.

I claim:

1. An oil filter for an oil-lubricated combustion engine in which an oil is circulated comprising a filter vessel body, containing a filter element shaped to provide voids within said vessel, and at least one container in at least one of said voids said container made of a polymer which is oil permeable at an elevated temperature of the order of that reached by an engine oil when it is operating in an engine and containing an oil additive and being permeable to said additive when said container is immersed in oil to be protected and is at the operating temperature of the oil to be protected at that temperature.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2262529 *Jul 15, 1938Nov 11, 1941Sinclair Refining CoLubrication
US2785805 *Jun 12, 1953Mar 19, 1957Wix CorpOil filters
US2846057 *Feb 9, 1954Aug 5, 1958Polin Herbert SpencerDevices for dosage control
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4014794 *Mar 11, 1974Mar 29, 1977E. I. Du Pont De Nemours And CompanyOil filter adapter
US4075097 *Apr 1, 1975Feb 21, 1978Monroe Auto Equipment CompanyOil filter with oil improving dissolving body
US4075098 *Nov 7, 1975Feb 21, 1978Monroe Auto Equipment CompanyMasking elements for dissolving oil improving body in an oil filter
US4144166 *Mar 24, 1977Mar 13, 1979Atlantic Richfield CompanyCompositions, apparatus and methods useful for releasing solid lubricating oil additive
US4265748 *May 8, 1980May 5, 1981Tecnocar S P ALubricant filter for internal combustion engines
US5042617 *Sep 7, 1989Aug 27, 1991Exxon Research & Engineering CompanyMethod of reducing the presence of sludge in lubricating oils
US5478463 *Jul 28, 1994Dec 26, 1995Exxon Chemical Patents Inc.Method of reducing sludge and varnish precursors in lubricating oils
US5507942 *Feb 22, 1994Apr 16, 1996Davco Manufacturing L.L.C.Fuel filter assembly
US5520800 *Aug 9, 1993May 28, 1996Zakrytoye Aktsionernoye Obshchestvo "Troiler-Korporatsiya"Device to provide a tribochemical mode of operation in a lubrication system for a mechanism
US5527452 *Jun 29, 1993Jun 18, 1996Metzhotraslevoe Nauchno-Proizvodstvennoe Obedinenie EkologiyaDevice for providing tribochemical mode of operation in a lubrication system for a mechanism
US5591330 *May 25, 1994Jan 7, 1997T/F Purifiner, Inc.Oil filter containing an oil soluble thermoplastic additive material therein
US5753116 *Oct 28, 1996May 19, 1998Ing. Walter Hengst Gmbh & Co.Coolant filter
US5766449 *Nov 30, 1995Jun 16, 1998Davco Manufacturing L.L.C.Fuel filter assembly
US6238554Jun 16, 1999May 29, 2001Fleetguard, Inc.Fuel filter including slow release additive
US6505597 *May 30, 2001Jan 14, 2003Honeywell International Inc.Cleansing oil filter containing quick-release liquid antioxidant/additive solution, and method of using same to convert an engine from petroleum-based oil to botanically-based oil
US6827750Aug 24, 2001Dec 7, 2004Dober Chemical CorpControlled release additives in fuel systems
US6835218Aug 24, 2001Dec 28, 2004Dober Chemical Corp.Fuel additive compositions
US6841065Nov 22, 2002Jan 11, 2005Davco Manufacturing, L.L.C.Fluid filter with pressure relief valve
US6843916Jul 16, 2002Jan 18, 2005The Lubrizol CorporationSlow release lubricant additives gel
US6852217 *Jun 15, 2001Feb 8, 2005Filterwerk Mann & Hummel GmbhFilter with an annularly constructed filter medium
US6860241Aug 24, 2001Mar 1, 2005Dober Chemical Corp.Fuel filter including slow release additive
US7001531Aug 24, 2001Feb 21, 2006Dober Chemical Corp.Releasing polymer into coolant; concentrated aqueous solution; internal combustion engine
US7160451Dec 9, 2005Jan 9, 2007Donaldson Company, Inc.Liquid filter assembly for use with treatment agent and methods
US7238285Mar 4, 2005Jul 3, 2007Donaldson Company, Inc.Liquid filter assembly for use with treatment agent; and, methods
US7384896Jan 28, 2005Jun 10, 2008The Lubrizol CorporationControlled release of additive gel(s) for functional fluids
US7417012Oct 13, 2004Aug 26, 2008The Lubrizol CorporationSlow release lubricant additives gel
US7534747Jun 25, 2003May 19, 2009The Lubrizol CorporationOil additive; air pollution control
US7581558Jun 5, 2007Sep 1, 2009Cummins Filtration Ip Inc.Controlled release of additives in fluid systems
US7591279Aug 16, 2002Sep 22, 2009Cummins Filtration Ip Inc.Chemical resistant container for lubricants, hydraulic fluids
US7625419Jan 10, 2007Dec 1, 2009Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US7799745May 28, 2008Sep 21, 2010The Lubrizol CorporationSlow release lubricant additives gel
US7854837Nov 10, 2008Dec 21, 2010Davco Technology, LlcFilter cartridge with pressure relief valve
US7883638May 27, 2008Feb 8, 2011Dober Chemical CorporationUsed in an open circulating cooling water system water and comprises a core having a polymeric coating including an additive for sustained release into the coolant; slow release of a microbiocide by means of a butyl acrylate-vinyl acetate-vinyl neoheptanoate terpolymer release agent
US7938277May 27, 2008May 10, 2011Dober Chemical CorporationControlled release of microbiocides
US8022021Feb 5, 2007Sep 20, 2011The Lubrizol CorporationAsh producing components, ash free components, ashless dispersants, ashless acids, an overbased metal detergent; reduced components of ash, SAPS (low sulfur, low phosphorous and low ash)
US8034145Jun 10, 2005Oct 11, 2011Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US8062399Oct 14, 2009Nov 22, 2011Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US8076273Aug 23, 2010Dec 13, 2011The Lubrizol CorportionSlow release lubricant additives gel
US8109287Jul 22, 2009Feb 7, 2012Cummins Filtration Ip, Inc.Controlled release of additives in fluid systems
US8277532Aug 5, 2005Oct 2, 2012Donaldson Company, Inc.Air filter arrangement; assembly; and methods
US8292983Jan 12, 2006Oct 23, 2012Donaldson Company, Inc.Air filter cartridge and air cleaner assembly
US8299000Oct 31, 2011Oct 30, 2012The Lubrizol CorporationSlow release lubricant additives gel
US8328897Nov 21, 2011Dec 11, 2012Donaldson Company, Inc.Air cleaner arrangement; assembly; and, methods
US8388838 *Aug 25, 2009Mar 5, 2013Fram Group Ip LlcAdditive dispersing filter and method of making
US8425772Jul 29, 2011Apr 23, 2013Cummins Filtration Ip, Inc.Filtration device with releasable additive
US8480779 *Oct 7, 2011Jul 9, 2013Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US8496723Jan 12, 2006Jul 30, 2013Donaldson Company, Inc.Air filter arrangement
US8574430Sep 17, 2010Nov 5, 2013Davco Technology, LlcFilter assembly with modular relief valve interface
US8591747May 26, 2009Nov 26, 2013Dober Chemical Corp.Devices and methods for controlled release of additive compositions
US8636820Jul 29, 2013Jan 28, 2014Donaldson Company, Inc.Air filter arrangement
US8702995May 27, 2008Apr 22, 2014Dober Chemical Corp.Controlled release of microbiocides
US8709119Sep 14, 2012Apr 29, 2014Donaldson Company, Inc.Air filter cartridge and air cleaner assembly
US20110048857 *Sep 1, 2009Mar 3, 2011Caterpillar Inc.Lubrication system
USRE37165 *Aug 9, 1999May 8, 2001Davco Manufacturing L.L.C.Fuel filter assembly
DE3019141A1 *May 20, 1980Jul 16, 1981Tecnocar SpaOelfilter fuer verbrennungsmotoren
DE10029539A1 *Jun 15, 2000Dec 20, 2001Mann & Hummel FilterFilter mit ringförmig ausgebildetem Filtermedium
DE10029539B4 *Jun 15, 2000Dec 13, 2012Mann + Hummel GmbhFilter mit ringförmig ausgebildetem Filtermedium
DE102013000337A1Jan 11, 2013Jul 17, 2014Mann + Hummel GmbhFiltereinrichtung
EP0889115A2 *Jul 2, 1998Jan 7, 1999Toyota Jidosha Kabushiki KaishaAn engine oil deterioration preventing agent and device
WO1994000677A1 *Jun 29, 1993Jan 6, 1994Anatoly Ivanovi BelotserkovetsDevice providing for tribochemical regime in lubrication system of mechanism
WO1994015077A1 *Aug 9, 1993Jul 7, 1994Dmitry Nesterovich GlebovskyDevice for creating a tribochemical regime in a lubrication system for a mechanical device
WO1996020368A1 *Dec 26, 1994Jul 4, 1996Eduard Borisovich AkhnazarovDevice for establishing a tribochemical operating mode in a mechanism lubrication system
WO2003018163A1 *Aug 16, 2002Mar 6, 2003Thomas BlakemoreControlled release of additives in fluid systems
WO2014108260A1 *Dec 9, 2013Jul 17, 2014Mann+Hummel GmbhFilter device
Classifications
U.S. Classification210/205, 210/501, 210/502.1
International ClassificationC10M177/00, B01D37/00, B01D37/02, C10M175/00
Cooperative ClassificationC10M177/00, C10M175/0091, B01D37/025
European ClassificationB01D37/02B, C10M177/00, C10M175/00Z