US3752460A - Oxygen trap scarfing apparatus - Google Patents

Oxygen trap scarfing apparatus Download PDF

Info

Publication number
US3752460A
US3752460A US00227147A US3752460DA US3752460A US 3752460 A US3752460 A US 3752460A US 00227147 A US00227147 A US 00227147A US 3752460D A US3752460D A US 3752460DA US 3752460 A US3752460 A US 3752460A
Authority
US
United States
Prior art keywords
oxygen
scarfing
preheat
ports
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00227147A
Inventor
T Lytle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
L-Tec Co
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Application granted granted Critical
Publication of US3752460A publication Critical patent/US3752460A/en
Assigned to L-TEC COMPANY reassignment L-TEC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: UNION CARBIDE CORPORATION
Assigned to SECURITY PACIFIC BUSINESS CREDIT INC., A DE CORP. reassignment SECURITY PACIFIC BUSINESS CREDIT INC., A DE CORP. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: L-TEC COMPANY A NY LIMITED PARTNERSHIP
Assigned to L-TEC COMPANY reassignment L-TEC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: UNION CARBIDE CORPORATION, A CORP OF NY.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K7/00Cutting, scarfing, or desurfacing by applying flames
    • B23K7/06Machines, apparatus, or equipment specially designed for scarfing or desurfacing

Definitions

  • ABSTRACT The time required for scarfing the surface of a metal body is decreased by shortening the preheating time. This is accomplished by directing a row of trap" oxygen streams from ports located above the upper preheat fuel gas ports so that the oxygen streams form a plane which intersects the surface of the metal body in such way as to form a wedge shaped pocket to confine the burning preheating gases. This results in faster puddle formation and causes the puddle to be formed at a location just ahead of the projected converging point of the fuel and oxygen gas streams, rather than in back of the converging point where it would be formed by prior art methods.
  • This invention relates to the thermochemical conditioning of ferrous metal bodies, commonly referred to as scarfing; and more particularly to apparatus capable of decreasing the time required for a complete scarfing cycle with post-mixed, fuel-oxygen preheat gas scarfing units by decreasing the time required for preheating the metal workpiece to be scarfed.
  • the present invention is applicable to scarfing of hot as well as cold metal workpieces.
  • a scarfing reaction is caused to take place by first raising the temperature of the metal surface to be scarfed to the ignition temperature of the metal in an oxygen atmosphere. This temperature, which may be lower than the melting point of the metal in air, is referred to as the reaction temperature. When the reaction temperature is reached, a puddle of molten metal is formed. The metal is removed that is, the thermochemical scarfing reaction is caused to take place by impinging a stream of oxygenon the puddle. In other words, in order to initiate a scarfing reaction a puddle must be formed before the scarfing oxygen stream can be turned on for the thermochemical scarfing reaction to begin.
  • a complete scarfing cycle consists of four steps. First, the workpiece is positioned in register with the scarfing machine. Second, the scarfing units are closed,
  • preheating of the workpiece is caused to take place by means of fuel-oxygen preheat flames so that a puddle of molten metal is formed on the stationary workpiece; and fourth, the scarfing reaction is carried out by initiating the flow of scarfing oxygen and setting the workpiece in motion. For example, when scarfing a 30 foot slab at 2,000F,-positioning takes about 3 seconds, closing about 5 seconds, preheating about seconds, and
  • the time required for a complete scarfing cycle results in a scarfing rate or speed that is in some cases slower than the rate at which steel is rolled in a conventional mill. It is therefore desirable to decrease the time required to complete a scarfing cycle in order that the scarfing operation keep up with the production of the mill. Reduction in scarfing time may obviously be accomplished by reducing'the time required for any of the above mentioned four steps which take place during a complete scarfing cycle. Since positioning and closing require a total of only about 8 seconds, the amount of improvement possible in these two steps is relatively small. Consequently, the logical steps to shorten in order to improve the speed of a scarfing cycle are the preheating and/or scarfing steps.
  • preheating time fails to improve. For example, if
  • FIG. 1 is a side elevation of a scarfing unit according to the present invention which is provided with a row of trap oxygen orifice ports located in the upper preheat block above the row of preheat fuel gas ports.
  • the upper and lower preheat fuel gas streams l1 and 12 in FIG. 1, as well as the scarfing oxygen stream 9 emanating from the central slot 8 are all directed so that their straight line projections converge at point A on the surface of the workpiece W.
  • the puddle 20 forms not at the point A, but rather in back of it by several inches at point B. Consequently, it has been necessary, in accordance with prior art practice, as shown for example in U.S. Pat. No.
  • the oxygen curtain or plane above the preheat fuel gas streams formed by the trap oxygen streams causes a wedge shaped pocket to be formed between itself and the surface of the metal being scarfed.
  • oxygen curtain is formed by a parallel row of oxygen ports 23 located above the row of upper preheat block fuel gas ports 15.
  • High velocity fuel gas from both upper and lower preheat blocks 1 and 2 is directed into the pocket, becoming trapped in the pocket and consequently forced to mix intimately with the oxygen 9 emanating from the continuous slot 8.
  • the oxygen curtain provides a two-fold effect; first, it acts as a physical barrier to contain or trap the fuel and oxygen preheat gases causing them to burn in place; and second it permits an increase in the total amount of oxygen, thereby causing a hotter flame to be produced.
  • the combination of these two effects improved heat transfer to the workpiece and concentrates the heat at a particular spot.
  • the scarfing unit is comprised of an upper preheat block 1, a lower preheat block 2, a head 3 and a shoe 4 which rides on skids 6.
  • the lower surface 6 of upper preheat block 1 and the upper surface 7 of lower preheat. block 2 form a continuous slot passage 8 for the oxygen stream 9.
  • the rear end 10 of oxygen passage 8 communicates with an oxygen supply manifold 25, to which the supply of oxygen is controlled by valve 26.
  • passage 8 is used to provide oxygen for combustion of the upper and lower preheat fuel gas streams 11 and 12. After the puddle 13 has been formed, the oxygen flow in stream 9 is increased to provide sufficient oxygen for the scarfing reaction.
  • Upper preheat block 1 is provided with a plurality of preheat fuel gas passages 14 which terminate at the front face of the preheat block 1 in a row of fuel gas ports 15.
  • Gas passages 14 communicate with a fuel gas header 24 located in head 3 from which they receive their supply of fuel gas.
  • Natural gas is the preferred fuel gas; however, other fuel gases may also be employed such as, for example, methane,propane or coke oven gas.
  • Lower preheat block 2 contains a plurality of fuel gas passages 17 which communicate with and receive a supply of fuel gas from header 18 located in head 3. Passages 17 terminate at the front face of the lower preheat block 2 in a row of lower preheat fuel gas ports 19.
  • Both the upper preheat fuel gas ports 15 and the lower preheat fuel gas ports 19 are directed so that the straight line projections of the gas streams 11 and 12 emanating therefrom will converge with the straight line projection of the sheet-like stream of oxygen 9 at the converging point A on the surface of the metal workpiece W. Due to the aerodynamic effect of the hot gas streams as previously explained, the puddle 20 is formed upon the surface of the workpiece W at point B by prior art methods, i.e., without the use of the trap oxygen stream 21.
  • the upper preheat block 1 is provided with a plurality of oxygen passages 22 which terminate at the front face of said preheat block in a row of trap" oxygen ports 23.
  • Oxygen is supplied to passages 22 from an oxygen header 16 located in head 3.
  • the trap oxygen streams 21 emanating from ports 23 are also directed to converge with the fuel gas stream projections 11 and 12 and oxygen stream projection 9 at point A.
  • the plane formed by the plurality of trap oxygen streams 21 forms a wedge shaped pocket between itself and the surface of the workpiece W to confine the preheating gas streams 11 and 12 and the oxygen stream 9 thereby improving heat transfer to workpiece W and concentration of the heat within the wedge shaped pocket formed thereby.
  • the trap oxygen flow may be kept on, shut off completely, or lowered just to bleed slightly in order to prevent ports 23 from becoming plugged by the splatter of molten metal and slag. This can be effectuated by adjustment of valve 26 or other conventional flow control means. Keeping the trap oxygen on at full flow rates during the scarfing step has not been found to produce any beneficial results.
  • FIG. 3 is a graph comparing preheating time using a post-mixed fuel-oxygen scarfing unit of the prior art with a unit in accordance with the present invention containing a row of trap oxygen ports above the upper preheat fuel gas ports to provide the oxygen curtain of the present invention.
  • the flow rates of preheat fuel gas (natural gas) were approximately 3,500 C.F.H. in both cases.
  • the total amount of oxygen was likewlse thesame in both cases, i.e., about 7,500 C.F.H.
  • the distribution of the oxygen was different.
  • the significance of the faster preheat time obtained in accordance with this invention is that it improves the prehating time at 2,000F, for example, by about 7 seconds, thereby cutting the scarfing cycle described previously from 38 seconds to about 30 seconds. This is an improvement of over 20 percent in the scarfing cycle and is sufficient to enable the scarfing machine to keep up with a higher production rate than was formerly possible. It should be noted that the present Invention also provides a saving in preheating time by elimination of the need for backing up the workpiece or scarfing unit prior to initiation of the scarfing oxygen reaction, in addition to the shortening of the preheating time as shown in FIG. 3.
  • a continuous slot, post-mixed fuel-oxygen scarfing apparatus wherein said slot is formed between an upper preheat block and a lower preheat block which are in spaced relation to one another, wherein means are provided for controllably discharging a sheet-like stream of oxidizing gas through said slot for reacting with a metal surface to be scarfed as well as for burning preheat fuel gas, and wherein said scarfing apparatus is provided with a row of ports communicating with supply passages for discharging a plurality of parallel streams of preheat fuel gas from at least the upper preheat block to converge with said stream of oxidizing gas, the improvement comprising: a row of oxygen ports located in said upper preheat block above said row of fuel gas ports communicating with oxygen supply passages, means for controlling the flow of oxygen through said oxygen supply passages independently of the flow of said sheet-like stream of oxidizing gas, said row of oxygen ports being capable of discharging a plurality of parallel streams of oxygen gas which form a sheet-like oxygen gas curtain, said oxygen ports

Abstract

The time required for scarfing the surface of a metal body is decreased by shortening the preheating time. This is accomplished by directing a row of ''''trap'''' oxygen streams from ports located above the upper preheat fuel gas ports so that the oxygen streams form a plane which intersects the surface of the metal body in such way as to form a wedge shaped pocket to confine the burning preheating gases. This results in faster puddle formation and causes the puddle to be formed at a location just ahead of the projected converging point of the fuel and oxygen gas streams, rather than in back of the converging point where it would be formed by prior art methods.

Description

[451 Aug. 14, 1973 OXYGEN TRAP SCARFING APPARATUS [75] Inventor: Thomas James Lytle, West Orange,
[73] Assignee: Union Carbide Corporation, New
York, N.Y.
[22] Filed: Feb. 17, 1972 [21] Appl. No.: 227,147
Related U.S. Application Data [63] Continuation of Ser. No. 836,233, June 25, 1969, Pat.
Primary Examiner-Gerald A. Dost Attorney-Paul A. Rose et a1.
[5 7] ABSTRACT The time required for scarfing the surface of a metal body is decreased by shortening the preheating time. This is accomplished by directing a row of trap" oxygen streams from ports located above the upper preheat fuel gas ports so that the oxygen streams form a plane which intersects the surface of the metal body in such way as to form a wedge shaped pocket to confine the burning preheating gases. This results in faster puddle formation and causes the puddle to be formed at a location just ahead of the projected converging point of the fuel and oxygen gas streams, rather than in back of the converging point where it would be formed by prior art methods.
2 Claims, 3 Drawing Figures PAIENIEDAus 14 ms 3.752.460
MINIMUM! 1 1 1mm n4 STEEL TEMPERATURE DEG. F
5&3, PEHEAT THME -sEc.
This is a continuation of copending application Ser. No. 836,233 filed June 25, 1969, now U.S. Pat. No. 3,647,570 issued Mar. 7, 1972.
BACKGROUND This invention relates to the thermochemical conditioning of ferrous metal bodies, commonly referred to as scarfing; and more particularly to apparatus capable of decreasing the time required for a complete scarfing cycle with post-mixed, fuel-oxygen preheat gas scarfing units by decreasing the time required for preheating the metal workpiece to be scarfed. The present invention is applicable to scarfing of hot as well as cold metal workpieces.
According to present post-mixed scarfing practice, as exemplified by U.S. Pat. No. 3,231,431, a scarfing reaction is caused to take place by first raising the temperature of the metal surface to be scarfed to the ignition temperature of the metal in an oxygen atmosphere. This temperature, which may be lower than the melting point of the metal in air, is referred to as the reaction temperature. When the reaction temperature is reached, a puddle of molten metal is formed. The metal is removed that is, the thermochemical scarfing reaction is caused to take place by impinging a stream of oxygenon the puddle. In other words, in order to initiate a scarfing reaction a puddle must be formed before the scarfing oxygen stream can be turned on for the thermochemical scarfing reaction to begin.
A complete scarfing cycle consists of four steps. First, the workpiece is positioned in register with the scarfing machine. Second, the scarfing units are closed,
either automatically or manually, around all the sides of the workpiece which are to be scarfed. Third, preheating of the workpiece is caused to take place by means of fuel-oxygen preheat flames so that a puddle of molten metal is formed on the stationary workpiece; and fourth, the scarfing reaction is carried out by initiating the flow of scarfing oxygen and setting the workpiece in motion. For example, when scarfing a 30 foot slab at 2,000F,-positioning takes about 3 seconds, closing about 5 seconds, preheating about seconds, and
scarfing the length of the slab about seconds. Thus, the total scarfing cycle for the 30 foot slab requires approximately 38 seconds.
The time required for a complete scarfing cycle results in a scarfing rate or speed that is in some cases slower than the rate at which steel is rolled in a conventional mill. It is therefore desirable to decrease the time required to complete a scarfing cycle in order that the scarfing operation keep up with the production of the mill. Reduction in scarfing time may obviously be accomplished by reducing'the time required for any of the above mentioned four steps which take place during a complete scarfing cycle. Since positioning and closing require a total of only about 8 seconds, the amount of improvement possible in these two steps is relatively small. Consequently, the logical steps to shorten in order to improve the speed of a scarfing cycle are the preheating and/or scarfing steps.
The seemingly simple expedient of increasing the flows of fuel and oxygen to decrease preheating time and increase scarfing speed, does not work. If greater than normal quantities of either fuel or oxygen are supplied, preheating time fails to improve. For example, if
more fuel gas than conventionally used is provided, it
tends to pinch off the supply of oxygen to the workpiece with a consequent decrease in heating capacity, thereby slowing down the preheating reaction. Similarly, increasing the preheating oxygen decreases the heating potential of the upper preheat flames by plac ing an intervening layer of cold oxygen between the upper preheat flames and the workpiece. Additionally, the increased oxygen acts as a cooling medium which draws heat from the workpiece. The simultaneous and proportional increase inboth preheat fuel gas and oxygen offers little improvement, since the excess amounts of oxygen and fuel cannot be mixed and burned efficiently in a post-mixed system.
THE DRAWINGS In the drawings:
FIG. 1 is a side elevation of a scarfing unit according to the present invention which is provided with a row of trap oxygen orifice ports located in the upper preheat block above the row of preheat fuel gas ports.
mize heat input into the workpiece at the reaction zone, the upper and lower preheat fuel gas streams l1 and 12 in FIG. 1, as well as the scarfing oxygen stream 9 emanating from the central slot 8, are all directed so that their straight line projections converge at point A on the surface of the workpiece W. However, due to the aerodynamics of the system, caused by the flow of hot reacting gases and cooling from the surrounding area, as well as the pressure drop caused by the flow of high velocity gases, the puddle 20 forms not at the point A, but rather in back of it by several inches at point B. Consequently, it has been necessary, in accordance with prior art practice, as shown for example in U.S. Pat. No. 3,322,578, to back up the scarfing unit or the workpiece (in a direction opposite to the arrow) by several inches before the scarfing oxygen stream was turned on, so that when it was turned on, the scarfing oxygen stream would impinge upon the puddle rather than ahead of it. This backing up of either the scarfing unit or workpiece between preheating and starting of the scarfing reaction has been responsible in part for the excessive time required for preheating.
OBJECTS It is the primary object of this invention to decrease the time required for a complete scarfing cycle.
It is another object of this invention to decrease the time required to preheat the workpiece prior to initia tion of the scarfing reaction.
It is still another object to avoid the necessity for backing up the scarfing unit or workpiece before scarfing oxygen is turned on.
SUMMARY OF THE INVENTION These and other objects, which will become apparent heat block and a lower preheat block which are in spaced relation to one another, wherein means are provided for controllably discharging a sheet-like stream of oxidizing gas through said slot for reacting with a metal surface to be scarfed as well as for burning preheat fuel gas, and wherein said scarfing apparatus is provided with a row of portscommunicating with supply passages for discharging a plurality of parallel streams of preheat fuel gas from at least the upper preheat block to converge with said stream of oxidizing gas, the improvement comprising: a row of oxygen ports located in said upper preheat block above said row of fuel gas ports communicating with oxygen supply passages, means for controlling the flow of oxygen through said oxygen supply passages independently of the flow of said sheet-like stream of oxidizing gas, said row of oxygen ports being capable of discharging a plurality of parallel streams of oxygen gas which form a sheet-like oxygen gas curtain, said oxygen ports being directed at the converging points of the straight line projections of the oxidizing gas and fuel gas streams so as to cause the oxygen curtain streams emanating therefrom to form a wedge shaped pocket between the planes formed by said curtain oxygen stream and the surface of said metal body, thereby confining the fuel and oxidizing gases discharged from their respective ports.
DETAILED DESCRIPTION OF THE INVENTION The oxygen curtain or plane above the preheat fuel gas streams formed by the trap oxygen streams causes a wedge shaped pocket to be formed between itself and the surface of the metal being scarfed. The
oxygen curtain is formed by a parallel row of oxygen ports 23 located above the row of upper preheat block fuel gas ports 15. High velocity fuel gas from both upper and lower preheat blocks 1 and 2 is directed into the pocket, becoming trapped in the pocket and consequently forced to mix intimately with the oxygen 9 emanating from the continuous slot 8. This permits considerable improvement to be made in preheat'time by increasing the flows of fuel and oxygen that can be adequately mixed for combustion while precisely fixing the location of the puddle at the point where it is desired.
The oxygen curtain provides a two-fold effect; first, it acts as a physical barrier to contain or trap the fuel and oxygen preheat gases causing them to burn in place; and second it permits an increase in the total amount of oxygen, thereby causing a hotter flame to be produced. The combination of these two effects improved heat transfer to the workpiece and concentrates the heat at a particular spot.
An unexpected but very beneficial result of this invention is that the molten puddle is formed not at point B behind point A, but rather at point C forward of point A. As a result of the fact that point C is just ahead of the projection of the scarfing oxygen stream 9, backing up of the workpiece or scarfing unit prior to starting of the cutting oxygen flow is eliminated. This, in turn, provides additional beneficial results in the speed of preheating.
Reference to FIGS. 1 and 2 will show that the scarfing unit is comprised of an upper preheat block 1, a lower preheat block 2, a head 3 and a shoe 4 which rides on skids 6. The lower surface 6 of upper preheat block 1 and the upper surface 7 of lower preheat. block 2 form a continuous slot passage 8 for the oxygen stream 9. The rear end 10 of oxygen passage 8 communicates with an oxygen supply manifold 25, to which the supply of oxygen is controlled by valve 26. During preheating, passage 8 is used to provide oxygen for combustion of the upper and lower preheat fuel gas streams 11 and 12. After the puddle 13 has been formed, the oxygen flow in stream 9 is increased to provide sufficient oxygen for the scarfing reaction. Upper preheat block 1 is provided with a plurality of preheat fuel gas passages 14 which terminate at the front face of the preheat block 1 in a row of fuel gas ports 15. Gas passages 14 communicate with a fuel gas header 24 located in head 3 from which they receive their supply of fuel gas. Natural gas is the preferred fuel gas; however, other fuel gases may also be employed such as, for example, methane,propane or coke oven gas. Lower preheat block 2 contains a plurality of fuel gas passages 17 which communicate with and receive a supply of fuel gas from header 18 located in head 3. Passages 17 terminate at the front face of the lower preheat block 2 in a row of lower preheat fuel gas ports 19. Both the upper preheat fuel gas ports 15 and the lower preheat fuel gas ports 19 are directed so that the straight line projections of the gas streams 11 and 12 emanating therefrom will converge with the straight line projection of the sheet-like stream of oxygen 9 at the converging point A on the surface of the metal workpiece W. Due to the aerodynamic effect of the hot gas streams as previously explained, the puddle 20 is formed upon the surface of the workpiece W at point B by prior art methods, i.e., without the use of the trap oxygen stream 21.
In accordance with the present invention, the upper preheat block 1 is provided with a plurality of oxygen passages 22 which terminate at the front face of said preheat block in a row of trap" oxygen ports 23. Oxygen is supplied to passages 22 from an oxygen header 16 located in head 3. The trap oxygen streams 21 emanating from ports 23 are also directed to converge with the fuel gas stream projections 11 and 12 and oxygen stream projection 9 at point A. The plane formed by the plurality of trap oxygen streams 21 forms a wedge shaped pocket between itself and the surface of the workpiece W to confine the preheating gas streams 11 and 12 and the oxygen stream 9 thereby improving heat transfer to workpiece W and concentration of the heat within the wedge shaped pocket formed thereby. It has been found that when the trap" oxygen stream 21 is used, the puddle 13 is formed at point C just ahead of converging point A, rather than at point B where it would have been formed without the use of the trap oxygen streams. This is apparently caused by the change in the flow dynamics of the system resulting from use of the trap oxygen streams. In other words, due to the aerodynamics of the system, the streams of fuel gas and oxygen do not follow the straight lined projections 9, l1, l2 and 21, but rather follow a path indicated generally by flow lines F. Consequently, when the scarfing reaction is to begin, after puddle 13 has been formed at point C, the oxygen stream 9 is simply increased to the flow rate required for scarfing by adjustment of valve 27 or other conventional flow control means, and the workpiece W is then set in motion toward the right as indicated by the direction of the arrow, without the need for backing up the workpiece or scarfing unit. This would have been necessary had the puddle been formed at point B, in order that the scarfing reaction might begin by having the scarfing oxygen stream 9 impinge upon the puddle. After the preheat step has been completed, and the scarfing reaction started, the trap oxygen flow may be kept on, shut off completely, or lowered just to bleed slightly in order to prevent ports 23 from becoming plugged by the splatter of molten metal and slag. This can be effectuated by adjustment of valve 26 or other conventional flow control means. Keeping the trap oxygen on at full flow rates during the scarfing step has not been found to produce any beneficial results.
FIG. 3 is a graph comparing preheating time using a post-mixed fuel-oxygen scarfing unit of the prior art with a unit in accordance with the present invention containing a row of trap oxygen ports above the upper preheat fuel gas ports to provide the oxygen curtain of the present invention. The flow rates of preheat fuel gas (natural gas) were approximately 3,500 C.F.H. in both cases. The total amount of oxygen was likewlse thesame in both cases, i.e., about 7,500 C.F.H. However, the distribution of the oxygen was different. In the case of the prior art scarfing unit, all of the oxygen was discharged through the center slot, while in the case of the scarfing unit of the present invention, approximately half of the oxygen was discharged through the center slot and the other half through the trap oxygen ports. It can be seen from the graph that preheating time depends upon the temperature of the steel work surface and that the hotter the work surface, the shorter the preheating time. Curve X shows the results obtained in using a scarfing unit of the present invention, while curve Y shows the results obtained using a standard post-mixed scarfing unit of the prior art. Comparison of curves X and Y shows that at steel temperature of 2,000F, it required only about 3 seconds to preheat the workpiece in accordance with the present invention, whereas it required seconds to preheat the workpiece WiJh the prior art unit. This constitutes a reduction of about 7 seconds, or better than a three fold improvement. A similar result can be observed at 1,500F where it required about 5 seconds to preheat in accordance with the present invention, whereas it required about 27 seconds with the prior art unit.
The significance of the faster preheat time obtained in accordance with this invention is that it improves the prehating time at 2,000F, for example, by about 7 seconds, thereby cutting the scarfing cycle described previously from 38 seconds to about 30 seconds. This is an improvement of over 20 percent in the scarfing cycle and is sufficient to enable the scarfing machine to keep up with a higher production rate than was formerly possible. It should be noted that the present Invention also provides a saving in preheating time by elimination of the need for backing up the workpiece or scarfing unit prior to initiation of the scarfing oxygen reaction, in addition to the shortening of the preheating time as shown in FIG. 3.
.What is claimed is:
1. In a continuous slot, post-mixed fuel-oxygen scarfing apparatus wherein said slot is formed between an upper preheat block and a lower preheat block which are in spaced relation to one another, wherein means are provided for controllably discharging a sheet-like stream of oxidizing gas through said slot for reacting with a metal surface to be scarfed as well as for burning preheat fuel gas, and wherein said scarfing apparatus is provided with a row of ports communicating with supply passages for discharging a plurality of parallel streams of preheat fuel gas from at least the upper preheat block to converge with said stream of oxidizing gas, the improvement comprising: a row of oxygen ports located in said upper preheat block above said row of fuel gas ports communicating with oxygen supply passages, means for controlling the flow of oxygen through said oxygen supply passages independently of the flow of said sheet-like stream of oxidizing gas, said row of oxygen ports being capable of discharging a plurality of parallel streams of oxygen gas which form a sheet-like oxygen gas curtain, said oxygen ports being directed at the converging point of the straight line projections of the oxidizing gas and fuel gas streams so as to cause the oxygen curtain streams emanating therefrom to form a wedge shaped pocket between the planes formed by said curtain oxygen stream and the surface of said metal body, thereby confining the fuel and oxidizing gases discharged from their respective ports.
2. The scarfing apparatus of claim 1 wherein said lower preheat block also is provided with a row of ports communicating with supply passages for discharging a plurality of parallel streams of preheat fuel gas.
Disclaimer i 3,752,460.-Th0mas James Lytle, West Orange, NJ. OXYGEN TRAP SCARFING APPARATUS. Patent dated Aug. 14, 197 3. Disclaimer filed June 6, 1978 by the assignee, Union Carbide Gowpomton.
1 Hereby disclaims the portion of the term of the patent subsequent to Mar. 7, 1989.
[Ofiicz'al Gazette 002507267 23, 1973.]

Claims (2)

1. In a continuous slot, post-mixed fuel-oxygen scarfing apparatus wherein said slot is formed between an upper preheat block and a lower preheat block which are in spaced relation to one another, wherein means are provided for controllably discharging a sheet-like stream of oxidizing gas through said slot for reacting with a metal surface to be scarfed as well as for burning preheat fuel gas, and wherein said scarfing apparatus is provided with a row of ports communicating with supply passages for discharging a plurality of parallel streams of preheat fuel gas from at least the upper preheat block to converge with said stream of oxidizing gas, the improvement comprising: a row of oxygen ports located in said upper preheat block above said row of fuel gas ports communicating with oxygen supply passages, means for controlling the flow of oxygen through said oxygen supply passages independently of the flow of said sheet-like stream of oxidizing gas, said row of oxygen ports being capable of discharging a plurality of parallel streams of oxygen gas which form a sheet-like oxygen gas curtain, said oxygen ports being directed at the converging point of the straight line projections of the oxidizing gas and fuel gas streams so as to cause the oxygen curtain streams emanating therefrom to form a wedge shaped pocket between the planes formed by said curtain oxygen stream and the surface of said metal body, thereby confining the fuel and oxidizing gases discharged from their respective ports.
2. The scarfing apparatus of claim 1 wherein said lower preheat block also is provided with a row of ports communicating with supply passages for discharging a plurality of parallel streams of preheat fuel gas.
US00227147A 1969-06-25 1972-02-17 Oxygen trap scarfing apparatus Expired - Lifetime US3752460A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US83623369A 1969-06-25 1969-06-25
US22714772A 1972-02-17 1972-02-17

Publications (1)

Publication Number Publication Date
US3752460A true US3752460A (en) 1973-08-14

Family

ID=26921211

Family Applications (1)

Application Number Title Priority Date Filing Date
US00227147A Expired - Lifetime US3752460A (en) 1969-06-25 1972-02-17 Oxygen trap scarfing apparatus

Country Status (1)

Country Link
US (1) US3752460A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850704A (en) * 1972-02-15 1974-11-26 Hilti Ag Scarfing
US3966504A (en) * 1973-05-21 1976-06-29 Centro-Maskin I Goteborg Ab Method and apparatus for thermochemical gas scarfing
US4103877A (en) * 1975-11-08 1978-08-01 Messer Griesheim Gmbh. Device for the flame treatment of a work-piece
US4115154A (en) * 1977-09-26 1978-09-19 Union Carbide Corporation Method and apparatus for producing a post-mixed, stabilized scarfing pre-heating flame
US4243436A (en) * 1979-11-05 1981-01-06 Union Carbide Corporation Instantaneous scarfing by means of a pilot puddle
US4287005A (en) * 1979-11-05 1981-09-01 Union Carbide Corporation Instantaneous scarfing by means of a pilot puddle
WO2011069539A1 (en) * 2009-12-09 2011-06-16 Gesellschaft Für Autogenmaschinen Und -Geräte Mbh Scarfing block assembly
GB2483219A (en) * 2010-08-10 2012-03-07 Harsco Metals Group Ltd Surface Treatment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2622048A (en) * 1950-04-18 1952-12-16 Union Carbide & Carbon Corp External powder scarfing process and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2622048A (en) * 1950-04-18 1952-12-16 Union Carbide & Carbon Corp External powder scarfing process and apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850704A (en) * 1972-02-15 1974-11-26 Hilti Ag Scarfing
US3966504A (en) * 1973-05-21 1976-06-29 Centro-Maskin I Goteborg Ab Method and apparatus for thermochemical gas scarfing
US4103877A (en) * 1975-11-08 1978-08-01 Messer Griesheim Gmbh. Device for the flame treatment of a work-piece
US4115154A (en) * 1977-09-26 1978-09-19 Union Carbide Corporation Method and apparatus for producing a post-mixed, stabilized scarfing pre-heating flame
US4161413A (en) * 1977-09-26 1979-07-17 Union Carbide Corporation Method and apparatus for producing a post-mixed, stabilized scarfing pre-heating flame
US4243436A (en) * 1979-11-05 1981-01-06 Union Carbide Corporation Instantaneous scarfing by means of a pilot puddle
US4287005A (en) * 1979-11-05 1981-09-01 Union Carbide Corporation Instantaneous scarfing by means of a pilot puddle
WO2011069539A1 (en) * 2009-12-09 2011-06-16 Gesellschaft Für Autogenmaschinen Und -Geräte Mbh Scarfing block assembly
GB2483219A (en) * 2010-08-10 2012-03-07 Harsco Metals Group Ltd Surface Treatment
GB2483219B (en) * 2010-08-10 2018-01-10 Harsco Metals Group Ltd Surface Treatment

Similar Documents

Publication Publication Date Title
US3752460A (en) Oxygen trap scarfing apparatus
US3647570A (en) Oxygen trap scarfing method and apparatus
US4161413A (en) Method and apparatus for producing a post-mixed, stabilized scarfing pre-heating flame
US2444900A (en) Blowpipe apparatus
US2845260A (en) Neutral heating with controlled preheat
US2356197A (en) Blowpipe device
US3605255A (en) Method for brazing
US3455747A (en) Thermochemical scarfing method and apparatus
US3426953A (en) Method and apparatus for brazing
US2892224A (en) Heating of dies by internal combustion
US2329211A (en) Continuous heating furnace and method of operating the same
US3022057A (en) Direct-heating oven
US2085811A (en) Method of treating steel ingots and regenerative soaking pit therefor
US2414874A (en) Welding
US3197184A (en) Apparatus for heating metals to high temperatures
US2158095A (en) Regenerative furnace
US2130261A (en) Apparatus for welding
US4103877A (en) Device for the flame treatment of a work-piece
US2388762A (en) Plate burner
US3322578A (en) Thermochemical desurfacing method
US2215577A (en) Deseaming and desurfacing process
US3216867A (en) Thermochemical scarfing process
US2071808A (en) Method and apparatus for fusion welding
US4243436A (en) Instantaneous scarfing by means of a pilot puddle
GB1245274A (en) Method and apparatus for brazing

Legal Events

Date Code Title Description
AS Assignment

Owner name: L-TEC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNION CARBIDE CORPORATION;REEL/FRAME:004436/0460

Effective date: 19850712

Owner name: L-TEC COMPANY, 666 THIRD AVENUE, NEW YORK, NY 100

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UNION CARBIDE CORPORATION;REEL/FRAME:004436/0460

Effective date: 19850712

AS Assignment

Owner name: SECURITY PACIFIC BUSINESS CREDIT INC., A DE CORP.

Free format text: SECURITY INTEREST;ASSIGNOR:L-TEC COMPANY A NY LIMITED PARTNERSHIP;REEL/FRAME:004445/0860

Effective date: 19850716

AS Assignment

Owner name: L-TEC COMPANY, SOUTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNION CARBIDE CORPORATION, A CORP OF NY.;REEL/FRAME:004610/0384

Effective date: 19860828

Owner name: L-TEC COMPANY, EBENEEZER ROAD, POST OFFICE BOX F-6

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UNION CARBIDE CORPORATION, A CORP OF NY.;REEL/FRAME:004610/0384

Effective date: 19860828