Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3755108 A
Publication typeGrant
Publication dateAug 28, 1973
Filing dateAug 12, 1971
Priority dateAug 12, 1971
Publication numberUS 3755108 A, US 3755108A, US-A-3755108, US3755108 A, US3755108A
InventorsCunningham H, Raetzsch C
Original AssigneePpg Industries Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of producing uniform anolyte heads in the individual cells of a bipolar electrolyzer
US 3755108 A
Abstract
A bipolar electrolyzer adapted for the electrolysis of aqueous solutions of alkali metal halides is disclosed, as well as methods of operating the electrolyzer. The electrolyzer includes means to maintain a uniform head of anolyte in all of the individual cells, such as by extending pipe means, external of the cells to minimize current leakage and independent of the feed means, to connect the cells below the level of anolyte in each cell.
Images(9)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent I 119 1 Raetzsch et al.

METHOD OF PRODUCING UNIFORM. ANOLYTE HEADS IN THE INDIVIDUAL CELLS OF A BIPOLAR ELECTROLYZER Inventors: Carl W. Raetzsch; l-Iugh Cunningham, both of Corpus Christi, Tex.

Assignee: PPG Industries, Inc), Pittsburgh, Pa.

Filed: Aug. 12, 1971 Appl. No.: 171,231

Related US. Application Data Continuation-impart of Ser. No. 55,693, July 17, 1970.

US. Cl 204/98, 204/128, 204/255,

- 204/256 Int. Cl.- C0ld 1/06 Field of Search 204/98,'99, 100,

References Cited UNITED STATES PATENTS 3,553,088, 1/1971 Grotheeret'al; 204/98 3,247,090. 4/1966 Forbes 204/255 3,236,760 2/1966 Messner..'. 204/l28 3,324,023 6/1967 Kircher... ..204/2ss Primary Examiner.lohn H. Mack Assistant Examiner-W. 1. Solomon Attorney-Chisholm & Spencer 57 ABSTRACT A bipolar electrolyzer adapted for the electrolysis of aqueous solutions of alkali metal halides is disclosed, as

' well as methods of operating the electrolyzer. The electrolyzer includesmeans to maintain a uniform head of anolyte in all of the individual cells, such-as by extending pipe means, external of the cells to-minirnize current leakage and independent of the feed means, to connect the cells below-the level of anolyte in each cell.

2 Claims, 17 Drawing Figures Patented Aug. 28, 1973 9 Sheets-Sheet 2 we we FIG. 2

INVENTOR M mm 5 m WM Qwm mm M c W aw 9 Sheets-Sheet 3 I25 Pf FIG. 3

INVENTORS BY :4. 4 a

ATTORNEY Pa tented Aug. 28, 1973 9 Sheets-Sheet 4 g 4 I86 IZ7 I25 INVENTORY HUGH cum/Mama! FIG. l3

ATTORNEY- Patented Aug. 28,1973 7 7 3,755,108

9 Sheets-Sheet '7 INVENTORY CARL W- RAETZSCH HUG/l CUMW/W/MM v WWW ATTORNEY Patented Aug; 28, 1973 3,755,108 v 9 Sheets-Sheet a |H xr- M4 PN 11 u n u 1| u' 17] Flo. IO

Flo.

INVENTORf 2 can w- EAETZSCH m HUGH cu/w/Mamm Mwm ATTORNEY S 9 Sheets-Sheet 9 Patented Aug. 28, 1973 INVENTORS CARL w. ,PAETZJZH f/UGH CUNNINGHAM ji a,

ATTORNEY! 1. METHOD OF PRODUCING UNIFORM ANOLYTE, IIEADS IN THE INDIVIDUAL CELLSOF Av BIPOLAR ELECTROLYZER CROSS-REFERENCE TO RELATED APPLICATION This is a continuation-impart of our.copending U.S.

application Ser. No. 55,693, filedJuly I7, 1970.

BACKGROUND OF THEINVENTION.

partment. These two compartments areseparated .by a,

semi-permeable diaphragm, typicallyv of asbestos.

Diaphragm cellsmay be electrically connected in series in a common housing with the anodesof one. dia-. phragm cell beingelectrically in series with thecathw odes of the prior cell in the circuit and mounted. on the opposite side of a common structural member (e.g., a

backplate)-therewith, andthecathodes of the cell being in series with the anodes of the next adjacent cellin the circuit and mountedon a common structural member. Such a configuration is called a. bipolar configuration. An assembly of diaphragm cells in bipolar configuration, the anode of one cell beingelectrically in series with and physically connected to the cathode of the next adjacent cell by means of -a common. structural member within the electrolyzer, is called an electrolyzer.

The common member, having a backplate with both the anodes of one cell and, the cathodes of the next adjacent cell in the series connected thereto, is called a bipolar unit.

The assembly provided by the anodes of one bipolar unit interleaved with the cathodes of the adjcaent bipolar .unit and facing each other so that electrolysis of alkali metabchloride solutions surrounding these anodes and cathodes may be carried out therebetween, is called a bipolar cell.

Bipolarelectrolyzers are described in Mantell, Electrochemical Engineering, (4th Ed.), McGraw-Hill Book Co., Inc., New York, N.Y. (1960), and in Kircher, Electrolysis of Brines in Diaphragm Cells in Sconce, Chlorine, Reinhold Publishing Corp., New York,- N.Y. (I962). Bipolar electrolyzers of the prior art are shown in U. S. Pat. No. 1,907,818 to R. M. I-Iunte.r, U. S. Pat. No. 2,161,166 to R. M. Hunter, U. S. Pat. No. 2,282,058 to R. M. Hunter, U. S. Pat. No. 2,858,263 to J. L. Lucas .et al., and U. 5'. Pat. No. 3,337,443 to Raetzsch et aI.

SUMMARY OF INVENTION Furthermore, the time lost for maintenance and repairs, as well as the cost of maintenance and repairs, should be minimized.

' Economies of operationmay beobtained by operating athigh anodev currentdensities; for example, above aboutlZS-Amperes per square foot of anodic surface; Additionally, the current per; square. foot of-backplate areashouldgbe high, typically above about l,250-A'mperes per square foot of backplat e.

Economiesmayalso bev obtained by minimizing electrolyte-seepage. into the backplate. This maybe accom.-, plished .by providingv a .backplate having substantially; continuous anodic and cathodic surfaces, that-is,.an-

odic and cathodic surfacesthat do not have anybreaks, breaches, or discontinuities. In such abackplate separate, electrically-conductive structures 'breach'ingthe. backplate. toyprovide. both mechanical andelectrical connection between the-anodesand the cathodes are. eliminated: In [a bipolarunit having-such abackplate,

the. backplate itself. becomes the electricallyconductive structure, and means are provided to minimize the electrical .resistance. between the "anodes and:

cathodes connected :thereto. I

DETAILED DESCRIPTION OF THE INVENTION In the drawingsi FIG.. l'is an. exploded view showing the general arrangement of the interior of an electrolyzer.

FIG. 2 is a partial. cut-away side elevationof .anelectrolyzer. r FIG.,3 is a partial cut-away front elevation of an electrolyzer.

FIG.4 is a partial cut-away plan view of 'an'electro lyzer. I FIG. 5 is an exploded partial cut-away of an individual bipolar unitv FIG. 6.is a cut-away drawmg of a bipolarcell" the electrolyzer taken along planeVI-VI of FIG.. I."

FIG. 6A is an enlarged view of a portion of FIG. 6-

' showing the interface-between an anode base andgan anode bar.

FIG. 6B is an enlarged view of a portion of showing the interfacebetween an anode bar andwthe anodic surface of the backplate.

FIG. 6C is an enlarged view of a portion of FIG. 6

5 showing the interface between the backplate andlthe copper sheet.

FIG. 7 is a cut-away drawing of a cathode. FIG. 8 is one form of an anode that may be used in the electrolyzer of this invention. a

FIG. 9 is another form of an anode that may be used in the electrolyzer of this invention.

FIG. 10 is a side elevation of the supporting structure of the electrolyzer.

FIG. 11 is a plan view of the supporting strucltipre.

shown in FIG. 10.

FIG. 12 showsthe apparatus used in assembling the electrolyzer.

FIG. 13 is a view of the compression means of sealing the electrolyzer takenalong plane XIII-XIII of FIG. 2..

FIG. 14 is a perspective, schematic view of the-electrolyzer showing the equalizer and the individualfcells.

An arrangement of bipolar units forming anelectrical.

series of bipolar cells in an electrolyzer isshownih 9X;

half cell. The intermediate bipolar units 12' and are bipolar units providing both anodic and cathodic half cells.

In addition to the end half units 11 and 14, an electrolyzer will normally include at least one bipolar unit 12 and may be comprised of a plurality (up to 10, or 15, or even more) of bipolar units 12 and 13. Thus, while only two intermediate units are shown in the figures, bipolar diaphragm electrolyzers with any number of bipolar units are included within the comtemplation of this invention, the number of such units being theoretically unlimited and, in fact, being limited only by economic considerations.

The anodes 31 of one bipolar unit 13 are interleaved with and parallel to the cathodes 41 of the adjacent bipolar unit 12. The electrodes are substantially parallel to the side walls 122 and 123 of the electrolyzer, and substantially perpendicular to the top 121 and bottom 124 of the electrolyzer, and to the backplates 21 of the individual bipolar units l1, 12, 13, and 14.

Within such a bipolar cell 17, assembled as described, the electrical current flows from the backplate 21 of biploar unit 13, along the anode 31 attached thereto, in a direction substantially perpendicular to the backplate. The electrical current then flows from the anode 31, to the cathode 41 through the electro-.

lyte, in a direction substantially perpendicular to the electrodes 31 and 41. Finally, the electrical current flows along the cathodes 41 to the backplate 21 of the next bipolar unit 12.

Within such a cell an anode 31 is spaced substantially equidistant from both of the cathodes 41 between which it is interleaved whereby substantially equal inter-electrode gaps are provided. In this way the IR voltage drops for the current flowing from either surface of the anode 31 are substantially equal. The interelectrode gap, that is, the distance measured perpendicular to the electrodes between the anode 31 and the opposite cathode 41, is from about one-fourth inch to about three-fourths inch, and is typically one-half inch. The inter-electrode gap should be narrow enough to minimize the IR voltage drop across the electrolyte between the anode and the adjacent cathode and thereby minimize the resistance heating of the electrolyte. The inner-electrode gaps should, however, be great enough to prevent abrasion or washing off of the diaphragm 101 by the chlorine liberated at the anodes 31.

The pitch of the electrodes, that is, the center-tocenter distance between electrodes of like polarity measured parallel to the top 121, bottom 124, and backplate 21 of the biploar unit, and perpendicular to the plane of the electrodes, is numerically equal to the sum of the thicknesses of one anode and one cathode plus two times the inter-electrode gap. As the pitch of the electrodes is reduced, the number of electrodes per foot of backplate width is increased. In this way, increased current capacity and, therefore, increased chlorine production capacity is provided without increasing either the anode current density or the width of the electrolyzer.

Anodes used in the electrolyzer of this invention are sheet like and made of materials which render them dimensionally stable. That is, they comprise a valve metal having an electroconductive surface thereon. Such dimensionally stable anodes are less than one-half inch in thickness; typically they have a thickness of from about one thirty-second inch to about one-eighth inch. This compares with an anode thickness of from about 1 inch to about l-V4 inches for the carbon anodes used in bipolar electrolyzersof the prior art, exemplified by U. S. Pat. No. 3,337,443 to Raetzsch et al. The use of dimensionally stable anodes allows the pitch of the electrodes to be reduced by about 1 inch from the pitch ofthe electrodes in an electrolyzer having graphite electrodes and results in a pitch of about 136 inches to about 23% inches.

As described above, an electrolyzer is comprised of a plurality of bipolar units. A bipolar unit 12 used in the electrolyzer of this invention is shownin exploded view in FIG. '5 and in cut-away view along plane VI-VI of FIG. 5 in FIG. 6. I

The backplate 21 serves as the partitionbetween the bipolar cells 16 and l7 and as the electrical conductor between the anodes 31 of bipolar cell 16 and the cathodes 41 of bipolar cell 17.

Backplate 21 of bipolar unit 12 comprises a valve metal sheet 22 on the anodic side of the unit 12 and cathodic metal plate 23 on the cathodic side of the unit 12. The valve metal sheet v22 and the cathodic metal plate 23 are joined together to provide the backplate 21. Sheet 22 and plate 23 may be joined by explosive bonding, as described in U. S. Pat. No. 3,137,937 to Cowan et al., by welding with a suitable intermediate, by soldering with suitable soldering fluxes, or by mechanical means such as clamping or bolting. However, in order to minimize the voltage drop across the backplate 21, unless direct electrical connection is provided between the anodes 31 and cathodes 41, as by copper studs, it is particularly important that the contact between the anodic sheet 22 and the cathodic plate 23 be intimate contact. The service life of the backplate 21 may be increased by providing substantially continuous anodic and cathodic surfaces, that is by avoiding any breaches of either the anodic sheet 22 or the cathodic plate 23 on any part of the backplate that is subjected to the electrolyte.

The cathodic plate 23 may be iron, steel, or stainless steel. It may contain carbon and alloying elements as molybdenum, chromium, nickel, cobalt, silicon, vanadium, titanium, zirconium, or niobium. Alternatively, the cathodic plate may be copper plate or any plate resistant to the catholyte. As a matter of terminology, whenever the tenn steel us used herein, it will be understood to include iron and alloys of iron.

The valve metal sheet 22 is fabricated from a metal that forms a protective oxide coating conductive only in the cathodic direction, whereby it is immune from attack by the anolyte. Valve metals include titanium, tantalum, and tungsten. For economic reasons titanium is more frequently used. It will be understood that although reference is usually made herein to sheets of titanium, sheets of other valve metals are also intended.

In electrolyzers of this invention a copper sheet 24 is attached to the steel surface 23 of backplate 21. The copper sheet serves to suppress the migration of atomic hydrogen through the steel plate 23 to the interface between the steel plate 23 and the titanium sheet 22 during electrolysis.

Commonly assigned copending application U. S. Ser. No. 160,339, filed July 7, 1971 of Raetzsch et al. re ELECTROLYTIC CELL described a plurality of expedients for coping with this hydrogen situation. Thus, it discloses that this copper sheet 24 may be in contact with but not bonded to the steel plate 23'and, preferably, will be spaced at least 5 Angstroms from steel plate 23, thereby facilitating the combination of'atomic hydrogen to molecular hydrogen. And, as further described in the above application, an iron or steel sheet may be substituted for the copper sheet. Alternatively,

a protective layer may be applied to the iron plate 23 as described in copending application U. S. Ser; No. 160,339, filed July 7, 1971 et a1. re ELECTROLYTIC CELL. This layer may have. either hydrogen barrier properties, or high hydrogen overvoltage properties (relative to the cathodes 41), or both. Whenever a copper sheet is referred to in this specification, it will be understood that other protective measures may also be used, as an iron or steel sheet or a hydrogen barrier metal coating.

The copper sheet 24 is from about one thirty-second inch to about one-fourth inch thick. In order to prevent the formation of interstitial water within'the copper sheet 24, the copper used therein should have a low oxygen content. Best results are obtained if the copper sheet 24 is fabricated from oxygen free high conductivity coppers, such as sold under the trademard OFI-IC.

The copper sheet 24 isolates that cathodic surface of the steel plate 23 from contact with the catholyte. Various methods of supporting sheet 24 may be used. As shown in FIG. 6C, a space 51 of more than about 5 Angstroms is provided between the steel plate 23 and the copper sheet 24. This space allows any atomic hydrogen diffusing through the copper sheet 24 during electrolysis to recombine into molecular hydrogen before reaching the steel plate 23. As shown in FIG. 6C, the space 51 between the steel plate 23 and the copper plate 24 is vented throughvent 52.

On the surface of the copper plate 24 are copper studs 61. These studs 61 do not breach steel plate 23. They are welded to the steel plate 23 in vertical and horizontal array. The studs are plug welded to plate 23 through opening 65, the plug weld providing electrical contact between stud 61 and iron plate 23 and holding copper sheet 24 against iron plate 23. In this way, the cathodes 41 are mechanically and electrically connected to the backplate 21 without breaking steel plate 23, thereby providing a substantially continuous cathodic surface and minimizing the possibility of catholyte seepage into the backplate. Each stud may carry from 1,000 to 2,000 Amperes from the cathodes 41 to the backplate 21. The studs 61 may be circular and may have vent holes 63 therein. If vent holes 63 are provided, they may comprise about 5 per cent of the total volume of stud 61.

Welded to copper stud 61 in the assembled bipolar unit 12 is copper stud 67. Copper stud 67 is a cylinder wherein surfaces 69 and 71 may be recessed from the leading edge 73 of stud 67. Offset from the central axis of stud 67 may be vent holes 75. While it is preferred in the welding of stud 61 to stud 67 to align vent holes 63 with vent hole 75, this is not essential as the hydrogen flowing through vent hole 75 will not flow into the compartment 76 defined by the recessed surface 71, and leading edge 73 of stud 67 and the surface ofstud 61. From compartment 76 the hydrogen will flow through vent hole 63. From vent hole 63 the molecular hydrogen will diffuse through vent 51.

Welded to the front of studs 67 and electrically connected thereto are steel bars 80, as illustrated in FIGS. 1, 2, 3, 4, 5, and 6.

A- plurality of steel bars.80 are joined to the copper sheet 24. Steel bar hasstuds 67 welded to one face thereof. Welded to the opposite face'of the steel barj80v are the cathodes 41.

The cathodes 41 are shown generally in FIGS. 1, 2, 3, 4, 5, and 6, and with particular detail in FIG. 7. The cathodes 41 have two faces 42 'and 43and are joined together at the top 44, bottom 45, and edge 46 opposite the backplate. The cathodes are typicallyof wire mesh screen. The mesh must be large enough to present a large fraction of openarea for unimpeded migration of the alkali metal ions, but smallenough to be impervious to. the diaphragm during assembly. The wire mesh may be of any electroconductive metal suitable foruse in a cathodicenvironment. A suitable cathode material 6 by 6 mesh three-sixteenths inch doubled, crimped 0.092 inch diameter steel screen. The cathodes typically have an over-all width of from about one-half inch used for each cathode. This sheet of screen is folded iri half thereby forming the leading edge 46 of the cath ode. The top 44 and bottom edges 45 are weldedft'o. gether, resulting in wire-to-wire joints.

Steel plugs 47 are spaced at intervals along the heighth of the cathode between the two sides 42and 43. These plugs 47 are welded to the sides 42 and '43. They provide added rigidity'to the cathodes and-pref vent the collapse of the cathodes while pulling the diaphragm. i

At the open edge 48 of the cathode 41 are a plurality of steel fittings 49. These fittings are welded to the sides 42 and 43 of the cathode. In turn, these fittings49 are welded to the steel cathode bars 80, thereby providing physical and electrical connection between the cathode fingers 41 and the backplate 21.

The cathode backscreen 86 is shown generallyilirt FIGS. 1, 2, 3, and 4, and with particular detail in FIGS. 5 and 6. The backscreen comprises a plurality of back screen elements 86a, 86b, and 86c for example. These elements fit against the cathode fingers 41 and against titanium sheet '22 faces the anolyte. Connected to- 'the titanium sheet 22, typically by welding, are a plurality of titanium bars 32 shown generally in FIGS. 1, 2, 3, and 4 and in further detail in FIG. 6. The anodes, shown generally in FIGS. 1, 2, 3, 4, and 5, are bolted to the bars 32 rather than being bolted directly tothe backplate. This avoids breaching the anodic, sheet and provides a substantially continuous titanium she'et; thereby minimizing the possibility of anolyte seepage" into the backplate.

The anode bars 32 may be fabricated of titanium or of any valve metal. Alternatively, the anode bars may be fabricated of copper or any similarly conductive metal and clad with a valve metal. Alternatively, studs may be substituted for the bars 32.

Electrical current flows from the valve metal sheet 2 of the backplate 21 to the anode bar 32 across the interface therebetween. The electrical current then flows from the anodebar 32 to the base 36 of the anode across the interface therebetween. Each of the interfaces gives rise to a contact resistance.

Under. vigorous conditions of electrolysis, for extended periods of time, the contact resistance can increase. This increase in contact resistance is characterized by the formation of valve metal oxides at the interfaces.

Both the initial contact resistance and the increase of contact resistance with time may be substantially reduced by providing, at the points of electrical contact within the interfaces, electroconductive coatings resistant to oxidation under anodic conditions. In one exemplification, suitable electroconductive coatings are provided by platinizing each surface of the pair of surfaces in contact with each other. In this way platinumplatinum contact 30 is provided between the base 36 of the anode 31 and the anode bar 32 as shown in FIG.

In one exemplification the anode base 36 is connected to the anode bar 32 by means of a bolt 29 and a washer 28. The bolt 29 is typically shorter than the thickness of the anode bar 32 so that the bolt 29 does not breach the valve metal surface 22 of the backplate 21. Typically the bolt 29 and washer 28 are fabricated of the same material as the anode bar 32.

The anodes are shown generally in FIGS. 1, 2, 3, 4, 5, and 6, and in detail in FIGS. 8 and 9. Each anodic element is interleaved between a pair of cathodes as previously described and may have one blade, as shown in FIG. 8, or two blades, as shown in FIG. 9. For most efficient operation, the anode blades 33 should be substantially parallel to the cathode fingers 41. The anode blades may be substantially perpendicular to the backplate if the cathode fingers are straight; or, if the cathode fingers are tapered, the anode blades are parallel to the tapered cathode fingers, thereby forming an acute angle with the backplate.

As described previously, the anode blades may be in the form of a plate or a perforate sheet and are typically from about one thirty-second inch thick to about oneeighth inch thick.

The anode blades may be fabricated of any metal that, when subjected to an anodic medium, forms a protective oxide film conductive in the cathodic direction. Such metals are known as valve metals and include titanium, tantalum, and tungsten. Typically, for reasons of cost and availability, titanium is used. Whenever titanium is referred to, it will be understood that any of the valve metals are interchangeable with it and can be used in its place. An electroconductive surface is applied to the anode blades. The electroconductive surface typically comprises a platinum group metal or metal oxide.

In one exemplification shown generally in FIGS. 1, 2, 3, 4, 5, and 6, and in detail in FIG. 8, the anodes comprise a metal blade 33 having surfaces 34 and 35 and a base 36 for attaching the anode to the anode bar 32. In the exemplification shown in FIG. 8, electroconductive surfaces may be provided on one or both faces 34 and 35 of the anode. Alternatively, the anodic element may be in the form of two perforate or foraminous sheets, as shown in FIG. 9, and may be interposed between a pair of cathodes. In the exemplification shown in FIG. 9, either the pair of faces within the anodic element 34a and 34b or the pair of faces facing the cathodes 35a and 35b, or both pairs of faces may be provided with an electroconductive surface. Typically, only the interior pair of faces 34a and 34b will be provided with an electroconductive surface thereby reducing the abrasive effects of the evolved chlorine on the diaphragm and allowing a reduced interelectrode gap.

The volume provided by the diaphragm 101 of one bipolar unit and the anodic surface 22 of the next bipolar unit and containing the anodes of that next unit is the anolyte compartment. The anodes 31 and cathodes 41 are of substantially equal length (i.e., measured from backplate to backplate). The length is determined by optimization methods and is generally from 1 to 2-% feet.

Each of the bipolar units, as bipolar unit 12, is housed in a channel frame 110. The channel frame is shown generally in FIGS. 2, 3, and 4 and in particular detail in FIG. 5. The channel frame 110 comprises sidewalls 122 and 123, top 121, and bottom 124. Each wall, as walls 122 and 123, top 121, and bottom 124, has a pair of flanges 126 and 127. Flange 126 is bolted to the cathodic surface 24 of backplate 21 by bolts 129 and insulated from backplate 21 by gasket 139. Flange 127 is separated from the backplate of the next adjacent unit by flange 140.

Wall 133 forms an acute angle with the bottom 124. The volume 115, provided by wall 133 and segments of the bottom 124 and side walls 122 and 123, communicates through wire mesh side channel 87 with the catholyte volume 103. Opening 116 in side wall 123 is used to drain compartment and thereby recover catho lyte from volumes 102 and 103.

Wall 135 forms an acute angle with the top 121. The volume 111, provided by wall 135 and segments of the top 121 and side walls 122 and 123, communicates through wire ,mesh side channel 87 with catholyte volume 103 and collects gaseous cathode products as H,. The outlet 112 in top wall 121, leading from volume 111, is used to remove gaseous cathodic products.

Openings 117, 118, and 119 in side walls 122 and 123 and the top 121, respectively, lead into the anolyte compartment. Opening 119 may be used to remove gaseous anolyte products, as chlorine. Opening 117 is used to feed brine into the anolyte compartment.

Channel frame 110 may be fabricated from iron, steel, titanium, titanium-clad steel, or rubber-lined steel. Most commonly, steel is used. Those portions of walls 121, 122, 123, 124, 133, and 135 in contact with the anolyte should be protected against corrosion. Suitable linings 125 include rubber, plastic, ebonite, and titanium. Most commonly, rubber or titanium is used. The individual bipolar units 12 including electrodes 31 and 41, backplate 21, and channel frame 110 weigh upward of l-rfi tons and may weigh over 3 tons, depending upon the current capacity and brine capacity. The electrolyzer itself rests on a base frame shown in FIGS. 10 and 11. The base frame comprises rails 161a and 16112, each rail having an insulating layer 162 thereon. The insulating layer may be shale, concrete, or plastic. The base frame itself is insulated from the cell room floorlby insulators 163 (as shown in'FlG. 2).

As shown in FIG. 12, theielectrolyzer is assembledb'y first installing the winch'l71 on-winch'baseframe 172..

Winch 171, havinghandles 173, a centermemberz174, wire take-up means 175 and .176, and mounted on base frame 172, is-installed on end plates'164'of the-base frame 160. The individual bipolar: units. are: then mounted on .the insulating layersl62 of the base'frame 160. The cathodic end unit'l-lis mounted first; The in-.

cathodic end unit '11.

On each side of the electrolyzer a metal lineor wire 178 is runfrom, the winch take-up means '1755th'rough' lugs 130in the side walls of each unit to a hook eye .180.= which connects, through-lug 130, with a wingnut'or throttlingjnut l821and a stay 184.

A pair of temporary guide frames'l9l shownin FIGS. 3 and 12 are installed in notches 192m the'bottom- 124 of the channel frames 1 10, thereby more-accuratelypositioning the individual .units l2.and 13..on the base frame 160. Theindividualbipolar units, 11, 12, 13, and 14 are then slowly winched together alongthe insulat ing layer 162. Altematively, each bipolar unit may be individually winched along the insulating layer "162.

The total assembly of individualunits comprising the electrolyzer is held together by providinga compres sive force on the two end half units. Specifically; a plurality of tie rods 186 shown generally in FIGS. 2, 3," and 4, and in greater detail in FIG. 13 ,apply'a compressive force .on the two end half units 11 .and 14..

Each' tie rod 186, enclosed in an insulating sleeve 187, passes through lugs 130 welded to the walls of the channel frame 110 of the end half units 11 and 14. An insulating washer 188 and insulating cap 189 electrically insulate the lugs 130 from the nuts 190. The nuts 190 provide the compressive force.

In the operation of the electrolyzer brine containing from about 310 gpl to about 325 gpl of sodium chloride is fed through the feed line 155. This feed mixes with chlorinated brine from tank 151 yeilding a cholrinated brine containing from about 250 grams per liter to about 290 grams per liter of sodium chloride which is I fed into the anolyte compartment through the brine inlet 117 at the side of the anolyte compartment. The following reaction takes place at the anodes. in the anolyte compartment: CL %Cl, e

The chlorine liberated at the anode 31 bubbles up on the face of the anode 33 thorugh the anolyte to the top of the anolyte compartment and thence out of the cell through the chlorine outlet 119 and through brine feed tank 151'. The electrolyte permeates the diaphragm 101 and passes through it into the catholyte compartment. The following reaction takes place at the electrically active surfaces within the catholyte compartment:

The hydrogen gas bubbles up and back through the catholyte compartment 102 of FIG. 6 into the catholyte backscreen compartment 103 of FIG. 6 and 111 com- 10 partment' 11 ofFIGS. 2'and 5,.finally out'through the hydrogenoutlet 1 12 into pipe 113 shown in FlGS;;2,-4,--

and '5 in thetop of the bipolar unit. The c-ell liquor'com, taining from-about to about ISOgrams per liter. of sodium'hydroxide and about to about'l70 grams per-liter of sodium chloride is recovered from the oath olyt'e' compartment throughopening 1'16 inwall -122 and discharged through the perc pipe 1 20. I The perc pip e 120is rotatably mounted 'on pipe] l t-leadingfrom opening 116.- Rotatingthe perc pipe l20- chan'ges the hydrostatic pressure. in the catholytecompartment, th'ereby changingithe difference between the catholytehydrostatic pressure and 'th'e anolytehydrostatic pressure. In this way, as the-permeabilityofthe diaphragm decreaseswith service, the catholyte hydrostatic pres sure may be made significantly. less thantheahOlyte-hy drostatic pressure thereby causing electrolyt to flow through the diaphragm. Inorder 'to obtain economical operation of the electroly zer, the inter-electrode gap should'rem'ain 'uniform' along th'e length of the anode. Accordingly; means are provided to keep; the anode blades in'proper alignniei'it "with: each other and with the cathode fingers and toadjustably maintain theproper inter-electrode gap'an'd anode pitch. In one exemplifi'cation'of this invention" shown in FIGSLZ', 3, 4; 8, and 9', this-takesthefornfof' athreaded rod 38' passing laterally ,across :and substa i tially perpendicular to the anode 'bladesina direction substantially parallel to the top 121 'andbottom and to the backplate 21, and substantiallyperpendicw' lar. to and throughfittings 37 on the top and bottor'n' oif each anode 31. These fittings may be only'at the top'of the blades or only at the bottom of the anode or at both the-top and bottom'of the'anode'blades; Nuts 40*ahd washers 39 are on the threaded rod 38'onboth sid s' of the fitting 37. Adjustment of the nuts 40 maintainsthie pitch of the anode blades. In another exemplitic'atiioit" where the anodes are longer in the'verticaldirection than the cathodes, a notch can be provided in anj'edge of the blades of the anodes themselves. The :rod then goes through the notches in the edge of the anode brad; and laterally to the blades, across the cell, from wall 122 to wall 123. The notch or opening, whichmay be near the upper horizontal edge of the anode blade or near the lower horizontal edge of the anode blade or there may be openings near both edges, is of sufficient diameter to allow the rod to pass through,but of a suffig ciently small diameter that the nuts 40 will maintain thf blade in the desired position. In the-normal operation of the electrolyzenbrine'. is" fed into the anolyte compartment through a pipe 'l 53lshown in FIGS. 3 and 4 to an opening 117 in thei s'ide" wall 122 of the bipolar unit and through openingsfil in the top 121 of the bipolar unit. However, should the 5 flow of brine to any cell in the electrolyzer be *irijter' rupted, the anolyte level could drop.'This could cause abnormalities in the operation of the individualfcell such as the anodes being exposed to the air, hydrogenentering the anolyte compartment, boiling of the ano lyte, electrolytic attack of the backplate or anodes"; oi' arcing across the electrodes. Any of these abnornia 1 ties could result in catastrophic failure of the elec lyzer. Accordingly, an equalizer 157 is provided-LThe equalizer, shown generally in FIGS. 3 and 4', and sp'eicif ically in FIG. 14, serves to maintain a uniform he of anolyte in all of the individual cellsyThis isacco plished by providing hydraulic communication be tween a plurality of the individual cells in the electrolyzer. This hydraulic communication may be provided by an equalizer pipe or equalizer pipes, as 157 in FIGS. 3, 4, and 14, connecting the individual cells 16, 17, and 18 through openings 118 in the walls 122 of the cells. In the arrangement shown in FIGS. 3, 4, and 14, the brine moves as shown by the arrows in FIG. 14 to overcome hydrostatic irregularities. Typically, the equalizer is external of the individual cells and the electrolyzer in order to provide a longer distance of electrolyte between cells, thereby minimizing current leakage. The resistance across the equalizer between adjacent cells in the electrolyzer is from to 100 ohms, and preferably from 50 to 100 ohms. Alternatively, or additionally, the brine feed pipes 153 of the individual cells may be interconnected.

All of the cells 16, 17, and 18, in the electrolyzer may be in hydraulic communication with each other. Alternatively, only a number of cells-the number being less than the total number of cells in the electrolyzermay be in hydraulic communication, through one equalizer 157, in which case a plurality of equalizer pipes 157 will be provided. The cells connected to any one equalizer 157 may be adjacent or they may be non-adjacent cells separated by cells connected to other equalizers 157.

In still another exemplification where a plurality of brine header pipes are provided (each of the brine header pipes feeding a plurality of adjacent cells), a plurality of equalizer pipes may be provided. in this case, each equalizer 157 may hydraulically connect cells receiving brine from a different header. in this exemplification, the deleterious effects of an interruption of brine feed occurring in the brine header can be minimized.

The openings 118 in the walls 122 through which hydraulic communication is provided should be below the level of the anolyte and the tops of the cathodes. The openings 118, however, may either be in line or horizontally offset one from the other. Accordingly, the equalizer pipe 157 may be horizontal or it may be offset from the horizontal.

The equalizer is hydraulically responsive to changes in the electrolyte level within the cells with which it communicates. As the hydrostatic pressure, orhead,

within one of the individual cells starts to fall, ele'ctro lyte will flow out of the other cell in hydraulic communication therewith, through the equalizer pipe 157, to the said cell. In this way the hydrostatic pressure across a plurality of cells in hydraulic communication is maintained substantially uniform, and individual hydrostatic variations over time within a cell are substantially reduced.

The brine tank 151, the equalizer pipe 157, and the brine feed pipe .153 are steel and are lined with a material suitably resistant to saturated brine. Rubber, polyester and plexiglass may be used. Typically, polyester is used. The equalizer pipe 157 is insulated from the electrolyzer to reduce current leakage; Alternatively, the brine tank 151 and the equalizer pipe 157 and the brine feed pipe 153 may be fabricated from fiberglass reinforced polymers such as polyesters, polyvinylidene chloride, and other polyhalocarbons.

It is to be understood that although the invention has been described with specific reference to particular embodiments thereof, it is not to be so limited since changes and alterations therein may be made which are within the full intended scope of this invention as defined by the appended claims.

1. A method of electrolyzing brine comprising: feedingbrine to a plurality of individual diaphragm cells in a bipolar electrolyzer, each of said cells having an anolyte compartment;

removing anolyte from at least one of said individual diaphragm cells independently of the feed to said cell below the level of anolyte therein; and

transferring the anolyte so removed, externally of the electrolyzer, to a second cell below the level of anolyte therein and independently of the feed thereto, said second cell having a lower hydrostatic head of anolyte therein than the cell from which the anolyte was removed.

2. The method of claim 1 wherein the electrical resistance between the cell from which the anolyte is removed and the cell to which the anolyte is transferred is between 5 ohms and ohms measured throug the anolyte so tranferred.

k i i =8

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3236760 *Nov 9, 1959Feb 22, 1966Oronzio De Nora ImpiantiCells for the production of chlorine from hydrochloric acid
US3247090 *Sep 17, 1962Apr 19, 1966Pittsburgh Plate Glass CoElectrolytic cell
US3324023 *Jan 9, 1963Jun 6, 1967Hooker Chemical CorpBipolar electrolytic cell for the production of gases
US3553088 *May 27, 1969Jan 5, 1971Hooker Chemical CorpMethod of producing alkali metal chlorate
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3871988 *Jul 5, 1973Mar 18, 1975Hooker Chemicals Plastics CorpCathode structure for electrolytic cell
US3876517 *Jul 20, 1973Apr 8, 1975Ppg Industries IncReduction of crevice corrosion in bipolar chlorine diaphragm cells by locating the cathode screen at the crevice and maintaining the titanium within the crevice anodic
US3898149 *Oct 31, 1973Aug 5, 1975Olin CorpElectrolytic diaphragm cell
US3899408 *Jan 3, 1974Aug 12, 1975Hooker Chemicals Plastics CorpCathode finger structure for an electrolytic cell
US3902984 *Mar 7, 1974Sep 2, 1975Nippon Soda CoBipolar electrolytic cell
US3904504 *Jan 3, 1974Sep 9, 1975Hooker Chemicals Plastics CorpCathode busbar structure and cathode finger structure combination for an electrolytic cell
US3915746 *Nov 16, 1973Oct 28, 1975Siemens AgFuel cell battery having an improved distributor arrangement
US3925886 *Aug 29, 1974Dec 16, 1975Hooker Chemicals Plastics CorpNovel cathode fingers
US3928150 *Apr 2, 1974Dec 23, 1975Ppg Industries IncMethod of operating an electrolytic cell having hydrogen gas disengaging means
US3975255 *Feb 27, 1974Aug 17, 1976Olin CorporationInter-electrode spacing in diaphragm cells
US3980545 *Jun 12, 1974Sep 14, 1976Rhone-ProgilBipolar electrodes with incorporated frames
US3990961 *Nov 28, 1975Nov 9, 1976Ppg Industries, Inc.Annular brine head equalizer
US4057473 *Mar 15, 1976Nov 8, 1977Ppg Industries, Inc.Method of reducing cell liquor header corrosion
US4073715 *Feb 5, 1976Feb 14, 1978Oronzio De Nora Impianti Elettrochimici, S.P.A.Electrolysis cell with vertical anodes and cathodes and method of operation
US4085015 *Apr 19, 1977Apr 18, 1978Ppg Industries, Inc.Electrolysis cell liquor emission control process
US4100050 *Nov 29, 1973Jul 11, 1978Hooker Chemicals & Plastics Corp.Coating metal anodes to decrease consumption rates
US4118306 *Feb 28, 1977Oct 3, 1978Diamond Shamrock Technologies S. A.Anode constructions for electrolysis cells
US4174266 *Aug 7, 1978Nov 13, 1979Ppg Industries, Inc.Method of operating an electrolytic cell having an asbestos diaphragm
US4278526 *Dec 18, 1979Jul 14, 1981Kanegafuchi Kagaku Kogyo Kabushiki KaishaApparatus for electrolysis of an aqueous alkali metal chloride solution
US4375400 *Apr 3, 1981Mar 1, 1983Olin CorporationElectrolyte circulation in an electrolytic cell
US4377445 *Nov 7, 1980Mar 22, 1983Exxon Research And Engineering Co.Shunt current elimination for series connected cells
US4391693 *Oct 29, 1981Jul 5, 1983The Dow Chemical CompanyChlorine cell design for electrolyte series flow
US4402809 *Sep 3, 1981Sep 6, 1983Ppg Industries, Inc.Bipolar electrolyzer
US4448663 *Jul 6, 1982May 15, 1984The Dow Chemical CompanyDouble L-shaped electrode for brine electrolysis cell
US4746415 *Dec 2, 1986May 24, 1988Imperial Chemical Industries PlcElectrode
US4834859 *Apr 12, 1988May 30, 1989Oxytech Systems, Inc.Diaphragm cell cathode assembly
WO1981000864A1 *Sep 22, 1980Apr 2, 1981E HausmannComposite bipolar electrode for electrolysis of alkaline metal chlorides and other electrolysis methods
Classifications
U.S. Classification205/511, 204/256, 204/255
International ClassificationC25B9/18, C25B9/20
Cooperative ClassificationC25B9/206
European ClassificationC25B9/20B2