Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3756688 A
Publication typeGrant
Publication dateSep 4, 1973
Filing dateMar 30, 1972
Priority dateMar 30, 1972
Also published asCA972595A1, DE2313288A1
Publication numberUS 3756688 A, US 3756688A, US-A-3756688, US3756688 A, US3756688A
InventorsM Hudson, F Kapron
Original AssigneeCorning Glass Works
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Metallized coupler for optical waveguide light source
US 3756688 A
Abstract
A light coupler for transferring optical wave energy to or from light transmitting means including at least one optical waveguide. The coupler comprises a tapered core of transparent material of refractive index n1 and a layer of transparent cladding material of refractive index n2 disposed upon the surface of the tapered core, n1 being greater than n2. The tapered core has a large diameter end which is aligned with an end of the light transmitting means and a small diameter end which is disposed adjacent to electro-optic energy conversion means such as a light emitting diode, a light detector or the like. A reflecting metallic layer is disposed upon at least that portion of the surface of the cladding layer which is adjacent to the small diameter end of the coupler to reflect light which is incident upon the core-cladding interface at angles less than the critical angle and which passes through the cladding layer.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

6. mass 6 6 455-612 AU 233 EX FIPBlOb KR 3,75ba688 Umted States Patent 1 1 1111 3,756,688 Hudson et al. 1 1 Sept. 4, 1973 METALLIZED COUPLER FOR OPTICAL Primary Examiner-John K. Corbin WAVEGUIDE LIGHT SOURCE Attorney-Clarence R. Patty,.lr.. William J. Simmons.

[75] lnventors: Marshall C. Hudson, Corning; Felix at P. Kapron, Elmira, both of NY.

[57] ABSTRACT {73] Asslgnee: Commg Glass works Coming A light coupler for transferring optical wave energy to [22] Filed: Mar. 30, 1972 or from light transmitting means including at least one {21] Appl No 239,517 optical waveguide. The coupler comprises a tapered core of transparent material of refractive index n, and a layer of transparent cladding material of refractive [52] [1.8. CI. 350/96 WG, 250/199, 350/96 B index n disposed upon the surface of the tapered core, [51] Int. Cl. G02b 5/14 n, being greater than n,. The tapered core has a large Field of Search 350/96 6 diameter end which is aligned with an end of the light 350/96 B transmitting means and a small diameter end which is disposed adjacent to electro-optic energy conversion [56] References Cited means such as a light emitting diode, a light detector or UNITED STATES PATENTS the like. A reflecting metallic layer is disposed upon at 3,187,627 6/1965 Kapany 350/96 B x least that the Surface of cladding layer 3,614,197 10/197] Nishizawa 350/96 WG which is adjacent to the small diameter end of the cou- 3,o43,91o 7/1962 Hicks 350/96 B x p l0 reflect light which is ihcidrht "P the core- 3,403,955 10/1968 Jueneman 350/96 R cladding interface at angles less than the critical angle 3,610,727 10/1971 Ulrich 350/96 W0 and which passes through the cladding layer. 3,659,915 5/1972 Maurer et al. 350/96 WG 19 Claims, 5 Drawing Figures METALLIZED COUPLER FOR OPTICAL WAVEGUIDE LIGHT SOURCE BACKGROUND OF THE INVENTION The continually increasing amount of traffic that communication systems are required to handle has hastened the development of high capacity systems. Even with the increased capacity made available by systems operating between 10 Hz and i" Hz, tratfic growth is so rapid that saturation of such systems is anticipated in the very near future. High capacity communication systems operating around 10" Hz are needed to accommodate future increases in traffic. These systems are referred to as optical communication systems since 10" Hz is within the frequency spectrum of light. Conventional electrically conductive waveguides which have been employed at frequencies between 10 and 10 Hz are not satisfactory for transmitting information at carrier frequencies around 10" Hz.

The transmitting media required in the transmission of frequencies around 10" Hz are hereinafter referred to as optical waveguides which normally consist of an optical fiber having a transparent core having a refractive index N surrounded by a layer of transparent cladding material having a refractive index N, which is lower than N The diameter of the waveguide core may range from about the wavelength of light for a single mode waveguide up to about 1,000 am for multimode waveguides, the maximum diameter being limited by the stiffness of the fiber. Many multimode waveguides of current interest have core diameters less than 25 am since the bandpass of a waveguide decreases as the core size and the number of propagated modes increases. Since multimode waveguides which propagate only relatively few modes can carry much more infor mation, such guides are preferred over those which propagate many thousands of modes. In some instances a plurality of waveguide fibers are disposed in side-byside relation to form a fiber bundle in order to propagate to the receiver more light than can be carried by a single fiber. the light Light from the source is usually directed toward an endface of the optical fiber or fiber bundle. From a geometrical optics viewpoint, the meridional entrance cone in the external medium is limited to the half angle a measured from the fiber axis, wherein til sin" /(N l/ o) where N. is the refractive index of the external material adjacent to the entrance face. The numerical aperture NA of such an optical fiber, which is a measure of the light gathering ability thereof, is defined as follows:

It has been well known in the art that light can be propagated along a transparent fiber structure having a higher refractive index than its surroundings. In such conventional optical fibers the ratio of the total diame' ter to the core diameter is almost unity, and the difference between refractive indices of the core and cladding material is made as large as possible. However, the total diameter to core diameter ratio of optical waveguide fibers is usually between about l0:l and 300:1 for single-mode optical waveguides and is usually between about 1001:1000 and 10:1 for multimode optical waveguides, and the difference in indices of refraction is maintained small. In accordance with equation (2) this small difference between core and cladding refractive indices in optical waveguides results in a numerical aperture that is smaller than that of conventional optical fibers. Whereas the numerical aperture of commercial optical fibers or light pipes of the conventional type may be as high as about 0.6, the numerical aperture of an optical waveguide is usually about 0.1. Although optical waveguides of the type disclosed in copenindg patent application Ser. No. 36,267 filed by D. B. Keck et al. on May 11, 1970, now US. Pat. No. 3,711,262 are capable of propagating light over long distances with relatively low attenuation, suitable means must be provided for efficiently coupling an optical source to such waveguides before a practical optical communication system can be realized.

Due to the relatively low acceptance angles or nu merical apertures exhibited by optical waveguides, radiation from the waveguide light source must be highly directional to efficiently couple to the waveguide. A light coupler which receives light from a source, collimates the received light rays and couples them into a single optical waveguide or a bundle thereof is disclosed in application Ser. No. 239,744 entitled Coupler for Optical Waveguide Light Source" filed by F. P. Kapron on even date herewith. The coupler disclosed in that application comprises a tapered core of transparent material of refractive index n and a layer of transparent cladding material of refractive index n, disposed upon the surface of the tapered core, n, being greater than n,. When the coupler is utilized at the transmitting end of an optical communication system, the large diameter end of the tapered core is aligned with an end of the light transmitting means in light coupling relationship therewith. Light rays from the source, which enter the samll diameter end of the tapered core and are incident upon the core-cladding interface at an angle greater than the critical angle, are reflected by the interface one or more times and are radiated from the large diameter end of the tapered core, each total internal reflection reducing the angle which the ray makes with the core axis by twice the taper half angle 5 of the core. However, light rays which enter the small diameter end of the core and are incident upon the core-cladding interface at an angle smaller than the critical angle thereof pass through that interface and are thereby unavailable for initiation of light mode propagation in the light transmitting means. These unavailable or lost light rays limit the input NA of that coupler to the value indicated by the following equation V n It; 6085 n, sinB (3) Equation (3) clearly illustrates that the input numerical aperture of such a device is limited by the refractive indices of the core and cladding materials.

SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a tapered light coupler of the type wherein the predominate mode of operation is based upon total internal reflection of light, but the amount of light propagated therethrough is not substantially limited by the refractive indices of the materials forming the total internal reflection interface.

The present invention relates to a light coupler which is useful in optical communication systems of the type comprising light transmitting means including an optical waveguide or a bundle thereof disposed in side-byside to In accordance with the present invention the light coupler is characterized in that it comprises a tapered core of transparent material and a layer of cladding material disposed upon the surface of the core, the refractive index of the core material being greater than that of the cladding material. A reflecting metallic layer is disposed upon at least that portion of the surface of the cladding layer which is adjacent to the small diameter end of the coupler. Means are provided for supporting the large diameter end of the light coupler core adjacent to an end of the light transmitting means, and electro-optic energy conversion means is disposed adjacent to the small diameter end of the core.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a transmitting portion of an optical communication system including a light coupler constructed in accordance with the present invention.

FIG. 2 is a diagram illustrating the operation of the input end of the light coupler of the present invention.

FIG. 3 is a cross-sectional fragmentary illustration of a further embodiment of the present invention.

FIG. 4 is a cross-sectional view of a further embodiment of the present invention which utilizes a plurality of tapered core sections.

FIG. 5 shows the receiving portion of an optical communi-cation system which utilizes the light coupler of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a cross-sectional view of the transmitting portion of an optical communication system which includes a light coupler consisting of a tapered core 12 of transparent material having a refractive index n, surrounded by a layer 14 of transparent cladding material having a refractive index n, which is lower than n,. An interface 16 exists between core 12 and cladding layer 14. A metallic layer 18, which is disposed upon the surface of cladding layer 14, provides a light refleeting surface 20. Core 12 has a small diameter endface 22 and a large diameter endface 24 which are preferably optically polished. The diameter of endface 22 may be made large enough to encompass the light emitting area 26 of diode 28, and that of endface 24 may be chosen to approximate the diameter of the effective area of the light transmitting means with which the light coupler is associated. When the transmitting means is a single optical waveguide, the effective light transmitting area thereof is the area of the core and that portion of the cladding adjacent to the core wherein a significant amount of evanescent energy exists. When the transmitting means is a fiber bundle such as fiber bundle 32, the effective area is substantially the entire cross-sectional area thereof. Coupler 10 may be affixed to diode 28 and fiber bundle 32 by beads 34 and 36, respectively, of bonding material.

Both core 12 and cladding layer 14 may be made of any material such as glass, plastic or the like having the required light transmitting properties and relative refractive indices. For example, the core may be formed ofa flint glass having a refractive index of 1.75 and the cladding may be formed of a crown glass having a refractive index of 1.52. Core 12 could also be made of the same material as the core or cores of the associated optical waveguide or bundle. Thus, if the optical waveguide bundle 32 is made of materials set forth in the aforementioned Keck et al. patent, core 12 could be formed of doped fused silica, and cladding layer 14 could be pure fused silica. It will be shown that fused silica can be advantageously used in an embodiment wherein the refractive index of the light coupler core varies along the length thereof.

. The most efficient transfer of light occurs when the coupler endfaces 22 and 24 are in direct contact with the elements disposed adjacent thereto. The diagram of FIG. 2 illustrates the effect of light emitted by an LED which is in contact with coupler 10. Only core 12 and cladding layer 14 are illustrated in this figure which contains the symbols m, n, and n as representing the refractive indices of the core and cladding materials and the LED, respectively. Since the refractive index of an LED is very high, n will be greater than n, and a ray incident upon endface 22 at an angle 0 which is greater than the critical angle 0, will reflect from rather than enter endface 22 where 0 sin'l (n ln If a ray is incident upon endface 22 at an angle 0 which is less than 0 it will enter core 12 and refract away from the normal. Some light rays which propagate through core 12 will not strike interface 16 and will pass through coupler 10 with their angular orientation being unaffected thereby.

The situation wherein a ray is incident upon endface 22 at an angle which is less than 0,, but which is suffciently large that the refracted ray reflects at least once from interface 16, can be described by the equation n. sin 0 n, cos(dr-B) where (b is the angle that the refracted ray makes with the normal to interface 16 and B is the taper half angle of core 12. As the angle 0 increases, the angle 05 decreases, and eventually, a critical value (b, is reached beyond which a refracted ray will pass through interface 16, where 4), is given by Equation (5) is relevant to a discussion of coupler 10 only if the critical angle Q5.- is equal to or greater than the taper half angle B, a condition which exists for typical values of n, and n,

In the aforementioned Kapron application Ser. No. 239,744 it is the critical angle d, which limits the input numerical aperture of the coupler having a given taper half angle [3. Since the angle d), is a function of refractive indices n and n,, the input NA is limited by the values of n, and n, as indicated by equation (3), NA being less for smaller differences between n, and n,

amiss.

The coupler of the present invention functions in a manner similar to that of the aforementioned Karpon application for refracted rays which are incident upon interface 16 at angles equal to or greater than the angle (1),. FIG. 2 shows a critical ray 42 incident upon endface 22 at an angle 0,, the refracted ray 44 being incident upon interface 16 at the critical angle Ray 44 re flects from interface 16 by the process of total internal reflection to form reflected ray 46. However, the input NA of coupler is not limited to the value obtained from equation (3) since rays incident upon interface 16 at angles less than critical angle dz, only partially reflect from said interface, a component of such rays passing through said interface and being reflected from metallic surface 20. Thus, ray 48, which is incident upon endface 22 at an angle 0,, where 0,. s 0, S 0,, is refracted toward interface 16 at an incidence angle less than 4)... Refracted ray 50 is only partially reflected by interface 16 as illustrated by ray 58, and some portion thereof escapes into cladding layer 14. That portion of the height entering layer 14, which is indicated as ray 52, undergoes a metallic reflection, resulting in a reflected ray 54 which refracts and enters core 12 as ray 56. Although the efficiency of a metallic reflection is only about 90 percent as compared to unity for a total internal reflection, ray 52 would be completely lost if it were not for the presence of metallic reflecting surface 20. Ray 56 will suffer a longitudinal displacement D with respect to ray 50, where where T is the thickness of cladding layer 14, and d is an angle less than the angle (b at which ray 50 is incident upon interface 16. Ray 56 will also have its angle with respect to the longitudinal axis ofcore l2 reduced by 25 as compared to ray 50. The subsequent reflection of ray 56 may be another metallic reflection, or if the incidence angle has sufficiently increased, the next reflection may be a total internal reflection. Due to the ability of the coupler of the present invention to reflect by the process of metallic reflection that light which enters the cladding layer, the input NA is no longer a fundamental limitation on the efficiency of the coupler. The use of metallic layer 18 is especially important when the difference between the refractive indices of core 12 and cladding layer 14 is small, since the critical angle 5, is about 82 for a fiber having a l percent corecladding index difference.

FIG. 3 illustrates another embodiment of the present invention in which tapered core 68 has disposed upon that portion of the surface thereof adjacent to endface 70 a metallic layer 72, a layer 74 of transparent cladding material being disposed upon the remaining portion of the core surface. Cladding layer 74 forms an interface 78 with core 68, and metallic layer 72 forms a metallic reflecting surface 80. Metallic layer 72 extends from endface 70 a distance C which is determined as follows. A light ray 84 enters the edge of endface 70 at point 86, making an angle 6.. with respect to the local normal at endface 70, and the resulting refracted ray 88 is directed toward interface 78 at the critical angle 4%. Any ray entering point 86 and being incident upon interface 78 at an angle equal to or greater than the angle (b will reflect therefrom by the process of total internal reflection. Any ray entering point 86 and being 0:11 COS fi where A is the diameter of endface 70, B0 is the taper half angle of core 68 and n, and n, are the refractive indices of the core 68 and cladding layer 74, respectively.

The figures depicting the various embodiments are not drawn to scale but are shown in such a manner as to illustrate the present invention. For example, the core taper need not be perfectly linear as illustrated. However, couplers having substantially linearly tapering cores can be obtained by heating a large diameter fiber and drawing the same in accordance with techniques well known in the fiber optic fabrication art. By controlling the temperature and the pulling force, the desired taper angle can be achieved. Moreover, the thickness of the cladding layer need not be constant, and probably will not be perfectly constant if the light coupler is made by the aforementioned drawing process. The thickness of the transparent cladding layers should be great enough to prevent any significant amount of evanescent energy from reaching the outer surface thereof. This minimum cladding thickness is determined by the refractive indices of the transparent core and cladding materials and is usually no less than about ten times the wave-length of light propagation through the device.

In the above described embodiments the light coupler core consists of a homogeneous element, the refractive index of which is constant throughout its length. However, each end of core 12 of FIG. 1 has its own refractive index requirements. The refractive index of core 12 in the vicinity of endface 22 should be as high as possible so that light rays which enter endface 22 and are incident upon interface 16 at small angles with respect to the normal thereto are reflected from that interface by total internal reflection since that type of reflection is more efficient than metallic reflection. The refractive index of that portion of core 12 at endface 24 should be similar to that of the core material in the light trans-mining medium to provide maximum coupling efficiency at that interface. To illustrate this problem, assume that the core material of the light transmitting means is made from doped fused silica and has a refractive index less than 1.5. If core 12 had a refractive index of about 1.5 in order to provide good coupling efflciency between coupler l0 and the light transmitting means, much of the light incident upon interface 16 near entrance face 22 would pass into cladding layer 14. This problem can be overcome by providing a coupler core having a refractive index which varies either gradually or in a stepped fashion.

For example the embodiment of FIG. 1 could utilize acore fabricated by the technique described in U. S. Pat. application Ser. No. 239,702 entitled Optical Waveguide Light Source Coupler" filed by F. P. Kapron and D. B. Keck on even date herewith. That application describes a process whereby a boule of doped fused silica is formed by a flame hydrolysis process, the amount of dopant present in the boule being relatively low at one end and gradually increasing toward the other end of the boule. Thus, the refractive index of that end of core 12 adjacent to endface 24 could be about 1.462 and the refractive index of the core could gradually increase toward endface 22 where increased dopant concentration causes a maximum refractive index.

in the embodiment illustrated in FIG. 4 the coupler core consists of sections 98, 100 and 102 which are named in order of increasing refractive index. Cladding layer ,104 makes an interface 106 with section 98, an interface 108 with section 100 and an interface 110 with section 102. A reflecting metallic layer 112 is disposed upon the surface of layer 104. In this embodiment, thin transparent layers 114 and 116 bond the coupler to light source 118 and optical waveguide 120, respectively. Layers 114 and 116 may consist of epoxy or other suitable transparent bonding material having a refractive index approaching that of the materials disposed adjacent thereto.

Since section 102 has a relatively high refractive index, the critical angle at interface 110 is relatively small and even those light rays entering the entrance face of section 102 that is adjacent ot layer 114 and being incident upon interface 110 at relatively small incidence angles are totally internally reflected. As shown hereinabove, each reflection which a light ray undergoes reduces the angle which the reflected ray makes with the longitudinal axis of the coupler by twice the taper half angle 3. Therefore, after a ray reflects a number of times from metallic layer 112 and/or interface 110, it can enter section 100 and reflect from interface 108 even though the refractive index difference between section 100 and cladding layer 104 is not as great as the difference between section 102 and cladding layer 104. Similarly, the ray enters section 98 making an even smaller angle with respect to the longitudinal axis of the coupler after having undergone a number of reflections within previous sections. Section 98 can be made from doped fused silica having a refractive index approaching that of the core of waveguide 120, thus providing good coupling efi'iciency between the light coupler and that waveguide.

FIG. shows the receiver portion of an optical communication system including light transmission means 124 having a light coupler 126 disposed adjacent to the end thereof. Output coupler 126 may be constructed in a manner similar to any of the input couplers described hereinabove. Light detector 128 is disposed immediately adjacent to the small diameter end of coupler 126.

The cross-sectional shape or configuration of optical waveguides and fiber bundles is substantially circular, and it is therefore preferred that the cross-sectional shape of the larger end of the light coupler also be circular. However, this portion of the coupler could have any desired shape depending upon the shape of the waveguide or waveguide bundle to which it is connected. Similarly, the input or smaller end of the light coupler could be elliptical or elongated in some ohter manner depending upon the shape of the light emitting area of the light source. For example the smaller end of the coupler could be elliptical in cross-section and the larger end could be circular.

We claim:

1. An optical communication system comprising light transmitting means including at least one optical wave guide for propagating optical wave energy,

a light coupler having a tapered core of transparent material and a layer of transparent cladding material disposed upon at least a portion of the surface of said core, the refractive index n, of said core material being greater than the refractive index n, of said transparent cladding material, and a reflecting metallic layer surrounding at least that portion of said core which is adjacent to the small diameter end of said coupler, said metallic layer forming a smooth interface that is reflective to most of said optical wave energy that is incident thereon,

means for supporting the large diameter end of said core adjacent to an end of said light transmitting means so that said core is aligned with the light transmitting area of said light transmitting means, and

electro-optic energy conversion means disposed adjacent to the small diameter end of said core.

2. An optical communication system in accordance with claim 1 wherein said transparent cladding layer is disposed upon the entire surface of said tapered core and said metallic layer is disposed upon the surface of said cladding layer.

3. An optical communication system in accordance with claim 1 wherein said metallic layer is disposed di rectly upon that portion of the surface of said core extending from the small diameter end of said coupler an axial distance C which is determined by the equation where A is the diameter of the small diameter end of said core and 5 is the taper half angle of said core, said transparent cladding layer being disposed upon that portion of the surface of said core that is not covered by said metallic layer.

4. An optical communication system in accordance with claim 1 wherein said light coupler is disposed at the input end of said transmitting means, said electro optic energy conversion means comprising light source means for directing light into the small diameter end of said core.

5. An optical communication system in accordance with claim 1 wherein said light transmitting means comprises a bundle of optical waveguides disposed in side-by-side relation.

6. An optical communication system in accordance with claim 1 wherein said light transmitting means comprises a single optical waveguide, the core of which is substantially aligned with the large diameter end of said tapered core.

7. An optical communication system in accordance with claim 1 wherein the refractive index of said tapered core varies throughout the length thereof, the refractive index at the large diameter end of said tapered core being less than that at the small diameter end thereof.

8. An optical communication system in accordance with claim 7 wherein the refractive index of said tapered core varies gradually.

9. An optical communication system in accordance with claim 7 wherein said tapered core consists of a plurality of segments, each having a refractive index different from the adjacent segment.

10. An optical communication system in accordance with claim 1 wherein said coupler is disposed at the output end of said light transmitting means, said electro-optic energy conversion means comprising means for detecting light radiating from the small diameter end of said coupler.

11. In an optical communication system of the type wherein optical wave energy is propagated through light transmitting means including at least one optical waveguide, a light coupler comprising a tapered core of transparent material and a layer of transparent cladding material disposed upon a portion of the surface of said core extending from the large diameter end thereof, the refractive index of said core material being greater than that of said transparent cladding material, a reflecting metallic layer disposed upon the exposed portion of said core, the junction between said metallic layer and said transparent cladding layer being located an axial distance C from the small diameter end of said core, C being given by the equation of said core.

12. An optical communication system in accordance with claim 11 wherein said light coupler is disposed at the input end of said light transmitting means, said electro-optic energy conversion means comprising light source means for directing light into the small diameter end of said core.

13. An optical communication system in accordance with claim 11 wherein said coupler is disposed at the output end of said light transmitting means, said electro-optic energy conversion means comprising means for detecting light radiating from the small diameter' end of said coupler.

14. in an optical communication system of the type comprising light transmitting means including at least one optical waveguide,

a source of optical wave energy, and

a light coupler having an input end for receiving light from said source and an output end for emitting light into said at least one waveguide,

said coupler being characterized in that it comprises a tapered core of transparent material, said tapered core having a small diameter end at the input end of said coupler which is adapted to receive light from said source, and a large diameter end at the output end of said coupler,

a layer of transparent cladding material disposed upon the surface of said core, the refractive index of said tapered core material being greater than that of said transparent cladding material,

a reflecting metallic layer disposed upon the surface of said transparent cladding layer and forming therewith a smooth interface that is reflective to most of said optical wave energy, and

means for supporting the large diameter end of said tapered core adjacent to an end of said light transmitting means so that said tapered core is aligned with the light transmitting area of said light transmitting means and light radiating from said coupler initiates the propagation of light waves in said light transmitting means.

15. An optical communication system in accordance with claim 14 wherein the refractive index of said tapered core varies throughout the length thereof, the refractive index at the large diameter of said tapered core being less than that at the small diameter end thereof.

16. An optical communication system in accordance with clainf 15 wherein the refractive index of said tapered core varies gradually.

17. An optical communication system in accordance with claim 15 wherein said tapered core consists of a plurality of segments, each having a refractive index different from the adjacent segment.

18. An optical communication system in accordance with claim 1 wherein the reflection efficiency of said interface is about percent.

19. An optical communication system in accordance with claim 14 wherein the reflection efficiency of said interface is about 90 percent.

i d i i

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3043910 *May 19, 1958Jul 10, 1962American Optical CorpFiber optical image transfer devices
US3187627 *Oct 3, 1960Jun 8, 1965American Optical CorpMicroscope and recording optical systems utilizing tapered light conducting fiber bundles
US3403955 *Nov 24, 1964Oct 1, 1968IbmRadiant energy conductor with diffusing surface
US3610727 *Oct 9, 1969Oct 5, 1971Bell Telephone Labor IncCoupling arrangement for thin-film optical devices
US3614197 *Apr 23, 1968Oct 19, 1971Semiconductor Res FoundSolid optical wave guide having a radially varying refractive index
US3659915 *May 11, 1970May 2, 1972Corning Glass WorksFused silica optical waveguide
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3901581 *Jul 5, 1973Aug 26, 1975Corning Glass WorksTapered coupler for optical communication system
US3937557 *Nov 29, 1974Feb 10, 1976The United States Of America As Represented By The Secretary Of The NavyStar coupler for single mode fiber communication systems
US3969014 *Dec 16, 1974Jul 13, 1976Siemens AktiengesellschaftPhotoresist layer waveguide coupling device
US3995935 *Apr 28, 1975Dec 7, 1976International Telephone And Telegraph CorporationOptical coupler
US4009394 *Oct 28, 1975Feb 22, 1977The Magnavox CompanyRemote control light transmitter employing a cylindrical lens
US4045120 *Dec 19, 1975Aug 30, 1977Thomson-CsfCoupler for optical communication system
US4062043 *Mar 25, 1975Dec 6, 1977Siemens AktiengesellschaftApparatus for distributing light signals among a plurality of receivers
US4072399 *Jul 5, 1973Feb 7, 1978Corning Glass WorksPassive optical coupler
US4076378 *Mar 8, 1976Feb 28, 1978American Optical CorporationTapered fiber optic array
US4083625 *Aug 2, 1976Apr 11, 1978Corning Glass WorksOptical fiber junction device
US4111538 *Feb 25, 1976Sep 5, 1978Xerox CorporationProjection system of high efficiency
US4199222 *Nov 8, 1977Apr 22, 1980Hitachi, Ltd.Optical device with a laser-to-fiber coupler
US4200356 *Nov 25, 1977Apr 29, 1980Thomson-CsfCoupler for optical communication system
US4225782 *Aug 14, 1978Sep 30, 1980Sanders Associates, Inc.Wide field of view-narrow band detection system
US4232938 *Oct 6, 1978Nov 11, 1980Times Fiber Communications, Inc.Telecommunication systems using optical waveguides
US4273109 *Jun 16, 1978Jun 16, 1981Cavitron CorporationFiber optic light delivery apparatus and medical instrument utilizing same
US4346294 *Jul 6, 1981Aug 24, 1982Burr-Brown Research Corp.Low profile optical coupling to planar-mounted optoelectronic device
US4445751 *Oct 19, 1981May 1, 1984Westinghouse Electric Corp.Metal coated, tapered, optical fiber coupled to substrate and method of fabrication
US4669818 *Jul 31, 1986Jun 2, 1987Hughes Aircraft CompanyMiniature window
US4697867 *Jul 1, 1985Oct 6, 1987Michel BlancMulti-directional non-imaging radiations concentrator and/or deconcentrator device
US4737004 *Oct 3, 1985Apr 12, 1988American Telephone And Telegraph Company, At&T Bell LaboratoriesExpanded end optical fiber and associated coupling arrangements
US4826274 *Dec 21, 1987May 2, 1989Motorola, Inc.Optical coupling arrangements including emitter and detector placed inside of a hollow closed end reflective waveguide
US4860287 *Nov 5, 1987Aug 22, 1989People's Telephone Cooperative, Inc.Network having a synchronizer for synchronization between a primary and a remote station
US4898438 *May 12, 1989Feb 6, 1990Kei MoriLight radiation device for use in medical treatment
US4984864 *Dec 21, 1989Jan 15, 1991At&T Bell LaboratoriesOptical splitter having a self-contained optical source
US4995686 *Dec 22, 1989Feb 26, 1991At&T Bell LaboratoriesOptical splitter/combiner with an adiabatic mixing region
US5117472 *Dec 28, 1990May 26, 1992At&T Bell LaboratoriesOptical coupler with mode-mixing refractive microparticles
US5138677 *Jul 8, 1991Aug 11, 1992General Dynamics Corporation, Electronics DivisionBroadband optical power summer
US5166993 *Dec 7, 1990Nov 24, 1992At&T Bell LaboratoriesMolded polymeric resin-filled optical coupler
US5192863 *Jan 23, 1991Mar 9, 1993The University Of OttawaOptical taper for increasing the effective area of a photodiode in atmospheric free space communications applications
US5271079 *Nov 8, 1991Dec 14, 1993Finisar CorporationLight mixing device with fiber optic output
US5461692 *Nov 30, 1993Oct 24, 1995Amoco CorporationMultimode optical fiber coupling apparatus and method of transmitting laser radiation using same
US5640474 *Sep 29, 1995Jun 17, 1997The United States Of America As Represented By The Secretary Of The ArmyEasily manufacturable optical self-imaging waveguide
US5647041 *Apr 17, 1996Jul 8, 1997Lucent Technologies Inc.Multimode fiber beam compressor
US5655039 *Dec 22, 1995Aug 5, 1997Corning, Inc.For use with optical pulses
US5689596 *Feb 13, 1997Nov 18, 1997Corning, Inc.Nonlinear optical loop mirror device providing pulse width switching
US5717797 *Feb 13, 1997Feb 10, 1998Corning, Inc.Non-linear optical loop mirror device providing pulse amplitude switching
US5718664 *Jun 6, 1995Feb 17, 1998United States Surgical CorporationLight guide connection port for a disposable arthroscope
US5761364 *Nov 2, 1995Jun 2, 1998Motorola, Inc.Optical waveguide
US6840686Dec 20, 2000Jan 11, 2005Jds Uniphase CorporationMethod and apparatus for vertical board construction of fiber optic transmitters, receivers and transceivers
US6901221May 27, 1999May 31, 2005Jds Uniphase CorporationMethod and apparatus for improved optical elements for vertical PCB fiber optic modules
US7034935 *Mar 24, 2003Apr 25, 2006Mpb Technologies Inc.High performance miniature spectrometer
US7070301Nov 4, 2003Jul 4, 20063M Innovative Properties CompanySide reflector for illumination using light emitting diode
US7090357Dec 23, 2003Aug 15, 20063M Innovative Properties CompanyCombined light source for projection display
US7101050May 14, 2004Sep 5, 20063M Innovative Properties CompanyIllumination system with non-radially symmetrical aperture
US7231120Jul 15, 2003Jun 12, 2007Mbda Uk LimitedTapered optical fibre with a reflective coating at the tapered end
US7246923Feb 11, 2004Jul 24, 20073M Innovative Properties CompanyReshaping light source modules and illumination systems using the same
US7261423Aug 11, 2006Aug 28, 20073M Innovative Properties CompanyCombined light source for projection display
US7300177Feb 11, 2004Nov 27, 20073M Innovative PropertiesIllumination system having a plurality of light source modules disposed in an array with a non-radially symmetrical aperture
US7304425 *Oct 29, 2004Dec 4, 20073M Innovative Properties CompanyHigh brightness LED package with compound optical element(s)
US7327917 *Jan 28, 2006Feb 5, 2008Qxwave Inc.Directional light beam generators
US7330319Oct 29, 2004Feb 12, 20083M Innovative Properties CompanyHigh brightness LED package with multiple optical elements
US7390097Aug 23, 2004Jun 24, 20083M Innovative Properties CompanyMultiple channel illumination system
US7427146Feb 11, 2004Sep 23, 20083M Innovative Properties CompanyLight-collecting illumination system
US7798692Dec 30, 2005Sep 21, 2010Optim, Inc.Illumination device
US7918567 *Apr 18, 2005Apr 5, 2011Olympus CorporationLight emitting device, manufacturing method for light emitting device, illumination device using light emitting device, and projector
US8033704Dec 11, 2006Oct 11, 2011Optim, Inc.Compact, high efficiency, high power solid state light source using a solid state light-emitting device
US20090190371 *Jan 26, 2009Jul 30, 2009Optim, Inc.Monolithic illumination device
DE2455398A1 *Nov 22, 1974May 28, 1975Ulmic SaLicht-kegelstumpf-konzentrator
DE2812346A1 *Mar 21, 1978Sep 28, 1978Tokyo Shibaura Electric CoLichtverteiler
DE4437523A1 *Oct 20, 1994May 2, 1996Ultrakust Electronic GmbhCoupling system for sensors at assembly recording optical spectral shifts
DE102005038999A1 *Aug 16, 2005Mar 1, 2007Schott AgBeam forming device for optical signal sensor, has fiber-optical light guide provided with cylindrically symmetric light-guiding area along longitudinal section, where light guide exhibits reflection surface along longitudinal section
EP0054300A1 *Dec 15, 1981Jun 23, 1982Mitsubishi Denki Kabushiki KaishaOptical coupling device for a photo-semiconductor element and an optical fiber
EP0069776A1 *Jan 15, 1982Jan 19, 1983Hughes Aircraft CoAn optical fiber assembly and method of mounting it.
EP0170561A1 *Jun 25, 1985Feb 5, 1986Michel BlancSystem for increasing and/or reducing multidirectional non-imaging radiation intensity
EP0194842A2 *Mar 10, 1986Sep 17, 1986Shiley IncorporatedIntegral optical fiber coupler
WO2004011977A1 *Jul 15, 2003Feb 5, 2004Mbda Uk LtdA tapered optical fibre with a reflective coating at the tapered end
WO2005078496A2 *Jan 18, 2005Aug 25, 20053M Innovative Properties CoReshaping light source modules and illumination systems using the same
Classifications
U.S. Classification385/43, 385/127, 385/31, 385/124
International ClassificationG02B6/42, H04B10/152
Cooperative ClassificationG02B6/4206, G02B6/4203, H04B10/502
European ClassificationG02B6/42C3B, H04B10/152, G02B6/42C2B