Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3757856 A
Publication typeGrant
Publication dateSep 11, 1973
Filing dateOct 15, 1971
Priority dateOct 15, 1971
Also published asCA976953A1, DE2250233A1, DE2250233B2, DE2265349A1, DE2265349B2
Publication numberUS 3757856 A, US 3757856A, US-A-3757856, US3757856 A, US3757856A
InventorsL Kun
Original AssigneeUnion Carbide Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Primary surface heat exchanger and manufacture thereof
US 3757856 A
Abstract
An all purpose primary surface heat exchanger, and manufacture thereof, comprising an array of parallel channels formed and bounded by thin heat conductive walls, at least one wall of which has on at least a portion of its surface isostress contours with substantially uniform disposed unidirectional wall-supporting projections formed from the wall. The projections are arranged so as to mate with, and to abut supportingly against, correspond wall-supporting projections of a similar adjacent isostress wall. The walls, so arranged, are sealed at the wall edges in a manner to form and isolate alternate enclosed channels from intervening open channels so that the alternate channels may contain and conduct a first fluid, and the intervening channels may contain and conduct a second fluid at a different temperature, thereby effecting heat exchange between the fluids.
Images(6)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 1451 Sept. 11, 1973 Kun 1 1 PRIMARY SURFACE HEAT EXCHANGER AND MANUFACTURE THEREOF [75] Inventor: Leslie C. Kun, Williamsville, NY.

[73] Assignec: Union Carbide Corporation, New

York, NY. 221 Filed: Oct. 15,1971

[21] Appl. No.: 189,659

[52] U.S. Cl 165/166, 165/152, 165/148, 29/1573 [51] Int. Cl F28t 3/02 [58] Field of Search 165/166, 167, 130, 165/148 [56] References Cited UNITED STATES PATENTS 2,281,754 5/1942 Dalzell 165/167 3,590,917 7/1971 Huber 165/167 785,580 3/1905 Shiels et al 165/167 FOREIGN PATENTS OR APPLICATIONS 159,806 3/1921 Great Britain 165/130 Primary Examiner-Charles J. Myhrc Assistant Examiner-Theophil W. Streule, Jr. Attorney Paul A. Rose, Cornelius F. OBrien et al.

[57] ABSTRACT An all purpose primary surface heat exchanger, and manufacture thereof, comprising an array of parallel channels formed and bounded by thin heat conductive walls, at least one wall of which has on at least a portion of its surface isostress contours with substantially uni form disposed unidirectional wall-supporting projections formed from the wall. The projections are arranged so as to mate with, and to abut supportingly against, correspond wall-supporting projections of a similar adjacent isostress wall. The walls, so arranged, are sealed at the wall edges in a manner to form and isolate alternate enclosed channels from intervening open channels so that the alternate channelsmay contain and conduct a first fluid, and the intervening channels may contain and conduct a second fluid at a different temperature, thereby effecting heat exchange between the fluids.

6 Claims, 18 Drawing Figures STRESS PSI Pmmzn m Hm v sum a nr 6 STRESS VS SURFACE HEIGHT OF ISOSTR ESS CONTOURS IN 0.007 INCH THICK ALUMINUM SURFACE HEIGHT (H- inches) FIG. 3.

\JLfl 0L1. H F/ a. 34.

III!

I I I l INVENTOR LESLIE C. KUN

ATTORNEY lb. PRESSURE m2 PATENIEDSEPI i W SHEET 3 BF APPLIED PRESSURE VS. SURFACE DEFLECTION OF DIFFERENT CONTOURED SURFACES F 6. 4A. x ibjx Isa S T 0" Cane Surface A450 c006 Surface j' '7' 'v I/ l l/ l/ 7 lo I 30 DEFLECTION T555 M F 6 4. fi SSN ATTORNEY PAT ENTEU 1 3 SHEET t (if v INVENTOR 5 LESLIE c. KUN

PATENTED SEN H973 sumsnre F a. 6B.

ATTORNEY PATENTED SE?! 1 i973 SHEEI 8 HF INVENTOR LESLIE C. KUN

ATTORNEY PRIMARY SURFACE HEAT EXCI-IANGER AND MANUFACTURE THEREOF FIELD OF THE INVENTION This invention relates to a thin metal or plastic plate heat exchange channel element, and manufacture thereof, having on a portion of its surface isostress contours with substantially uniformly disposed unidirectional wall-supporting projections.

BACKGROUND OF THE INVENTION The need for light weight, inexpensive heat exchange elements for various heat transfer applications has been in demand by industry for a long time. The automobile industry has constantly been searching for a compact, light weight radiator for use in cooling the internal combustion engine. Various types and styles of radiators have been designed, such as the individually finned round tubes, the hexagon-shaped air tubes with water passages between the tubes, and the flat dimpled water passages with air flow therebetween. The pre-l942 automobile engines were designed to deliver between 150 and 125 horsepower and required radiators operable close to atmospheric pressure. A simple solder joined finned-copper constructed radiator was therefore sufficient to cool the low horsepower engine of the automobile without much of a threat of overheating. Various copper radiators having cup-like or frusto-conical surface projections have been designed durng this prel942 period but the finned copper radiator proved more succesful and suitable for automobile applications.

The automobile industry, however, in the post-1945 era embarked upon the design of higher power. rated engines while simultaneously attempting to compact them as much as possible. This dual design approach coupled to the employment of improved lubricants resulted in an internal combustion engine capable of operating at high permissible temperatures. To satisfy the heat transfer requirements of such compact high power rated engines and ,to avoid loss of coolant, the tube and fin copper radiators were designed to operate under pressure so, as to increase the boiling temperature of the coolant. However, within the last several years, additional power operated equipment, such as air conditioners and the like, was added to the automobile thereby further increasing the demands on the internal combustion engineand consequently the duty of the heat rejection system. This has necessitated the designing of present day radiators to operate at pressures as high as psig to prevent coolant loss and overheating. The operating temperature of the automobile engine is anticipated to rise further in the near future thereby necessitating a heat transfer system operable with existing coolants under still higher pressure conditions. The

a conventional type finned-copper radiator will not perterial for radiator applications from an economical standpoint.

An alternate solution to the conventional type finned-copper radiators for heat transfer applications in the automobile, is to replace the soft soldered copper I fins with aluminum fins. Although aluminum is less expensive than copper, the fusion bonding of aluminum fins to the tubes of a conventional radiator by brazing techniques is expensive. In addition, if a corrosive flux is used, the deposits left by the salt bath of the brazing process must be meticulously removed. Alternate brazing techniques and methods, i.e., vacuum brazing, are still in the experimental stage and when perfected their high cost will probably overwhelm the savings otherwise gained in the use of aluminum rather than copper for producing automobile radiators. Other proposals have been advanced, such as the use of adhesive bonding between the fins and tubes of a radiator. However,

the' low thermal conductivity of present day adhesives renders this approach inefficient for radiator applications.

In heat exchange applications requiring pressurebearing walls as the primary heat exchange surface, the present invention enables such walls to be fabricated from thinner thermally conductive material than is presently required of conventional type primary heat exchangers. In order to utilize relatively thin sheet materials, the walls of conventional type pr'imary'heat exchangers have to be stayed by means of numerous support members so as to reduce stress in the walls. However, stayed walls are normally not practical because of the followingreasons:

a. high stress concentrations are still produced in the wall at the point of attachment of the stays;

b. a substantial amount of material is required in the stays, and in heat exchangers such stays contribute only indirectly if at all to' heat transfer;

c. the numerous stays are tedious and expensive to install, particularly in. heat exchangers where the spacing between walls is very small and often inaccessible. The present invention overcomes the above drawbacks by providing an isostress contoured heat exchange surface which upon being subjected to a differential pressure across its wall will result in a substantially uniform fiber stress distribution in the wall. This uniform stress distribution substantially eliminates stress concentration points in the wall of a heat exchange element thereby permitting the element to be fabricated from rather thin sheets of thermally conductive material.

Another approach to the elimination of stayed walls in primary surface heat exchangers is disclosed in simultaneously filed copending application, Ser. vNo. 189,509 titled Primary Surface Heat Exchanger," L.C. Kun and J .B. Wulf, which relates to dimensionally sized and spaced truncated-conical projections in thermally conductive walls.

The present invention is directed to an all-purpose, primary-surface heat exchange channelized element having on at least a portion of its surface isostress con tours with substantially uniformly disposed unidirectional wall-supporting projections. The heat exchange element is economical to fabricate and when employed in stacked units, they are admirably suited as a heat ex changer for use with internal combustion engines.

SUMMARY OF THE INVENTION The primary-surface heat exchanger of this invention basically comprises at least one channel element formed and bound by at least one thin walled, thermally conductive metal or plastic material, such channel element having an entrance opening, an exit opening and a multiplicity of isostress contours on a portion of its wall surface with substantially uniformly disposed unidirectional wall-supporting projections formed from the wall in a dimensional relationship to be discussed hereinafter. The wall-supporting" projections are arranged so as to mate with and abut against corresponding wall-supporting projections on a similar adjacent isostress wall. At least two such channels, when aligned in juxtaposed relationship, will form a heat exchanger having a first set of passages defined by and bound within the conductive walls of each channel, and a second set of passages defined by, and disposed between, the juxtaposed channels so that a first medium can be fed through one set of passages while a second cooler medium can be fed through the other set of passages thereby effecting a heat exchange between the mediums without having the mediums intermix.

The term primary-surface heat exchanger refers to heat exchangers wherein substantially all the material which conducts heat between two media comprises the walls separating the two media. In contrast, secondary surface heat exchangers contain a substantial amount of material in the form of fins which do not separate the media but are contacted onvir'tually all surfaces by a single medium. In addition, in heat exchange applications wherein a pressure difference exists between the two media of the system, substantially all of the heat exchanger material is stressed pneumatically. Stated another way, primary surface heat exchanger refers to a heat exchanger consisting primarily of plates or sheets and having no separate or additional internal members, such as fins, so that the exchanger is constructed of plates or sheets each side of which is in contact with a different fluid, and heat transfer is substantially and directly between the plates and the fluid.

An isostress surface is a continuously curved surface having a multiplicity of isostress contours'wherein each contour has a multiplicity of radii with theoretically no flat segments and resembles the curve contour of a shear-free soap bubble membrane. The lack of flat or pointed surface segments substantially eliminates stress concentration points that are present in conventional type dimpled surfaces when such-surfaces are subjected to a differential pressure across their surface areas. Thus substantially pure tension or pure compression loading is obtained by utilizing the thin walled isostress contoured channelized element of this invention. Pure tension or pure compression loading of a finite thickness, pressure bearing wall results in the substantially uniformly distribution of fiber stress through the cross-sectional area of the wall parallel to its surface. For stacking or abutting two or more isostress contoured walls together, wall-supporting unidirectional projections are disposed in a pre-aligned space relationship on the surface of each element so that when the walls are juxtaposed, the outer extremities of the wall-supporting projections, hereafter referred to as buttons, will be in touching relationship. With refer- .ence to any adjacent pair of pressure withholding walls,

wherein the buttons of both walls project inward into the space between the walls, the forces due to the pressure either external or internal of the pair will be substantially balanced, i.e., the secured contact between the buttons will sustain by tension or compression the entire force due to the pressure and no other structural member will be needed to absorb the load. Thus pressure force will be counter-balanced by'a restraining force developed within the pair ot'walls without the ne cessity of any external structure.

With reference to any adjacent pair of pressure withholding walls, wherein the buttons of both walls project outward from the space between the walls, the pressure either external or internal of the pair will not be balanced and a member external of the pair will be needed on each exposed face of the pair to absorb the load by supportive contact with the buttons in either tension or compression. Thus a restraining force will not be developed within the pair of walls to counterbalance the pressure force. In a series, stack or array of walls, the member external of the pair may be yet another isostress contoured wall with buttons matching those of the juxtaposed surface of the pair.

With reference to any series, stack or array of isostress contour, pressure withholding walls wherein the buttons of the two outermost walls of the stack project inward toward the stack, the forces due to pressure will be substantially balanced throughout the stack and no other structural member will be needed to absorb the pressure load and to restrain the walls from deflecting outward from the stack.

With reference to any series, stack or array of isostress contour, pressure withholding walls wherein the buttons of the two outermost walls of the stack project outward from the stack, the forces due to pressure will not be balanced within the stack and a structural member will be needed juxtaposed in supportive contact with the buttons of each outermost wall to absorb the pressure load and restrain the stack.

Since the isostress contoured channel is designed as a primary-surface heat exchange channel, its wall material need not be highly conductive and thus can be selected from at least one of the groups consisting of metals, metal alloys, metal clads, plastics (such as Mylar), plastic-coated metals and the like. The criteria of the material selected for the heat exchange isostress channel is that it be only sufficiently thermally conductive so that as a hot medium is passed through the channel, the heat of the medium will be conducted through the wall of the channel to a cooler medium external of, and adjacent to, the channel which can absorb the heat thereby successfully effecting a heat transfer between the mediums without intermixing of said mediums. Materials such as aluminum, copper, steel, brass, titanium and Mylar are suitable for this application.

Substantially uniformly disposed wall-supporting projections is intended to be broad enough to include a pattern of wall-supporting projections having a progressive variation in spacing along at least one axis of the heat exchange element. In addition, as hereinafter stated, additional wall-supporting projections can be provided along the curved portion of the channel which may have a spacing relationship different from that of wall-supporting projections occupying the central portion of the heat exchanger element.

The dimensions of, and the dimensional relationship between, the wall-supporting projected buttons on the isostress contoured surface are somewhat restrictive depending on the end use environment of the heat exchange channel. The pattern of wall-supporting projected buttons can be arranged in a square, diamond, triangle or any other design configuration depending somewhat on the actual shape of the channel and the intended differential pressure to which the wall of the channel will be subjected in its intended environment.

To minimize the resistance to flow and maximize the heat transfer effectiveness of any defined flow area of a heat exchange channel, the wall-supporting projected buttons of selected shape should be designed and arranged in only such size, number and pattern as will provide the restraint necessary to withstand the maximum differential pressure for which the channel wall is designed in its intended environment. Once the desired size and pattern of the wall-supporting projected buttons are determined, the isostress contoured surface, necessary for maximum heat transfer in an intended end use pressurized environment, can be imparted to the surface of a thin-walled thermally conductive sheet of material along with the'wall-supporting projected button contours by any conventional technique such as pressing, stamping,'rolling or the like.

A thermally conductive isostress contoured, wallsupporting button projected sheet, so prepared, can be longitudinally folded upon itself with the projected buttons facing either inwardly or outwardly, and the folded sheet segments spaced sufficiently apart so as to define tained. In a cross-flow heat exchange operationalmode, the heat exchanger of this invention will provide a low frontal area and a low external fluid pressuredrop. Frontal area is the area of the projection of the entire array of heat exchange channel-s onto a plane normal to the direction of fluid flow through the channelized passages. Low external fluid pressure drop is the static pressure drop across the length of the flow a passage therebetween. When the buttons project inwardly of the passage, they should match and contact with buttons extending inwardly across the passage from the opposite wall. The width of the passage so formed is thereby defined by the projected heights of the wall-supporting buttons. Since stress concentration may occur at the bending area of the sheet in its intended operational environment, additional wallsupporting projections may be disposed within the .vicinity of such areas so as to equalize the stresses throughout the channel structure. The longitudinally mating edges of the sheet can then be suitably sealed by conventional techniques, i.e., soldering, brazing, welding or with an adhesive filled lock-seam joint, to make it leak-tight. This isostress contoured, unidirectional wall-supporting button projected channel is then ready, for use as a heat exchange element. When an isostress channel is formed with buttons projecting inwardly and when intendedfor internal pressurization, then the button contacting surfaces within the passages should be bonded together by conventional means as soldering, brazing or with an adhesive. An array of channels so formed with the wall-supporting projected buttons in touching relationship, can then be appropriately assembled to'produce a compact, efficient primary-surface heat exchanger. When the wallsupporting projected buttons are disposed outwardly, then the channels can be superimposed in button touching relationship wherein the heights of the projected buttons will define the size of the passage between adjacent channels. When the wall-supporting projected buttons are disposed inwardly, then the channels will have to be spaced apart by some additional means so as to define apassage between adjacent channels. A pressurized medium, such as hot water, could then be passed through the channels while a coolant medium, such as cool air, could be passed between, and contact the outer surface of, the channels thereby effecting a transfer of heat between the mediums. The isostress contoured, wall-supporting button projected sheet could also be fabricated into a circular or spiral channel, or any multiple sided channel by appropriate bending and/or folding techniques. Theheat exchange cannelized elements so formed can also be shaped into any curvilinear configuration and then superimposed one on the other leaving defined passages therebepath of the external coolant medium.

The mediums can be fed through their respective passages in a mutually parallel relationship, a perpendicular relationship or at any angle relationship therebetween. I

DESCRIPTION OF THE DRAWINGS FIG. 1 lsostress contoured surface.

FIG. 2 lsostress die casting apparatus.

FIG. 2A View taken along line 2A--2A of FIG. 2.

FIG. 2B Apparatus of FIG. 2 operating'under vacuum.

FIG. 3 Log-Log graph of stress vs. surface height of an isostresscontoured surface in a 0.007 inch thick aluminum sheet.

FIG. 3A lsostress contoured surface.

FIG. 4 .A graph of applied pressure vs. surface deflection for various aluminum contoured surfaces.

FIG. 4A- Truncated cone surface.

' FIG. 5 4 Isometric view of an automobile radiator employing the heat exchange elementsof this invention. I

FIG. 5A View taken of the longitudinal edges of a heat exchange element of FIG. 5. I

FIG. 5B Side view of elements 1 of FIG. 5.

FIG. 5C Alternate embodiment of elements 1 of FIG. 5.

FIG. 5D Alternate embodiment of the longitudinal edges of elements 1 of FIG 5.

FIG. 6 Isometric view of an array of isostress channels with outwardly projected buttons.

FIG. 6A Cross-sectional view of channels in FIG. 6 taken along line 6A6A.

FIG. 6B Sectional side view of channels in FIG. 6 taken along line 6B-6B.

FIG. 7 Isometric view of an array of isostress channels with inwardly projected buttons.

FIG. 7A Sectional side view of channels in FIG. 7 taken along line 7A-7A.

An isostress contoured surface segment A is shown in FIG. 1 and resembled the contour of a shear-free ing a height dimension H measured along the Z axis from the X-Y plane at the coordinate intersection of X=0, Y=0. Subjecting a thin structure, having an isostress contour as shown in FIG. 1, to a differential pressure across its wall area C will result in imparting substantially pure tension or pure compression to the wall void of any appreciable shear or bending forces thereto, i.e., pure tension or pure compression results in uniform distribution of fiber stress in the crosssectional area I of wall A parallel to its surface area C as shown by the arrows in FIG. 1. Thus a thin membrane having an isostress contour can withstand greater differential pressure without deforming or rupturing than a non-isostress membrane of identical size and thickness. An isostress contoured wall can be fabricated using the following equation which is developed for an ideal shear-free, soap bubble membrane. The

equation relates the externally applied force A P and the internal resistance 6 to the contour of the bubble expressed in terms of dZ/dX and dZ/dY as follows:

the fiber stress developed in a thin material of finite thickness t when subjected to a pneumatic pressure difference AP across the wall. Solution of the equation depends upon defining known conditions existent along the boundaries ofa typical symmetrical segmentof the curved area contained within'the repetitive pattern of supports, such typical symmetrical segment being chosen such that its boundary conditions are known. The segment should be as small as symmetry will permit in order to simplify computation. It should be noted that equation A is applicable for any pattern of supports as long as the typical symmetrical segment is chosen to suit the specific pattern employed such that the conditions at the boundaries of such symmetrical segment are known. In general, the partial derivative of the normal to any edge of a symmetrical segment with respect to an axis perpendicular to the plane containing the support points is zero. Thus the slope at the boundary edges of a symmetrical segment with respect to the plane containing the supports is zero which indicates no vertical component of force.

For a square pattern of supports B as shown in FIG. 1, the smallest typical symmetrical segment of the area A is triangle I defined by edges E, F and G. Triangle J is a symmetrical segment because area A contains eight such identical triangles. Thus knowing the boundary conditions of the smallest repeatable segment of an arcawill simplify the solution of equation A. The tip of the triangle .I covered by support 8 is excludedfrom the symmetrical segment of the area. Along the edges E, F and G, the partial derivative of Z(X, Y) with respect to the normal to such edges is zero; e.g., dZ/dN 0 where N is any line parallel to the reference plane XY and normal to edges E, F and G, respectively, of triangle J.

Now if one assigns values to D, H and d, for a specific application, then a value for (AP/6) can be obtained. Recalling the assumption that 5 St, the designer may select values for two of the terms AP, S and t and calculate the other. For example, a square aluminum isostress contoured wall 0.009 inch thick, having a dimension H of 0.030 inch at its center, a D dimension of 0.4 inch and a support B dimension radius of 0.060 inch, was calculated as having a fiber stress S of 4,000 lb/in when subjected to a pressure differential of 25 lb/in.

Alternatively, values may be assigned to AP, S and t and a solution for H may be rendered in terms of D. This allows the designer to choose between numerous sets of values of D and H to suit fluid flow and heat transfer requirements.

Still another use of the equation is to map the surface contour. Assume that boundary conditions have been established and that values for AP, S, t, D and H have been assigned. The equation can be solved for an array of X, Y values to obtain corresponding values of Z. This provides a listing of coordinates at numerous points on the surface which can be employed, for example, to produce a forming die.

Truncated cone impressed surfaces, as shown in FIG. 4A, if fabricated from the same material and having the same thickness and size as the 0.4 inch square isostress contoured wall segment above, could not function under a differential pressure of 25 lb/in as well as the isostress surface and would be more susceptible to failure due to fatigue loading, fatigue loading being the intermittent loading and unloading of a structure. A thinwalled thermally conductive material, such as aluminum below about 0.02 inch thick, impressed with an isostress contoured surface with wall-supporting unidirectional projections and then'formed into a channelized structure will produce a heat exchange element admirably suited for various heat transfer applications such as radiators for internal combustion engines.

A method for making dies having an isostress contoured surface with spaced apart wall-supporting unidirectional projections for use in the fabrication of heat exchange elements would consist basically in fabricating a block having on its surface multiple verical projection supports forming a pattern and being dimensionally sized to correlate to the pattern and size of the wall-supporting projections desired in an isostress contoured surface. Upwardly extending sides are provided around the edges of the block, thereby producing a recess or cavity which contains the vertical supports. The cavity would be connected to pressurizing means so that when a flexible material is tensionally secured across the top of the cavity and also contacting and supported by the vertical projected supports, the pressurizing means can be operated to force the unsupported portion of said flexible material into the cavity while the vertical projected supports prevent deflection of the supported portion of the flexible material thereby causing the flexible material to assume an isostress contour having wall-supporting projections.

Thereafter a form setting material can be deposited onto said flexible material and whenv properly cured,

the pressurizing means can be deactivated. The cured material having the isostress contoured surface with substantially uniformly disposed unidirectional wallsupporting projections is then ready to be used as a die for fabricating isostress contoured heat exchange elements of this invention.

An illustration of this die making method will be described in, conjunction with FIGS. 2, 2A, and 2B. A'

pressure block 21 has openings 22 interconnected to passage 23 which in turn is coupled to vacuum pump 24, bleed valve 25 and monometer 32. Projections 26, spaced to provide the desired pattern of an isostress contoured surface, project a distance from surface 33 g which exceeds the maximum height H of the desired element which when assembled to structurally alike or structurally different heat exchange elements, will produce a primary-surface heat exchanger having excellent heat transfer capabilities.

Although reference is made to the heat exchange elements of this invention as having an isostress contoured surface, it is to be understood that fabrication techniques prevent the imparting of an exact shear-free isostress contoured surfaceto a material having a finite thickness. Even the most flexible and elastic of materials does not perform precisely as anideal soap bubble membrane. Inherently, thickness implies that some minimal-shear and bending stresses will be present to cause deviations from the ideal contour. Such deviations occur, not only in the elastic material used to produce a die as in FIG. 2, but also in the wall materials subsequently formed from the die. Moreover, the

weight of form-setting materials cast over a pneumatically-shaped film causes other deviations from an ideal je ctions 26. A flexible membrane 29, such as natural or a synthetic rubber, is tensionally stretched onto frame 27 and secured thereat by tack means or the like (not shown). Preferably flexible membrane 29 rests on top of projections 26. A second frame 30, substantially similar to frame 27, is placed on top of frame 27 and is secured to frame 27 at its corners and/ or around the .entire frame at preselected spacings by screw means 31.

With flexible membrane 29 air-tightly secured to pressure block2l via frames 27 and 30, vacuum pump 24 is activated whereupon flexiblemembrane 29 is suctioned into the openings 35 between projections 26 as shown' in FIG. 28. By regulating the pressure created by vacuum pump '24, as indicated on monometer 32, via bleed valve 25, an isostress contour can be imparted toflexible membrane 29 between projections 26. Projections -26 should be of a sufficient height so as to prevent flexible membrane 29 from deformably touching surface 33 of openings 35. Upon attaining a desired isostress contour in membrane 29 for a particular intended end use application, a form setting material 34, suchas epoxy resins, thermoplastics, concrete, cement or the like, is deposited into frame -where it is sup.- ported by the flexible membrane 29.'Form setting material 34 is then allowed to cure. The horizontal surface 36' of projections 26 impart to flexible membrane 29, and, thus, to form setting material 34, inward projections 37 each having a horizontal button segment 38. Although this horizontal button segment 38 of each inward projection 37 is shown flat, it may be curved, wavy or suitably ridged as long as it is shaped to mate with other button segments on similar type projections.

spaced on a cooperating isostress contoured surface so i that when the surfaces are formed into channels they can be stacked to produce a multi-channel structure. Thereafter, vacuum pump 24 is deactivated, frame 30 is disassembled and the cured form setting material 34 is removed. This isostress contoured surface with wall supporting projections 37 can then be used as a master cast for the fabrication ofa mold or it may be appropricontour. In addition, the elastic memory or spring-back characteristics of many thermally conductive wall materials hinders the attainment of a true shear-free isostress contour being impressed on their surfaces. Finally, the pressure difference AP imposed across the wall when in service produces deflections in the wall which cause departure from the as-forrned contour. Whereas some deviations may counteract others, the net result will usually be a slight deviation in crest height H from the value assumed in the design of the surface. In isocompression applications, the net deviation of the height will usually result in a lower value of H than assumed in the design. Therefore to compensate for this deviation, a slightly higher value of H could be assumed for design purposes." The equation for the isostress contour given previously does not take into account the deflection of the wall under service pressure, the spring-back of materials when formed with a die,'or the deflections of molds due'to the weight of form-setting materials. After an isostress wall has been formed, its performance can be checked by means of the foregoing equation. Actual measurement of H can be made with the wall under service pressure differential AP,and this value can be used in the equation to calculate the actual fiber stress S under load AP. It will then be known whether the maximum allowable stress isbeing exceeded and whether the deviations are tolerable or excessive.

If the actual stress with deviations isconsidered excessive, then the design of the wall can be refined and improved. For example, actual measurement of the surface will'show the net deviation of H from the ideal dimension assumed in the original design. An adjustment in H can now be made sufh that when a new wall is material thickness, material characteristics and fabrication techniques.

For general heat exchange application, an isostress contoured surface, as illustrated in FIG. 3A, having a repeatable wall-supporting projection spacing D of between about 0.2 and about 2.5 inch; a "/d ratio between about 3 and about 10, a ratio between about 0.05 and about 0.2 and a sheet or wall thickness between about 0.003 and about 0.25 inch will be quite suitable. As used above and as shown in FIGS. 1 and 3A, H equals the maximum height measured perpendicularly from a surface which contains the extremities of the wall-supporting projections (X-Y plane) to the innermost crest of the isostress surface of said element (along the Z axis), D equals the spacing between the center of the closest adjacent wall-supporting projections on the surface of said element, and d is the equivalent diameter of the projection defined by the ratio 4a/p whereby a equals the area of the load bearing segment (button) of the wall-supporting projection and p equals the perimeter of said load bearing segment. Where the configuration of the load bearing segment is a circle, d is equal to the diameter of such circle as shown in FIGS. 1 and 3A. The load bearing segment is shaped to mate in touching. relationship with similar type load bearing segments on wall-supporting projections on a second heat exchange wall.

The limitation on the D spacing is imposed because spacing less than 0.2 inch results in very small hydraulic radii on the concave side of the isostress wall thereby being very susceptible to fouling, i.e., trapping of foreign matter between adjacent walls, which if excessive, would clog the passages for one of the fluid mediums. A high externalfluid pressure drop per unit length of fluid flow path would also result. Spacing D above 2.5 inches would result in a small heat exchange area per cubic foot of heat exchange volume thus resulting in excessive manufacturing cost and decreased efficiency. Also the ability of the material to withstand a differential pressure across its wall thickness would be decreased.

For "M ratio of less than 3, the allowable differential pressure across the wall of a channelized heat exchange element would go up, but a very large percentage of the surface area would be lostfor heat'exchange purposes. On the other hand, a "/d ratio of greater than would require tightmanufacturing tolerance to insure the mating of bearing segments on abutting isostress walls and would also localize and concentrate the load at the contact point of the bearing segments and produce stresses sufficient to cause rupture or excessive deformation of the isostress walls.

A "/D ratio smaller than 0.05 would result in an isostress surface having very small hydraulic radii on the concave side steadily approaching almost a flat surface whereupon. the advantages of the isostress contour would vanish. A heat exchanger composed of isostress channels with such a small "/D ratio would also be susceptible to fouling and have a high external fluid pressure drop per unit length of fluid flow path. For a "/D ratio of greater than 0.2, a small heat exchange area per cubic foot of heat exchange volume would result thereby resulting in excessive manufacturing cost and decreased efficiency.

A material thickness of less than 0.003 inch would be unsuitable due to local imperfections in the metal, produced during rolling or as a result of pitting (corrosion) or erosion. A material thickness to above 0.25 inch is not suited to this invention when employed within the imposed limits of D, H and d, because full or near-full utilization of the material strength implies extremely high pressure differentials. Embodiments wherein pressureforces are not balanced within the channels require massive external structures to absorb the loads, while force-balanced embodiments wherein wallsupporting projections are bonded together and loaded in tension would be characterized by severe stress concentration in such bonded areas.

To meet the specific heat exchange requirements for radiators of internal combustion engines, the allowable ranges expressed above should be narrowed to the following: a repeatable distance D between about 0.2 and about 0.6 inch, a "Id ratio of between about 3 and about 7; a "/D ratio of between about 0.05 and about 0.12; and a sheet or wall thickness between about 0.003 and about 0.02 inch. The preferred dimensions of an isostress contoured surface for automobile radiator applications are a repeatable D of about 0.4 inch, a height H of about 0.035 inch, a button dimension width d of about 0.09, a "/d ratio of about 4.8, a "/D ratio of about 0.08 and a sheet or wall thickness of about 0.008 inch.

As an illustration of this invention, the following example will be directed to the fabrication of an automobile radiator employing the primary-surface heat exchange elements described above. A log-log graph of stress versus height H (same as H in FIG. 1) of an isostress contoured surface having uniformly spaced wallsupporting projections in a square pattern on an aluminum sheet 0.007 inch thick was plotted as shown in FIG. 3 using the aid of a computer. Repeatable wallsupporting projection spacings D of 0.2, 0.4 and 0.8 inch, measured between the closest adjacent projected supports as illustrated in FIG. 3A, produced three parallel lines as shown in FIG. 3. Assuming a maximum allowable cross-sectional area stress for the aluminum sheet to be between about 2,000 and 4,500 psi in its intended operational mode, and a wall-supporting projection height H of between about 0.025 and about 0.04 inch, then an isostress contoured surface with a repeatable spacing of D between adjacent projected supports between about 0.3 and about 0.6 inch would be admirably suited for heat exchange applications such as for automobile radiators. These ranges of D spacing and H projection heights, shown cross-hatched on the graph of FIG. 3, are representative of aluminum. base alloys such as type 1100 and 3003 stressed to a relatively low level, i.e., with a high factor of safety. Based upon such stress levels, the cross-hatched area may serve as a guide for producing a multiple-curved isostress contoured surface in a thin wall aluminum sheet which upon being fabricated into channel structures as described above will yield an effective and efficient heat transfer radiator for the internal combustion engine. If stronger material and/or lower factors of safety were used then the allowable stress ranges would move upward. Thus the allowable D-dimension range would increase for the same limits of the H-dimension.

The allowable deviation from a theoretical isostress contoured surface for automobile radiator applications using 0.008 inch thick aluminum sheet material was investigated by plotting curves of applied pressure (lb.sq. inch) versus surface deflection (inches). An isostress contoured surface having sixteen wall-supporting projections arranged in a square pattern was stamped on the aluminum sheet. The D spacing between the projected supports was 0.4 inch and the height H was 0.035 inch as shown in FIG. 3A. Pressure was applied to the isostress contoured surface of the aluminum sheet on the convex side of the curvature such 'as to place the material under compression and the deflection at the center of the diagonals of the square pattern was measured. This data is shown plotted on the graph of FIG. 4. Truncated-conical projections or indenta.- tions, as shown in FIG. 4A, with cone angles of 30 or 45, and heights H of 0.035 inch, were likewise stamped onto identical aluminum sheets in the same square pattern and then subjected to the same type pressure versus deflection testing. The 30 cone surface is an embodiment of the above-identified copending application. The data obtained using both the 30 cone and 45 cone projected sheets is also shown plotted as curves on the graph of FIG. 4. The cone angle 0 is the acute interior angle measured between the horizontal undeformed surface of the wall adjacent the projected indentation and the substantially straight segment along the sloped side of the conical indentation.

Deflections of the crest of the surface tending to flatten the wall are objectionable and should be minimized even though such deflections may be safely below the buckling point of the material. As noted previously, dried represent deviations from the ideal soap the membrane contour. If the deflections are excessive, the ideal contour cannot be closely approached under service pressure differentials even employing allowances are made in the design. Moreover the material is usu ally stressed in bending and shear as member deflects, and when deflections are excessive the material may experience stresses approaching the yield point in localized areas. If such deflections are imposed repeatedly in service, the material may be fatigued and crack after a relatively short service life. Additionally, deflecv tions reduce the available space between the heat exchange walls in the lower pressure passages, and result either in higher fluid pressure drop or in reduced rate of fluid flow. With reference to FIG. 4, it is seenthat the isostress contoured wall used in the tests exhibited virtually no deflection at the crest for pressure differentials as high as 35 psi. In contrast, the cone surface deflected severely at low pressure differentials.

In the foregoing tests of the isostress contoured surface, and the 30 and 45truncated-conical surfaces, the stress in the material was also measured directly by means of strain gauges at 30 psi differential pressure. The stress was measured on the diagonal at the point where the inclined surface of the conical indentations I met the flat undeformed segment of the material, i.e., in the radius R are. The following data was taken:

Surface Stress, psi isostress contour 13,800 30 cone 18,400 45 cone 42,000

The data shows the increase in stress resulting from use of the 30 and 45 cone surfaces over the isostress contour surface. It should be noted that in order to achieve the isostress wall of this invention, it is essential that all the surface area exclusive of the wall-bearing supports be unrestricted so as to be free to deflect and therefore be devoid of local mechanical loading. It has been found that when the crest of the contour of adjacent pairs of isostress channels are bonded securely together, then the bonded contacts between channel pairs provide a portion of the support for the walls against pneumatic pressure force, and when the surface of such a crest-bonded arrangement is pressurized pneumatically on its convex curvature, the localized mechanical constraint at the center or crest of the curved surface produces extreme shear and bending stresses which result in destruction of the isostress walls at low pneumatic loading.

Once the dimensions of, and the dimensional relationship between, the desired isostress contoured segments and the wall-supporting projections of a heat exchange element are determined, a die can be prepared as described above. The die can then be used in conventional type apparatus toimpart the desired isostress wall supporting projections facing inward or outward.

Instead of preparing one large sheet and folding it, two sheets may be prepared and formed appropriately at the longitudinal edges for bonding and then spaced apart bysuitable means to form a flattened tube-like configuration. If desired, the longitudinal edges of the sheets could be flared a specific amount so that when said longitudinal edges of two sheets are juxtaposed in touching relationship, they will provide the desired spacing within the channel. The edges of the sheets can be potted as with epoxy resin to seal the sheets leaktightly together to form tube-like configurations, an array of which can be sealed leak-tightly into a header to form a radiator assembly.

As shown in FIGS. 5, 5A and 5B, flattened tube-like heat exchange elements 1 can be air-tightly sealed along their edges 2-3 using a lock-seam joint filled with an adhesive 14, such as a suitable epoxy type adhesive. The heat exchange elements 1 having an isostress contoured surface 4 with spaced apart wall-supporting pro jections 5, can be superimposed with the surface extremities l7 (buttons) in touching relationship to form a multiple layer'heat exchanger. As shown in FIG. 5B, the touching projected buttons 17 provide passages 15 between adjacent heat exchange elements 1 defined by the isostress contoured surfaces 4 of the adjacent elements 1, and in addition, the contacting buttons 17 act as a restraint against internal pressure in the heat exchange elements I. The projected button 5' could be offset or non-symmetrically disposed on opposite sides of each element 1', as shown in FIG. 5C, thereby altering the passage area of element 1'. The ends 6 of ele-' ments 1 are slightly depressed, if necessary, to provide a clearance for the teeth 7 of comb-shaped members 8. Members 8 retain elements 1 in proper relationship and provide an outer plate segment 9 adaptable for securing header 10 thereto. In addition, members 8 must also produce a leak-tight seal to header 10 and to the channel elements 1 so that in the operational mode a fluid fed through the elements 1 via'the header 10 will not leak into the space between adjacent elements 1. As shown, header 10 can be secured to members 8 by using an adhesive type joint arrangement. A suitable resin for use in adhesive type joints for aluminum is Resin Type EA-914, manufactured by I-Iysol Division of Dexter Corporation, California. However, this resin must be used in conjunction with an Alodine process for pretreating the surfaces to be bonded. An Alodine pretreatment process would basically consist of the following steps:

a. soaking and rubbing the surfaces to be bonded in acetone to degrease;

b. immersing the surfaces in weak H PO acid for 10-15 seconds at room temperature;

c. washing the surfaces in water;

d. immersing the surfaces in Alodine No. 1200 at room temperature for 5 to minutes (Alodine No. 1200 is manufactured by Amchem Products, Inc., Freemont, California, and contains acidic chromates and fluorides);

e. washing the surfaces with water; and

f. drying the surfaces.

The dreid surfaces can thereafter be bonded with hte resin preferably within about a four (4) hour period. Elements 1 can then be retained together by emplouing a tension-type channel 12 which can be secured to either members 8 and/or to a separate structure emmber 13. Channel 12 must also be designed rigidly with sufficient cross-sectional moment of inertia to absorb a bending load and to permit small expansion of elements 1. Members 8 and/or 13 can further be secured to a frame of the automobile for better support. To better illustrate the dual set of passages of an array of elements of this invention, FIGS. 6, 6A and 6B ahsow an array of elements 21 with outwardly protruding wall supports 22. Passages 23 in elements 21 define one set of confined passages independent of and separate from a second set of passages 24 formed between adjacent elements 21. One fluid, shown as solid line arrows, can be fed through passages 23 in elements 21 while simultaneously a second cooler fluid, shown as broken line arrows, can be fed through passages 24to effectively cause a transfer of heat from the hotter fluid to the cooler fluid without having them intermixed. For this type isocompression embodiment, a rigid frame or support similar to support 12 of FIG. 5 is required so as to constrain the stack of elements 21 along the sides. FIGS. 7 and 7A illustrate a similar array of elements 30 except that the wall-supporting projections 31 are inwardly projected. Passages 32 within elements 30 are independent of and separate from passage 33 formed between adjacent elements 30. One fluid, shown as solid line arrows, can be fed through passages 32 while simultaneously a second cooler fluid, shown as broken line arrows, can be fed through passages 33 to effectively cause a transfer of heat from the hotter fluid to the cooler fluid without having them intermixed. For this type of element arrangement, spacers 34 are required to space the elements 30 sufficiently apart so as to define passages 33. It is to be understood that the spacer 34 could be similar to the comb-like structure 8 as shown in FIG. 5, which in turn could be coupled directly to a header similar to header 10 illustrated also in FIG. 5.

In the operational mode of an automobile radiator, as shown in FIG. 5, hot water from an internal combustion engine is fed through elements 1 while cool air is circulated through the passages 15 formed between adjacent elements I. To increase the efficiency of the heat exchange elements I, one or both of the edges 2 and 3 may be extended to provide a secondary surface heat dissipating fin 16 as shown in FIG. 5D. The fin, which could also be added to the elements by conventional securing means, can be provided with dimplings to promote turbulence, or provided with slots or assume any other desirable geometric configuration which would enhance the performance of the heat exchange elements. Also side bars could be used to separate the elements as shown in US. Pat. No. 3,291,206 or edge ribs, as shown in US. Pat. No. 3,106,242.

Although the above illustration was directed to automobile radiators, the primary-surface heat exchange element of this invention can be employed in any type heat exchanger wherein a heat transfer between a heated medium and a coolant medium is to be accomplished without an intermixing of the media occurring. The design flexibility of the primary-surface heat exchange elements of this invention makes them admirably suited for complex type heat exchanger applications including pre-heaters for gas turbines and low grade heat rejectors for atomic power plants.

As used herein, Mylar is a tradename of E. I. DuPont Company and Alodine is a tradename of Amchem Products, Inc.

What is claimed is:

l. A primary surface heat exchanger comprising at least one channel element bound by two thermally conductive walls being spaced by edge portions, said channel element having an entrance opening at one end, an exit opening at the opposite end, and a multiplicity of isostress contours on a portion of each wall surface with substantially uniformly disposed unidirectional wall-supporting projections formed from each wall, said projections having load-bearing segments at their extremities which are shaped for mating over a substantial area with similar type load-bearing segments on wall-supporting projections of a second isostress surface and formed with the wall between and surrounding said load-bearing segments being continuously curved and devoid of local mechanical loading; said isostress contours and wall-supporting projections having a dimensional relationship therebetween defined by a "/D ratio of between about 0.05 and about 0.2; a "/d ratio of between about 3 and about 10, a D dimension of between about 0.2 and 2.5 inches and a wall thickness between about 0.003 and about 0.25 inch; wherein H equals the maximum height measured perpendicularly from a surface which contains the extremities of the wall-supporting projections enclosing an isostress contour to the innermost crest of the isostress contour; D equals the spacing between the centers of the closest adjacent wall-supporting projections on the surface of and p equals the perimeter of said load-bearing segment.

2. The heat exchanger of claim 1 wherein said thermally conductive heat exchange element is made from g at least one material selected from the group consisting of metals, metal alloys, metal clads, plastics and plastic coated metals.

3. The heat exchanger of claim 2 for use in conjunction with internal combustion engines wherein said "/D ratio is between about 0.05 and about 0.12; wherein said "/11 ratio is between about 3 and 7; wherein said D dimension is between about 0.2 and about 0.6 inch;

change element is made of aluminum having a wall thickness of about 0.008 inch; said "/D ratio is about 0.08; said "/d ratio is about 4.8 and said D dimension is about 0.4 inch.

5. The heat exchanger of claim 2 wherein secondary surface heat dissipating fins are added to the edge portions of said channel element.

6. The heat exchanger of claim 3 wherein secondary surface heat dissipating fins are added to the edge portions of said channel elements.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US785580 *Nov 7, 1904Mar 21, 1905Alexander ShielsApparatus for condensing purposes.
US2281754 *Jan 27, 1937May 5, 1942Cherry Burreil CorpHeat exchanger
US3590917 *Nov 4, 1968Jul 6, 1971Linde AgPlate-type heat exchanger
GB159806A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4002201 *May 24, 1974Jan 11, 1977Borg-Warner CorporationMultiple fluid stacked plate heat exchanger
US4023618 *Aug 18, 1975May 17, 1977Union Carbide CorporationHeat exchanger headering arrangement
US4081025 *Sep 27, 1976Mar 28, 1978Borg-Warner CorporationMultiple fluid stacked plate heat exchanger
US4119140 *Nov 23, 1976Oct 10, 1978The Marley Cooling Tower CompanyAir cooled atmospheric heat exchanger
US4184543 *Aug 11, 1978Jan 22, 1980Olin CorporationHeat exchanger exhibiting improved mechanical and thermal stability
US4291759 *Aug 28, 1979Sep 29, 1981Hisaka Works, LimitedCross-current type plate heat exchanger
US4341601 *Nov 12, 1980Jul 27, 1982E. I. Du Pont De Nemours And CompanyHeat exchanging, polymer film, steam, spreading
US4497689 *Sep 30, 1983Feb 5, 1985Energiagazdalkodasi IntezetHeat engineering apparatus for carrying out thermodynamical processes comprising a pair of mutually opposite phase transitions of a work medium
US4512393 *Apr 11, 1983Apr 23, 1985Baker Colony Farms Ltd.Heat exchanger core construction and airflow control
US4624305 *Feb 25, 1982Nov 25, 1986Institut Francais Du PetroleHeat exchanger with staggered perforated plates
US4671856 *Apr 26, 1984Jun 9, 1987Superstill Technology, Inc.Method for recyclying energy in counterflow heat exchange and distillation
US4869067 *Jul 28, 1988Sep 26, 1989Superstill CorporationMethod of generating power
US4874035 *Aug 16, 1988Oct 17, 1989Shinwa Sangyo Co., Ltd.Heat exchanger for cooling tower
US4896411 *Jul 3, 1986Jan 30, 1990Carrier CorporationMethod of making a multiple cell condensing heat exchanger
US4947548 *Jul 3, 1989Aug 14, 1990Carrier CorporationMethod of making a heat exchanger for condensing furnace
US5036911 *Jun 19, 1989Aug 6, 1991Long Manufacturing Ltd.Embossed plate oil cooler
US5111577 *Jan 8, 1991May 12, 1992Atd CorporationPad including heat sink and thermal insulation areas
US5186250 *Apr 29, 1991Feb 16, 1993Showa Aluminum Kabushiki KaishaTube for heat exchangers and a method for manufacturing the tube
US5271151 *Feb 19, 1992Dec 21, 1993Wallis Bernard JMethod of making a high pressure condenser
US5369883 *Nov 8, 1993Dec 6, 1994Long Manufacturing Ltd.Method of making a heat exchanger
US5375328 *Aug 17, 1993Dec 27, 1994Miralfin S.R.L.Method of making an oil radiator structure having flanges with external flat surfaces
US5441105 *Nov 18, 1993Aug 15, 1995Wynn's Climate Systems, Inc.Folded parallel flow condenser tube
US5538077 *Jan 9, 1995Jul 23, 1996Long Manufacturing Ltd.In tank oil cooler
US5560425 *May 24, 1995Oct 1, 1996Calsonic CorporationMulti-flow type heat exchanger
US5576470 *Aug 29, 1994Nov 19, 1996Henkel CorporationPolyol esters of ether carboxylic acids and fiber finishing methods
US5603159 *Sep 27, 1995Feb 18, 1997Zexel CorporationMethod of producing heat exchangers
US5730213 *Nov 13, 1995Mar 24, 1998Alliedsignal, Inc.Cooling tube for heat exchanger
US5768782 *Jun 10, 1996Jun 23, 1998Zexel CorporationFlat tube for heat exchanger and method for manufacturing it
US5800905 *Sep 19, 1995Sep 1, 1998Atd CorporationPad including heat sink and thermal insulation area
US6186223Aug 27, 1999Feb 13, 2001Zeks Air Drier CorporationCorrugated folded plate heat exchanger
US6209202Aug 2, 1999Apr 3, 2001Visteon Global Technologies, Inc.Folded tube for a heat exchanger and method of making same
US6244333May 19, 1999Jun 12, 2001Zeks Air Drier CorporationCorrugated folded plate heat exchanger
US6378604 *Jun 28, 1999Apr 30, 2002Jon Charles FeindTo heat exchanger
US6382312 *Jan 29, 2001May 7, 2002Valeo Thermique MoteurHeat-exchange module, for a motor vehicle in particular
US6648067 *Apr 27, 2000Nov 18, 2003Joma-Polytec Kunststofftechnik GmbhHeat exchanger for condensation laundry dryer
US6688378Sep 4, 2002Feb 10, 2004Beckett Gas, Inc.Heat exchanger tube with integral restricting and turbulating structure
US6899167 *Feb 28, 2001May 31, 2005Valeo Thermique MoteurHeat-exchange module, especially for a motor vehicle
US6920918 *Mar 28, 2003Jul 26, 2005Modine Manufacturing CompanyHeat exchanger
US7032313 *Jan 20, 2004Apr 25, 2006Modine Manufacturing CompanyMethod of fabricating a heat exchanger
US7255155Nov 25, 2003Aug 14, 2007Beckett Gas, Inc.Heat exchanger tube with integral restricting and turbulating structure
US8459342Aug 10, 2007Jun 11, 2013Beckett Gas, Inc.Heat exchanger tube with integral restricting and turbulating structure
US20110017440 *Jul 23, 2010Jan 27, 2011Denso CorporationHeat exchanger
US20120037346 *Apr 20, 2010Feb 16, 2012Kim Young MoHeat exchanger
US20120198882 *Oct 15, 2010Aug 9, 2012Showa Denko K.K.Evaporator
DE102013218444A1 *Sep 13, 2013Mar 20, 2014Behr Gmbh & Co. KgWärmetauscher
EP0014481A2 *Feb 11, 1980Aug 20, 1980Union Carbide CorporationHeat exchange wall member, heat exchange channel element and heat exchanger employing same
WO1996010158A1 *Sep 26, 1994Apr 4, 1996Stellan GrunditzHeat exchanger
Classifications
U.S. Classification165/166, 165/152, 165/DIG.442, 29/890.39, 165/148
International ClassificationF28F3/04, B21D53/04, F28D1/03, B21D53/08, B21D13/02, B21D22/04
Cooperative ClassificationB21D22/04, B21D53/08, B21D53/04, F28D2021/0094, Y10S165/442, F28D1/0391, F28F2001/027
European ClassificationB21D53/08, F28D1/03L, B21D53/04, B21D22/04
Legal Events
DateCodeEventDescription
Sep 21, 1988ASAssignment
Owner name: KATALISTIKS INTERNATIONAL, INC., DANBURY, CT, A CO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UNION CARBIDE CORPORATION;REEL/FRAME:004998/0636
Owner name: UOP, DES PLAINES, IL., A NY GENERAL PARTNERSHIP
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KATALISTIKS INTERNATIONAL, INC.;REEL/FRAME:004994/0001
Effective date: 19880916
Owner name: KATALISTIKS INTERNATIONAL, INC.,CONNECTICUT
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNION CARBIDE CORPORATION;REEL/FRAME:4998/636
Owner name: KATALISTIKS INTERNATIONAL, INC., CONNECTICUT
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNION CARBIDE CORPORATION;REEL/FRAME:004998/0636
Oct 8, 1986ASAssignment
Owner name: UNION CARBIDE CORPORATION,
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MORGAN BANK (DELAWARE) AS COLLATERAL AGENT;REEL/FRAME:004665/0131
Effective date: 19860925
Jan 9, 1986ASAssignment
Owner name: MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MOR
Free format text: MORTGAGE;ASSIGNORS:UNION CARBIDE CORPORATION, A CORP.,;STP CORPORATION, A CORP. OF DE.,;UNION CARBIDE AGRICULTURAL PRODUCTS CO., INC., A CORP. OF PA.,;AND OTHERS;REEL/FRAME:004547/0001
Effective date: 19860106